
x DESIGNED FOR

<1S/ [Progoinrmmg htoffe
8566A.8568A/9835,9845-51 NOVEMBER 1981

SUPERCEDES: NONE

©HEWLETT-PACKARD CO. 1981
Z- HEWLETT
ZZJPACKARD

8566A.8568A/9835,9845-51 Subprogram Library

Required reading ...

8566A,8568A/9835,9845-1 Introductory Operating Guide
for the 8566A/8568A Spectrum Analyzers
with the 9835/9845 Desktop Computers
(P/N 5952-9356)

Also of interest...

Subprogram Library Tape Cartridge for the HP 8566A or 8568A
with the 9835 or 9845 (P/N 08566-10002 REV A)

8566A Spectrum Analyzer Remote Operation (P/N 08566-90003)

8568A Spectrum Analyzer Remote Operation (P/N 08568-90003)*

8568A/9825A-99 Program Execution Time Information for the
8568A/9825A Automatic Spectrum Analyzer System * * (P/N 5952-9284)

’The 8568A Learn String is documented only in 8568A Remote manuals dated October, 1981 and later.

’ ’ Contains execution time data for the 8568A alone.

2

Subprogram Library 8566A,8568A/9835,9845-51

INTRODUCTION

The HP 8566A or 8568A Spectrum Analyzer can be controlled over HP-IB* with a computing controller such as
the 9835 or 9845 Desktop Computer. Basic operation and programming of such automated spectrum analyzers is
described in the 8566A,8568A/9835,9845-1 Introductory Operating Guide. The present series of Programming
Notes, beginning here with Volume 1, will describe a number of subprograms which extend the value of the spec
trum analyzer’s built-in firmware and make it easier for you to develop your own custom software.

The subprograms perform tasks in several functional areas. These include determining the analyzer’s current state,
special marker and trace functions, calibrating equivalent analyzer bandwidths, and manipulating the analyzer set
tings for accurate amplitude measurements. The complexity ranges from high, as in the Peaks subprogram which
can be used for sophisticated interpretation of trace data, to low, as in the Save subprogram, which simply reads the
analyzer’s Learn String into the controller’s memory.

All, however, are high level subprograms in the sense that it is easy and convenient to refer to them in the context of a
measurement program written in the System 35 or 45B BASIC language. Transparent to the user are the details of
formatting and transferring data, reading analyzer functions without disturbing the current state, and verifying legal
conditions (or providing error messages for illegal usage); these are left to the code within the subprograms.

The subprograms contained in Volume 1 perform elementary utility tasks and provide a foundation for the measure
ment oriented subprograms which are presented in later volumes. In addition, a Program Form is provided as an
aid in developing well-structured main programs of your own, from which the various subprograms can be called as
needed.

The Error program is used by other subprograms as a means of reporting error messages. Save and Recall pro
vide high speed transfers of the Learn String out of and into the analyzer; Save also serves to identify the analyzer as
an 8566A or 8568A. Having defined a Learn String either by calling Save or by loading a previously stored Learn
String from a mass storage file, Dibits allows easy access to any bit field within the Learn String. Yes, No, and
Entry are provided as convenient methods to respond to questions at the controller keyboard, or to enter values
from the analyzer keypad.

Equipment Required

Operation of the subprograms described in this series of device subroutine procedures requires the following
equipment:

1. 8566A or 8568A Spectrum Analyzer

2. 9835A/B Desktop Computer with 98332A I/O ROM, or
9845B/T Desktop Computer with 98412A I/O ROM (Opt. 312)

3. 98034A/B HP-IB Interface.

Getting Started

The first step is to assemble the automatic spectrum analyzer components. Use the Introductory Operating Guide to
help you set up and check-out the system, and begin programming.

To start programming for your specific signal analysis application, study the section below entitled “Writing Pro
grams”, which provides details on constructing programs with the subprograms presented in this series. It is assum
ed that you are familiar with the 8566A or 8568A Spectrum Analyzer Operation and Remote Operation Manuals.

•Hewlett-Packard Interface Bus, the Hewlett-Packard implementation of IEEE STD 488-1978 and ANSI STD MC 1.1, "Digital Interface
for Programmable Instrumentation.”

3

8566A,8568A/9835,9845-51 Subprogram Library

Refer to section entitled Subprogram Descriptions for detailed definitions of parameters and error codes, and ex

amples of subprogram usage.

For advanced proramming, the operation of each subprogram is discussed on a line-by-line basis. Also refer to the
8566A or 8568A Spectrum Analyzer Remote Operation manuals for a summary of the contents of the analyzer s

Learn String.*

Although the subprograms can be entered into the controller from the keyboard, it is recommended that you
obtain the tape cartridge, P/N 08566-10002, which contains listings of the subprograms in the Subprogram
Library. If you have this “master cartridge,” duplicate it onto a blank cartridge. Save the master cartridge as a
backup copy and use the new copy as a “working cartridge.

WRITING PROGRAMS USING THE LIBRARY SUBPROGRAMS

The subprograms in this series provide high-level generalized routines which can be called upon to solve some of
your individual measurement requirements. This section will show you how to assemble these subprograms with
your main program and subprograms into a standard format, using the Program Form as a framework.

