SUPĘRCEDES: NONE

Required Reading...

> 8566A,8568A/9835,9845-1 Introductory Operating Guide for the 8566A/8568A Spectrum Analyzers with the 9835/9845 Desktop Computers (P/N 5952-9356)

8566A,8568A/9835,9845-51 Subprogram Library for the 8566A or 8568A Spectrum Analyzer with the 9835 or 9845 Desktop Computer, Volume 1 (P/N 5952-9365)

Also of interest . . .

Subprogram Library Tape Cartridge for the HP 8566A or 8568A with the 9835 or 9845 (P/N 08566-10002 REV A) ${ }^{1}$

8566A Spectrum Analyzer Remote Operation (P/N 08566-90003)
8568A Spectrum Analyzer Remote Operation (P/N 08568-90003) ${ }^{2}$
8568A/9825A-99 Program Execution Time Information for the $8568 \mathrm{~A} / 9825$ A Automatic Spectrum Analyzer System ${ }^{3}$

INTRODUCTION

The HP 8566A or 8568A Spectrum Analyzer can be controlled over HP-IB* with a computing controller such as the 9835 or 9845 Desktop Computer. Basic operation and programming of such automated spectrum analyzers is described in the $8566 \mathrm{~A}, 8568 \mathrm{~A} / 9835,9845-1$ Introductory Operating Guide. The present series of Programming Notes, continuing here with Volume 2, describes a number of subprograms which extend the value of the spectrum analyzer's built-in firmware and make it easier for you to develop your own custom software.
The subprograms contained in Volume 2 allow a program to interrogate the spectrum analyzer to determine control settings and display modes, without disturbing the state of the analyzer. Functions can oblain information about the FUNCTION and COUPLED FUNCTION keys. State returns information about Trace, Marker, Sweep, Trigger, and various other states.

Equipment Required

Operation of the subprograms described in this library requires the following equipment:

1. 8566 A or 8568 A Spectrum Analyzer
2. $9835 \mathrm{~A} / \mathrm{B}$ Desktop Computer with 98332 A I/O ROM, or $9845 \mathrm{~B} /$ T Desktop Computer with 98412A I/O ROM (Opt. 312)
3. $98034 \mathrm{~A} / \mathrm{B}$ HP-IB Interface

Getting Siarted

The first step is to assemble the automatic spectrum analyzer components. Use the Introductory Operating Guide to help you set up and check-out the system, and begin programming.
To start programming for your specific signal analysis application, study the section entitled "Writing Programs"in Volume 1 , which provides details on constructing programs with the subprograms presented in this series. It is assumed that you are familiar with the 8566A or 8568A Spectrum Analyzer Operation and Remote Operation manuals.

[^0]Refer to the section in this volume entitled "Subprogram Descriptions" for detailed definitions of parameters and error codes, and examples of subprogram usage.
For advanced programming, the operation of each subprogram is discussed on a line-by-line basis. Also refer to the 8566A or 8568A Spectrum Analyzer Remote Operation manual for a summary of the contents of the analyzer's Learn String**.

Although the subprograms can be entered into the controller from the keyboard, it is recommended that you obtain the Subprogram Library Tape Cartridge P/N 08566-10002 which contains listings of the subprograms in the Subprogram Library. If you have this "master" cartridge, duplicate it onto a blank cartridge. Save the master cartridge as a backup copy and use the new copy as a "working" cartridge.

The subprograms and their respective file names as they appear on the Subprogram Library Tape Cartridge, are listed in the following table:

Table 1. Subprogram Library Files

File Name	Subprogram	Type	Externals*
FUNCTS	Functions STATE	CALL	Error; Save

*EXTERNALS are other subprograms which may be called by this subprogram and which therefore must also be appended.

SUBPROGRAM DESCRIPTIONS

Functions State

CALLS

Returns detailed information about analyzer's state.
Files: FUNCTS, STATE

Description

Frequently it is necessary for a piece of software to know one or more elements of the current state of the spectrum analyzer. For example, a subprogram to calculate the sensitivity (average noise level) of the analyzer must know the current values of frequency, attenuation and resolution bandwidth. To obtain these values, we must interrogate the analyzer. A human operator does this simply by reading the annotations displayed on the CRT. A program must issue a request via the controller, however. The general procedure is to activate the desired function, output an "OA", then read the value returned by the analyzer. This procedure cannot always be used, however. For example, activating one of the coupled functions (such as RB) will put that function in uncoupled operation. As the subprogram would not know whether the function was coupled or uncoupled when it was activated, it would not know whether or not to restore coupled operation after reading the value. Not all states of interest are available via the "OA" instruction, anyway. For example, in reading a value for RL, you will also need to know the units (dBm, $\mathrm{dBmV}, \mathrm{dB} \mu \mathrm{V}$, or Volis).
The Functions and State subprograms are designed to provide this kind of information without disturbing the state of the analyzer. Function can obtain information about the FUNCTION and COUPLED FUNCTION keys. The information is organized in four groups, specified by the value of Code. See the description in the Functions parameter table.

Subprogram State returns information about graphics functions (such as Trace and Marker States), Sweep and Trigger states, and various miscellaneous states. See the description in the State parameter table.