The Subprogram Library consists of two kinds of subprograms: calls and functions. These are described in detail in
the System 35 or System 45B Desktop Computer Operating and Programming manual. Briefly, the difference be
tween these two types of subprograms is the manner in which each passes values back and forth between itself and
the calling program.

1. Calls pass values on/y by way of their parameter list. For example, a call with the name “Sub” having three
parameters would be invoked from a program (or subprogram) by code such as:

10 CALL Sub(X,Y,Z)

2. Functions may also pass values between the calling program (or subprogram) and themselves by a parameter
list. In addition, a function always returns one value by way of the name of the function itself; this is done by us
ing the function in an arithmetic or logical expression in the calling program or subprogram:

10 Z=FNSub(X,Y)+6.3

or 10 IF FNSub(X,Y)=Z THEN 150

The section entitled Subprogram Descriptions includes memory requirements; the memory requirement does
not include 24 bytes corresponding to the “ I END OF PROGRAM ” statement at the end of each subprogram.

The Program Form and the subprograms, and their respective file names as they appear on the Subprogram Library
Tape Cartridge, P/N 08566-10002, are listed in the following table:

Table 1. Subprogram Library Files

File Name Subprogram Type EXTERNALS*

PROGRM
ERROR
SA/RE
OLBITS
YES/NO
ENTRY

Program Form
Error
Save; Recall
Olbits
Yes; No
Entry

CALL
FN’s
FN

FN’s
FN

Error
Error; Save

Interrupt (in file PROG RM)

♦EXTERNALS are other subprograms which may be called by this
subprogram and which therefore must also be appended.

The 8568A Learn String is documented only in 8568A Remote manuals dated October, 1981 and later.

4

Subprogram Library 8566A,8568A/9835,9845-51

General Program Structure

The recommended structure for your programs is shown in Figure 1. This structure organizes the program to make
it easy to troubleshoot and make additions and/or deletions.

Program Form and Header
with Main Program and
Interrupt subprogram

User Subprograms

Library Subprograms

Figure 1. Recommended Program Structure

Program Form

The program form is comprised of program comments which contain general information about the program such
as the title, date, author, and a statement describing what the program does. Controller initialization statements
necessary for the main program’s execution such as address assignments and format statements, as well as a basic
interrupt-handling subprogram are also included. Program Form requires 1174 bytes of memory (including the
“1 END OF PROGRAM ” statement at the end of the listing).

The program form provides a simple way to start writing your program. It provides generalized labels to assist your
program documentation and defines the standard device name and address used by the Subprogram Library. It
assures that the default format is STANDARD and the array indexing begins with one, not zero (OPTION BASE 1).
The controller interrupt branching is defined and enabled. As you write additional software and add to the software
library, you will want to make additions to, or modifications of the program form to suit your particular requirements.

Following the documentation/definition section of the form, a section of code is included that forcibly aborts all
operations on the HP-IB, clears the analyzer, and locks the analyzer and other instruments on the HP-IB to prevent
local (manual) operation. This assures a clean starting point for the hardware and controller to commence execution
of your program.

When using the form for your own programs, be sure to delete any lines of code that are not relevant to your pro
gram. This will prevent wasting controller memory on unnecessary program statements.

To load the Program Form file from the Subprogram Library Tape Cartridge, insert the cartridge into the tape
transport and type:

GET "PROGRM " (Press EXECUTE)

5

8566A,8568A/9835,9845-51
Subprogram Library

101 ! Progran nane/description
102 ! Author: File Nane, YYMMDD
103 ! Progran description coMMents...line
104 ! Progran description connents. . . line
105 !
106 !
107 OPTION BASE 1
108 STANDARD
109 1
110 COM R,Sa>E$I201>L$C801
111 1
112 Sa=718 ! 8566A/8568A
113 PRINTER IS 16 ! Systen printer
114 1
115 ON INT 117 CALL Interrupt
116 CONTROL MASK 7; 128
117 CARD ENABLE 7
118 !
119 ABORTIO 7
120 CLEAR Sa
121 LOCAL LOCKOUT 7
122 OUTPUT Saj"TS"
123 1 Progran starts here...
1000 END
1001 !
1002 1
10 03 ! x- x -x- x- x- x- -x- x- x- x x x x x- x- x x S u b p r o g r a n s x- x- x x- x- x x- -x- x- -x- x x- x- x- x x x- x- x- x- x-
1 004 !
1005 !
1006 SUB Interrupt
1007 OPTION BASE 1
1008 COM R,Sa,E$[20],L$[80]
1009 STATUS Sa;R
1010 IF NOT BIT(R,6) THEN Re enable
1011 IF BIT(R,1) THEN Re. enable
1012 IF BIT(R,3) THEN DISP "HARDWARE BROKEN'"
1013 IF BIT(R,5) THEN DISP "ILLEGAL COMMAND'"
1014 PAUSE
1015 Re_enable: CONTROL MASK 7)128
1016 CARD ENABLE 7
1017 SUBEND
1018 ! End Interrupt
1019 !
1020 !
1021 ! END OF PROGRAM

101-104:

112:
113:

107:
108:
110:

program information including the program name, author, file name, date, and programGeneral]
description.
Declare array indexing to begin at 1 (rather than 0).
Declare 9835/45 STANDARD (default) format.
Declare R (the analyzer status byte), Sa (the analyzer address), E$ (the error code string), and L$ (the
learn string) to be accessible from the COMmon storage block.
Set spectrum analyzer address Sa.
Set system printer address.

6

Subprogram Library 8566A,8568A/9835,9845-51

115: Define label Interrupt as the name of HP-IB interrupt-handling subroutine.
116-117: Enable interrupts from the bus. If any interrupts (SRQ’s) originate from Select Code 7 (the HP-IB), the

program will branch to Interrupt.
119-122: Clear HP-IB; perform Instrument Preset on analyzer; execute LOCAL LOCKOUT on HP-IB; fake one

sweep.

123—1000: Insert your main program between these lines (see “Loading Your Program” for instructions).
1006: Commence interrupt processing. Refer to the Spectrum Analyzer Remote Operation Manual for more

information on Service Requests (SRQ’s).
1007: Declare array indexing to begin at 1.
1008: Declare COMmon block (identical to line 110).
1009: Read the status byte from the spectrum analyzer and save it as variable R.
1010: If R = 0, the interrupt originated at some instrument other than the spectrum analyzer. The code pro

vided here ignores such interrupts, goes to line 1015, re-enables the interrupt capability of the HP-IB,
and returns to your program. If your system has other HP-IB instruments capable of generating inter
rupts, you will want to insert code here to process such interrupts.

1011: If bit 1 of the spectrum analyzer status byte is set, a units key or SHIFT r has been pressed on the
analyzer. (Note that this interrupt, SQR 102, can occur only if you have programmed the spectrum
analyzer to generate such interrupts with “R4.”)

Interrupt ignores such interrupts, except to store the spectrum analyzer status byte in variable R;
subroutine Entry (see “SUBPROGRAM DESCRIPTIONS”) is an example of how this particular in
terrupt can be processed using the status byte information provided by Interrupt.

1012: If bit 3 is set, an SRQ 110 has been generated. Normally this occurs if a phase-lock error occurs, and
there will be an appropriate error mssage (such as YTO UNLOCK, M/N UNLOCK, etc.) displayed on
the spectrum analyzer CRT. Refer to the 8566A or 8568A Operation and Service Manual for more in
formation on these messges. The program displays the error message “HARDWARE BROKEN!”,
goes to line 1014 and stops.

1013: If bit 5 is set, an SRQ 140 has been generated. This occurs when an illegal string of characters is
transmitted over the HP-IB to the spectrum analyzer. The program displays “ILLEGAL COM
MAND!” and stops.

1014: An SRQ 110 or SRQ 140 has occurred (line 1012 or line 1013).
1021: Append subprograms to this line (see “Appending Subprograms” for instructions).

Appending Subprograms
Once you have decided which subprograms to use in your program, you can append those subprograms to the pro
gram form. Table 1 shows the subprogram file names in the CATalog of the subprogram cartridge. Any or all of the
subprograms can be appended with the following procedure:

1. Locate the number of the last line of the program:
System 35: System 45:

EDIT 9999 (Press EXECUTE) EDIT 32766 (Press EXECUTE)
(Press fo]) (Press)

-----> I J

For example, the controller might show:

1021 ! END OF PROGRAM

If you are using the Program Form and appending subprograms provided with the Subprogram Library, the last line
will be “I END OF PROGRAM” (this is a non-functional comment statement) and the last line number is therefore
1021. If you are not using the program form, the last line should be any non-functional statement which can be writ
ten over.

If the last line of your program is functional, such as

1090 END
simply add one to the last program line number (in this case, 1090+1 = 1091) and continue with step 2.

7

8566A.8568A/9835,9845-51 Subprogram Library

2 Insert the Subprogram Library Tape Cartridge, P/N 08566-10002, into the controller’s tape transport
and append the desired subprogram. For example, to load the subprograms stored as file SA/RE ,
beginning at line 1021 of the existing program, enter.

GET "SA/R E">1021 (Press EXECUTE)

If. after executing the GET command, one or more lines appear on the controller display with the message IM
PROPER LINE NUMBER, it might be that there are insufficient additional line numbers available to accommodate
the entire file which is being appended. In this case, the RENumber command can be used to condense the existing
line numbers. Refer to the System 35 or System 45B Desktop Computer Operating and Programming manual for a
description of this command.

3. The subprogram is now appended to your program. Additional subprograms can be appended to your new
program (which now includes the subprogram just appended) by noting the new last program line and follow
ing the procedure outlined above.

For example, find the last program line after appending the “SA/RE” file onto the Program Form; this should
be line 1067. Now, append file “OLBITS”:

GET"OLBITS",10 67 (Press EXECUTE)

4. Most of the subprograms in the Subprogram Library use one or more other subprograms from the Sub
program Library. For example, the Save and Recall subprograms call subprogram Error, and so this sub
program must also be appended using the procedure in steps 1 and 2. Refer to Table 1 and add the required
subprograms. The dependency of one program on others can also be determined by examining the program
listing for EXTERNALS listed as a comment in the first few lines of code.

Loading Your Program

Once you have loaded the Program Form and appended any Library Subprograms that are required, you will want to
add your main program and subprograms. The procedure for doing this utilizes the insert line INS LN editing key to
add program lines. Your program lines should be inserted between lines 123 and 1000 of the form (see Figure 2). *

Example:

A program using the subprograms Save and Olbits to determine whether the sweep time is in the COUPLED
(“AUTO”) mode will be inserted into the Program Form between lines 123 and 1000.

1 • Go to the line just below where the new program line is to be inserted.

EDIT 1 00 0 (Press EXECUTE)
Press E3

The controller displays:

124

2. Type the line to be inserted:

DIM A$E9] (Press STORE after each line)
A$="COUPLED"
CALL Save(Analyzer)
Flag=FN01bits(IB , 0,1)
IF Flag THEN A$="UN"&A$
DISP "Sweep tiwe is "4A$

.he sX 35 « S,stem45B oXt'S

8

Subprogram Library 8566A, 8568A/9835, 9845-51

The listing of this program segment will now be:

123 I Prograw starts here..,
124 DIM A$E91
125 A$="COUPLED"
126 CALL Save(Analyzer)
127 Flag=FNOlbits(18,0,l)
128 IF Flag THEN A$="UN"&A$
129 DISP "Sweep tine is "6A$
1000 END

In lines 124 and 125, the string A$ is dimensioned and initially assigned the string “COUPLED.” The Learn
String is obtained in line 126 by calling Save (with parameter Analyzer, not used here). In lines 127 and
128, the function subprogram Dibits is used to test a bit in byte 18 of the Learn String; if true, concatenate
“UN” as a prefix for A$ to form the message “UNCOUPLED.” The message is displayed in line 129.

Programming Conventions

NOTE

1. Do not use the variable R or the strings E$ and L$ in the main program. Use the variable Sa only as the spec
trum analyzer’s address, as defined in line 112 of the Program Form. These variables and strings are used ex
tensively in the Library Subprograms and reside at the beginning of the COMmon storage.

2. If you use COMmon storage to provide access to variables and strings among the main program and your sub
programs, use a separate COM statement following, not preceding, the COMmon declaration- in line 110 of
the Program Form. This will ensure that the Library Subprograms will reference R, Sa, E$, and L$ at the cor
rect locations within the COMmon storage. Each time you use your own COMmon statement, be sure to
precede it with:

COM R,Sa,E$[20],L$[80]

General Recommendations:

1. Use the Program Form (File: PROGRM) provided on the Subprogram Library Tape Cartridge, P/N
08566-10002.

2. Use a local lockout while remotely operating the HP 8566A or 8568A.

3. At the end of the program, return the HP 8566A or 8568A to local in an instrument preset (IP) condition.

4. Use the recommended mnemonics for device codes shown below.

5. Set the HP-IB select code to 7.

Recommended Device Codes

Sa spectrum analyzer
Sg signal generator
Lp line printer
Pm power meter
Gp graphic plotter

9

8566A, 8568A/9835,9845-51 Subprogram Library

SUBPROGRAM DESCRIPTIONS
Error
CALL

Outputs the subprogram error code on controller display.
File: ERROR

Description
This subprogram is called by another subprogram when it is unable to complete its tasks. The error message output
by Error consists of two parts: (1) the name of the subprogram that detected the error, and (2) a numeric error code
(as some subprograms have more than one detectable error condition). The error codes are established by the sub
program in which the error occurs. The CALL Error(Ern) statement in a subprogram must be followed immdiately by
a PAUSE. Then, Error simply outputs the message and program execution is halted.
For example, if an error occurred in PEAKS the controller could display:

ERROR Save-1
This message, from the Save error code table, means that Save was passed an illegal 8566A or 8568A Learn
String, and cannot continue.

When a program (or subprogram) invokes a subprogram incorrectly, Error prints the appropriate error message on
the controller display and suspends program execution.

Press I**”) the next line to be executed will be displayed. Note the line number

Press l‘-'J and enter the line number just noted.

to see the line immediately following the line containing the error.Press

The previous line should contain a CALL or FN reference to the subprogram in which the error occurred:

If this is not the case, a branch of the form

IF. .. THEN... or
ON ... GOSUB ... or
ON... GOTO...

might have branched to the displayed line. This can only be true if the offending subprogram is a function (FN) sub
program.

Parameters
Passed:

Ern = error number passed by the subprogram detecting the error.
Returned: none

Memory Required
426 bytes

Error Codes
None

Listing and Annotation for Error

101 I Error (File: ERROR)
102 ! HP 08566-10002, 810702
103 ! For HP 8566A or E1568A with System 35 or 45
104 ! CALL: Output error nane froM E$ and error t
105 ! Ern=error nunber
106 I EXTERNALS: none

10

Subprogram Library 8566A,8568A/9835,9845-51

107 !
108 SUB Err or(Ern)
109 COM R,Sa,E$[201 ,L$E80]
1 1 0 BEEP
111 DISP "ERROR "6E$;-ABS(Ern)
112 SUBEND
113 ! End E r r o r
114 !
115 !
116 ! END OF PROGRAM

101—105: Description.
106: Requires no other subprogram.
108: Declare subroutine subprogram Error with parameter Ern.
109: Declare COMmon storage.
110: Signal operator with a BEEP.
111: Display error message on the controller. The subprogram name is stored in E$ (accessed from COM

mon). The error number is Ern, passed from the subprogram which detects the error.
112: Returns program execution to the calling program segment, at the line following the CALL Error (Ern)

statement. This is normally a PAUSE statement. See the above “Description” of Error for instructions
on responding to an error.

Save/Recall
CALLS

Transfers Learn String from the analyzer to L$, or from L$ to the analyzer
File: SA/RE

Description
Subprogram Save provides a high speed transfer of the 8566A or 8568A “Learn String” to the string L$ in the
system controller. I/O ROM transfer type BFHS (byte-by-byte fast handshake) is used. The string L$ (dimensioned
for 80 bytes) resides in COMmon to provide ready access by other program segments which require the use of the
“Learn String.” Once the “Learn String” is in the system controller, it can be transferred to another string for
storage, using simple string assignment statements. The string array R$ (“Recall String”) is easy to remember for
this purpose. The string L$ can be transmitted back to the analyzer via the Recall subprogram.

Parameters
Passed:
none

Returned:
Analyzer = 8566 or 8568, depending on type of analyzer at specified address

Example
150 DIM *R$[801
160 CALL Sa ve (Ana ly zer)
170 R$=L$

250
260

L$=R$
CALL Recall

1 50 R$ dimensioned for 80 bytes as a buffer to store the current L$ Learn String (and therefore, the analyzer state)
until it is required later in the program.
160 Call Save. (Return parameter Analyzer is not used here.)
170 R$ buffers the current L$ until required later.
250 L$ reset to R$ in preparation for Recall.
260 Call Recall to restore analyzer to earlier state.

11

8566A, 8568A/9835,9845-51 Subprogram Library

Memory Required
1430 bytes

Error Codes
Recall-1: String L$ does not contain an 8566A or 8568A Learn String.
Save-1: String read was not an 8566A or 8568A Learn String.

Listing and Annotation for Save/Recall
101 ! Save/Recall (File: SA/RE)
102 ! HP 08566-10002, 810702
103 • For HP 8566A or 8568A with Systew 35 or 45
104 ! CALL'S: Buffered Save/Recall of 8566A control state via L$
105 ! Ana 1yzer=ana1yzer identification, 8566 or 8568 (R)
106 ! EXTERNALS: Error
107 !
108 SUB Save(Ana 1yzer)
109 OPTION BASE 1
110 COM R,Sa,E$[201,L$[80]
11 1 OUTPUT Sa;"OL"
112 ENTER Sa BFHS 80 NOFORMAT;L$
113 Last_byte=FNLstr(80,0)
114 IF Last_byte=162 THEN Ana 1yzer=8566
115 IF Last_byte=165 THEN Analyzer=8568
116 IF (Last_byte<>162) AND (Last_byte<>165) THEN Err
117 SUBEXIT
118 Err : E$=,,Save"
119 CALL Err ord)
120 PAUSE
121 SUBEND
122 !
123 1
124 SUB Recall
125 OPTION BASE 1
126 COM R ,Sa,E$[20],L$[80 J

101—105: Description.
106: Requires Error.
108: Declare subroutine subprogram Save with parameter Analyzer.
109: Declare array indexing to begin at 1.
110: Declare COMmon storage.

111-112: Transfer Learn String from spectrum analyzer to string L$ in controller using a byte-by-byte fast hand
shake.

113: Save the last byte of the Learn String as the variable Last byte.
114: If Last—byte equals 162, then the spectrum analyzer must be an 8566A. Save the value 8566 in

the parameter Analyzer.
115: If Last byte equals 165, then the spectrum analyzer must be an 8568A. Save the value 8568 in

Analyzer.
116: If Last byte does not equal 162 or 165, then the Learn String did not come from either an 8566A

or 8568A. An error message is returned by branching to line 133.
117: Return from the subroutine to the calling program segment.
118: Define E$ to be the literal string “Save.”
119: Call subroutine Error with Em = 1.
120: Stop program execution. (Required after calling Error.)
121: Return from the subroutine to the calling program segment.
124: Declare subroutine Recall.
125: Declare array indexing to begin at 1.
126: Declare COMmon storage.

12

Subprogram Library 8566A, 8568A/9835, 9845-51

127 IF FNLstr (1 , 0) 031 THEN Err
128 Last byte=FNLstr(80,0)
129 IF (Last byte<>162> AND (Las t_b y te < > 165) THEN Err
130 OUTPUT Sa BFHS NOFORMAT;L$
131 OUTPUT Sa;"HD"
132 SUBEXIT
133 Err: E$= "Rec: a 11 "
134 CALL Error(l)
135 PAUSE
136 SUBEND
137 l
138 l
139 DEF FNLstr (Bn um , Sh i-Ft)
1 40 OPTION BASE 1
141 COM R,Sa,E$[201,L$[80 J
142 RETURN SHIFT (NUM(L$[BnuM ; 1 1 > ,Shi Ft)
143 FNEND
144 ! End Save/Recall
145 l
146 i
147 ! END OF PROGRAM

127-129: Test for errors: the value of the first byte of the Learn String must be 31, and the value of the last byte
either 1 62 or 165. (Refer to the 8566A or 8568A Spectrum Analyzer Remote Operation Manual for
more information on the contents of the Learn Strings.)

130: Output the string L$ from the controller to the spectrum analyzer (the analyzer will recognize it as a
Learn String by the first and last bytes, as verified in lines 127-129).

131: Disable the active function area of the CRT.
1 32: Return to the calling program segment.
133: Define E$ as the literal string “Recall.”
134: Call the Error subroutine with parameter 1.
135: Stop program execution after sending error message.
136: Return to the calling program segment.

139- 143: Define internal function subprogram Lstr with parameters Bnum and Shift. Subprogram Lstr fet
ches a byte from the Learn String (byte number Bnum), and converts it to an equivalent decimal
numeric value. The resulting bit pattern is shifted by the number of positions specified by Shift. The
result of these operations is returned to the calling program segment. Note that the subprogram Lstr is
identified as an internal subprogram. It is used only by other subprograms in the Subprogram Library.
The more generalized subprogram, OlbltS, is recommended for general use.

Dibits
FUNCTION

Returns a bit field from the 8566A or 8568A “Learn String.”
File: OLBITS

Description
Function subprogram Olbits is used by a program or subprogram to read specific instrument state information from
bytes of the 80-byte OL learn string. Olbits provides access to any byte of the learn string and supplements
Functions and state. The data structure of the OL learn string is discussed in the 8566A or 8568A Spectrum
Analyzer Remote Operation manual.*
Parameters

Passed:
Bnum = byte number in learn string, L$, 1 to 80.
Bit = least significant bit of field to be returned, 0 to 7 (where 0 is least significant bit of byte Bnum).
Width = number of bits (width of field) to be returned, 1 to (8-Bit).

Returned:
FNOIbits = value of bit field, in decimal

’The 8568A Learn String is documented only in 8568A Remote manuals dated October, 1981 and later.

13

8566A.8568A/9835,9845-51
Subprogram Library

Example
To return all 8 bits of byte number 1 in the OL Learn String, use the following:

PROGRAM DISPLAY
40 A=FN01bits(l,0,8)
50 DISP A 31

Memory Required
886 bytes

Error Code
Olbits-1: parameter Bnum must be in range 1-80; parameter Bit must be in range 0-7; parameter Width
must be in range 1 to (8-Bit).

Listing and Annotation for Olbits
101 1 Olbits (Files OLBITS)
102 ! HP 08566-10002, 810702
103 ! For HP 8566A or 8568A with System 35 or 45
104 ! FN: Return bit -field fron learn string in L$
105 ! Bnu«=byte * in l...$, 1 to 8 0
106 ! Bit = least significant bit of -field, 0 to 7
107 ! Width-* of bits (width of field), 1 to 8-Bit
108 I EXTERNALS: Error; Save
109 !
110 DEF FN01bits(BnuM,Bit,Width)
111 OPTION BASE 1
112 COM R,Sa,E$[20],L$[801
113 IF (Bdum<1) OR (Bnuw>80) THEN Err
114 IF (Bit<0) OR (Bit>7) THEN Err
115 IF (Width(l) OR (Width>8-Bit) THEN Err
116 CALL Save(Analyzer)
117 RETURN SHIFT(BINAND(FNLstr(Bnun,Bit+Width-8),255),8-Width)
118 Err: E$= "Olbits"
119
120
121

CALL Error(l)
PAUSE
RETURN 0

122 FNEND
123 I End Olbits
124 !
125 !
126 ! END OF PROGRAM

101-107: Description.
108: Requires Error and Save.
110: Define function subprogram Olbits with parameters Bnum, Bit, and Width.
111: Declare array indexing to begin at 1.
112: Declare COMmon storage.

113-115: Test for illegal parameter values.
116: Load L$ with the Learn String via Save.

(Return parameter Analyzer is not used here.)
117: Get decimal numeric equivalent of bits 0 through (Bit + Width - 1) of byte Bnum, using the inter

nal subprogram Lstr (in subprogram file SA/RE). Note that the selected bits are shifted left so that the
most significant bit of the specified field is shifted to bit position 7. The result will occupy the eight least
significant bits of a 16 bit word in the controller. Zero the eight most significant bits of the 16 bit word

14

Subprogram Library 8566A, 8568A/9835,9845-51

while preserving the other eight bits by “band”ing the word with the mask 255 (25510 =
00000000111111112)- Shift the result to the right by (8-Width) positions so the 1st bit of the re
quested field is in position 0. Return this result.

118: Store the literal string “Olbits” in E$.
119-120: Send error message and stop program execution.

121: Return 0 as the function Olbits value if error encountered.
122: End of function subprogram Olbits.

Yes/No
FUNCTION

Returns logical value (0 or 1) when operator presses Y or N on controller keyboard.
File: YES/NO

Description

Note: Y,y,1 ,N,n, or 0 may be pressed.

Parameters

Passed: none

These function subprograms allow program questions to be answered from the system controller keyboard.

The function FNYes will return 1 for (7) or (7) an<^ f°r C°J °r GD ^°"0WCI^ by (continue) .

The function FNNo will return 1 for (7) or (7) and 0 for (7) or (*^) f°H°web by (continue) .

Pressing any other alphanumeric key will cause an error/information message to appear on the controller’s display.
Answer Y or N,

Returned:
FNYes = 1 fory, Y, or 1 followed by CONTinue on controller keyboard.

= 0 for n, N or 0
FNNo = 1 for n, N or 0 followed by CONTinue on controller keyboard.

= Ofory, Y, or 1

Example
To ask whether the program should continue, consider the following branch program:

190 DISP "Continue?"
200 IF FNNo THEN PAUSE
210 Continues I

Q (continue) on controller keyboard stops the program.

(7) (continue) continues the program on line 210.

A meaningless answer such as (7) (continue) will display

Answer Y or N.

and cause the program to wait for an acceptable answer.

Memory Required

1434 bytes

Error Codes

None

15

8566A, 8568A/9835, 9845-51 Subprogram Library

Listing and Annotation for Yes/No

101 1 Yes/No (Filet YES/NO)
1 02 I HP 08566-10002, 810702
1 03 I For HP 8566A or 8568A with Systew 35 or 45
104 ! FN's: Read Y,y,l or N,n,0 Trow keyboard
1 05 ! FN=1 if answer is true; 0 i-P false (R)
1 06 ! EXTERNALS: none
1 07 I
1 08 DEF FNYes
109 OPTION BASE 1
11 0 DIM S$E10]
1 1 1 Input: INPUT ,,",S$
112 IF LEN(S$)=0 THEN Err
113 S=NUM(S$tl)
114 IF (SO121) AND (SO89) AND (SO49) THEN 118
115 Ans=l
116 DISP "YES"
117 GOTO Exit
118 IF (SOHO) AND (SO78) AND (SO48) THEN Err
119 Ans-0
120 DISP "NO"
121 Exit: WAIT 500
122 RETURN Ans
123 Err: BEEP
124 DISP "Answer Y or N."
125 WAIT 1000
126 GOTO Input
127 FNEND
128 I
129 i
130 DEF FNNo
131 OPTION BASE 1
132 DIM S$[101

101—105: Description.
106: No other subprogram required.
108: Define function subprogram Yes.
109: Declare array indexing to begin at 1.
110: Dimension S$ for up to 10 characters; S$ will be used to store the keyboard entry.
111: Read controller keyboard entry, terminated by CONTINUE, into S$.
112: If at least one key was pressed before CONTINUE, go to line 113. Otherwise, go to line 123.
113: Convert the ASCII character of the first key pressed before CONTINUE to its numeric equivalent, S.

114-117: If S matches Y, y, or 1, set Ans = 1, display “YES”, and go to line 121.
118-120: If S matches N, n, or 0, set Ans = 0, display “NO”, and go to line 121. Otherwise, go to line 123.
121 -122: Return parameter Ans to calling program segment.
123-126: No key was pressed before CONTINUE (see line 112), or a key other than Y, y, 1, N, n, or 0 was

pressed. Display error message (“Answer Y or N”), then go to line 111 for another entry.
127: End of function subroutine Yes.
130: Define function subprogram No.
131: Declare array indexing to begin at 1.
132: Dimension S$ for up to 10 characters; S$ will be used to store the keyboard entry.

16

Subprogram Library 8566A, 8568A/9835, 9845-51

THEN 140

133 Input: INPUT "",8$
134 IF LEN(S$)=0 THEN Err
135 S=NUM(S$11 1 1)
136 IF (80121) AND (8089) AND (8049)
137 Ans-0
138 I) ISP "YES"
139 GOTO Exit
140 IF (80110) AND (8078) AND (8048)
141 Ans = l
142 DISP "NO"
143 Exit: WAIT 500
144 RETURN Ans
1 45 Err: BEEP
146 DISP "Answer Y or N."
147 WAIT 10 00
148 GOTO Input
149 FNEND
150 I End Yes/No
151 i

1 52 I
153 I END OF PROGRAM

THEN Err

133: Read controller keyboard entry, terminated by CONTINUE, into S$.
134: If at least one key was pressed before CONTINUE, go to line 135. Otherwise, go to line 145.
135: Convert the ASCII character of the first key pressed before CONTINUE to its numeric equivalent, S.

136-139: If S matches Y, y, or 1, set Ans = 0, display “YES”, and go to line 143.
140-142: If S matches N, n, or 0, set Ans = 1, display “NO”, and go to line 143. Otherwise, go to line 145.
143-144: Return parameter Ans to calling program segment.
145-148: No key was pressed before CONTINUE (see line 134), or a key other than Y, y, 1, N, n, or 0 was

pressed. Display error message (“Answer Y or N”), then go to line 133 for another entry.
149: End of function subprogram No.

Description

Entry
FUNCTION

Returns analyzer’s number keyboard entry.
File: ENTRY

The 8566A or 8568A Spectrum Analyzer data keyboard can be used to enter integer numbers to the 9835 or 9845
controller program via function Entry. Entry has two modes of operation:

1. Press a sequence of 8566A or 8568A DATA numeric keys, terminate entry with a Units key. Values returned
can be any integer between 1 and 999999999999 (1012 — 1).

2. Single key pressed (non-zero numeric or Units key).

Values returned can be 1,2, 3, 4, 5, 6, 7, 8, 9, 103 (kHz key), 106 (MHz key) or 109 (GHz key).

Note: Entry leaves the ENTRY mode (“EE”) as the active function on the CRT of the analyzer. To clear this
from the display and disable the keyboard of the analyzer after using Entry, send “HD” to the analyzer (or
enable any other function):

10 A=FNEntry(0)
20 OUTPUT Sa;"HD"

17

S566A.8568A/9835,9845-51 Subprogram Library

Parameters
Passed:

Mode: Specifies data entry mode.
Mode = 0: Data entry on the analyzer keyboard is terminated by pressing a Units key. Values entered

can be integers from 1 to 999999999999 (1012 — 1). The Units key pressed multiplies the entered
value bylhe frequency unit (Hz = xl; kHz = xl (P, MHz = x10^, GHz = xl 0^).

Mode #0: Data entry from the analyzer keyboard by pressing a single, non-zero key (either numeric or a
Units key). The value entered can be 1,2, 3, 4, 5, 6, 7, 8, 9, 10< 10^, or 10^.

Returned:
FNEntry = value entered on analyzer DATA keyboard.

Examples
The following examples show the two entry types. The displayed output at the right is the result of the corresponding
analyzer keyboard entry:

In the first type, the value is read and printed only after the units key is pressed.

140 E=FNEntry(O)

150 DISP E

or

140 E=FNEntry(O)

150 DISP E

0Q0QQ00
123456

000O000®
Note that the actual value is always an integer; fractional parts of the number entered are truncated.

In the second type, the value is displayed when any non-zero DATA key (or a units key) is pressed.

140 E=FNEntry(l)

150 DISP E
or
140 E=FNEntry(l)

150 DISP E 100 0

Memory Required
1022 bytes

Error Codes
None

Listing and Annotation for Entry
101 i Entry (File: ENTRY)
102 • HP 08566-10002, 810702
103 1 For HP 8566A or 8568A with System 35 or 45
104 1 FN: Suppress other interrupts, return 8566A/8568A DATA key(s) entry
105 ! as an integer.
106 ! FN=Keyboard entry (R)
107 1 Mode-0: Requires units key as terminator.
108 1 HO read one key only (1—9 or units multiplier)) 0 not allowed
109 1 (R=Status byte froti analyzer)
110 • EXTERNALS: Interrupt

18

Subprogram Library 8566A, 8568A/9835, 9845-51

111
112

i
DEF FNEntry(Mode)

113 COM R , Sa , E$ [20] , L$ f. 80 1
11 4 ON INT 417 CALL Interrupt
1 15 Start:: OUTPUT Sa; "EE OA"
116 ENTER Sa;Entry
117 IF Entry AND NOT Type THEN
118 T ype=Mode
1 19 IF NOT Type THEN Units
120 IF Entry THEN Exit
121 GOTO Start
122 Un its:: R=BINAND(R,253)
123 OUTPUT Sa;"Rl R3 R4"
124 Idle : IF NOT BIT(R,1) THEN Idle
125 OUTPUT Sa;"OA"
126 ENTER Sa;Entry
127 Exit ; RETURN Entry
128 FNEND
129 ! End Entry
130 1
131 1
132 ! END OF PROGRAM

101—109: Description.
1 10: Interrupt subroutine required (see Program Form).
1 12: Define function subroutine Entry with parameter Mode.
1 1 3: Declare COMmon storage.
114: Define label Interrupt as the name of HP-IB interrupt-handling subroutine.

1 15- 1 17: Verify that no key is pressed as Entry commences (i.e., “debounce” keys): Enable keyboard entry
from analyzer and read value into Entry. If a non-zero value is read, and Type is still zero (it is initializ
ed to zero by the controller when the Entry subroutine program segment is entered), the operator
must be holding down a key (either 1-9 or a Units key). Execute from line 115 .again until a “clean”
start can be made.

118: Assign entry type Mode to Type.
119: If Type is non-zero, single key entry type was requested; go to line 120. If Type is zero, then an entry

sequence terminated with a units key was requested; go to line 122.
120-121: If a non-zero key has been pressed since the debouncing in lines 115-117, then go to line 127 to

return the entered value Entry. Otherwise, go to line 115 to read another data value.
122: An entry sequence with a units key terminator has been requested. Set bit 1 of the spectrum analyzer

status byte, R, to 0.
123: Disable interrupts except for Illegal Command interrupt, “R1”. Enable Hardware Broken interrupt,

“R3” and Units Key interrupt, “R4.”
124: Enter an “idle” mode, repeatedly executing line 124 until an interrupt occurs. When an interrupt ap

pears on the interface bus, the program branches to the defined interrupt routine. Line 1 15 of the
Program Form defines such a branch; the Interrupt subroutine is listed in lines 1006-1017 of the
Program Form. If the Units Key interrupt has occurred, the Interrupt program will, after reading the
status byte into R (accessible from COMmon storage), recognize that bit 1 has been set and re-enable
the controller to respond to HP-IB service requests. Control is then returned to the Entry subprogram
at the beginning of line 124. Now, bit 1 of R is set, so go to line 125.

125-126: Output the value of the active function (keyboard entry) from the spectrum analyzer to the controller.
127: Return the entered value Entry to the calling program segment.

19

GLn HEWLETT
"HB PACKARD

For more information, call your local HP Sales Office nr noara » o
lA^ieTBo’sdi'Lan6^9^0’ °Pera,or ,or '"^"ment' »?es°Or wrHiV‘5.™ I'ett’packa’d^nT'p*"*'™ (312) 255'980°! Sou"’en’ 955'15M^ W«“™ <213’
.... Bols-dulan, P.O. Box, CH 1217 Meyrln 2, Geneva, Switzerland. In Japan • vX^Hrwl'ett pikwd*! M ?io.A,to' CA 9‘,3°''- ln Eur0|,e: Hewlett-Packard

span. roxogawa-Hewlett-Packard Ltd., 29-21, Takaldo-Hlgashl 3-chome, Suglnaml-ku, Tokyo 168.
5952-9365

Printed in U.S.A.