* The 8568A Learn String is documented only in 8568A Remote manuals dated October, 1981, or later.

Parameters for Functions

Syntax: CALL Functions(Code, $\left.P 2, P 3, P 4, P^{2}, P G, P 7\right)$
Passed: Code selects category of function
Returned: P2,P3, P4,P5, P6, P7
Code
(passed) (returned)
1 FREQUENCY SCALE:
P2 = Center Frequency, Hz
P3 $=$ Span, Hz
P4 $=$ Start, Hz
P5 = Stop, Hz
P6 $=$ Frequency Offset, Hz
P7 $=$ Frequency Display Mode ($0=$ CF/Span; $1=$ Start $/$ Stop)
2 AMPLITUDE SCALE:
P2 $=$ Ref Level Units ($1=\mathrm{dBm} ; 2=\mathrm{dBmV} ; 3=\mathrm{dB} \mu \mathrm{V} ; 4=$ Volts)
P3 = Reference Level Value
P4 $=$ Reference Level Offset, dB
P5 = Amplitude Scale ($0=$ Linear; $1,2,5$ or $10=d B /$ div LOG)
P6 = Detection Mode ($1=$ Normal; $2=$ Pos Peak; 3 = Neg Peak; 4 = Sample)
P7 = not used
3 COUPLED FUNCTIONS' VALUES:
P2 = Resolution Bandwidth, Hz
P3 = Video Bandwidth, Hz
P4 $=$ Sweep Time, seconds
P5 $=$ RF Attenuation, dB
P6 = Center Frequency Step Size, Hz
P7 = not used
4 COUPLED FUNCTIONS' STATES:
P2 $=$ Resolution Bandwidth ($0=$ Auto; $1=$ Uncoupled)
P3 $=$ Video Bandwidth ($0=$ Auto; $1=$ Uncoupled)
P4 $=$ Sweep Time ($0=$ Auto; $1=$ Uncoupled)
P5 $=$ RF Attenuation ($0=$ Auto; $1=$ Uncoupled)
P6 $=$ Step Size ($0=$ Auto; $1=$ Uncoupled)
P7 = not used

Example

The following program reads the center frequency (just set):

PROGRAM

DISPLAY
170 OUTPUT 718; "CF222MZ"
180 CALL Functions $(1, F, 0,0,0,0,0)$
190 DISP F

$$
220000000
$$

Memory Required

2964 bytes

Error Codes

Functions-1: Parameter Code must be in range 1-4.

Parameiers for Siaite

Passed: Code selects category of state
Returned: P2,P3,P4,P5,P6, P7

Code

(passed) (returned)
1 MARKER STATES:
P2 = Marker mode ($1=$ Off; $2=$ Normal; 3=Delta; 4=Zoom)
P3 $=$ Signal Track ($0=$ Off; $1=$ On)
P4 $=$ Noise Level ($0=\mathrm{Off} ; 1=\mathrm{On}$)
P5 = Counter Mode ($0=\mathrm{Off} ; 1=\mathrm{On}$) (8568A ONLY!)
P6 = not used
P7 = not used
2 TRACE STATES:
P2 = A-Trace state ($1=$ CLR/WRT; $2=$ MAX HOLD; $3=$ VIEW; $4=$ BLANK $)$
P3 $=\mathrm{B} \cdot$ Trace state $(1=$ CLR $/$ WRT; $2=$ MAX HOLD; $3=$ VIEW; $4=$ BLANK $)$
P4 $=$ C-Trace State ($3=$ View; $4=$ Blank)
P5 = A-B Mode ($0=\mathrm{Off} ; 1=\mathrm{On}$)
P6 = Video Avg. ($0=$ Off; non-zero $=0 n,=\#$ of samples avg'd)
P7 $=$ Display Line ($0=\mathrm{Off} ; 1=\mathrm{On}$)
3 MISCELLANEOUS:
P2 = Sweep Mode ($1=$ CONT; $2=$ SINGLE)
P3 $=$ Trigger Mode ($1=$ FREE RUN; $2=$ LINE; $3=$ EXT; $4=$ VIDEO $)$
P4 $=$ CORR'D State ($0=$ Off; $1=\mathrm{On}$)
P5 $=$ Instrument Check Lights ($0=$ Off; $1,2,3=1, I I, I+I I$ On)
P6 = not used
P7 = not used
4 INPUT STATES (8568A ONLY!)
P2 $=$ Input \# (1; 2)
P3 = Input impedance, ohms (50; 75)
P4 = Preamp Gain, dB (for current input)
P5 = not used
P6 = not used
P7 = not used

Example

Use State to determine if any INSTRUMENT CHECK lights are on.

PROGRAM
180 CALL State $(3,0,0,0, C, 0,0)$
190 DISPC

The value 2 indicates that the second INSTR CHK light is on.

Memory Required

2452 bytes

Error Code

State-1: Parameter Code must be in range 1-4 (8568A) or 1-3 (8566A).

Listing and Annotation for FUNCTIONS

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131 C 26 : IF FNLstr $(36,7)$ THEN -68
132
133
134 Log: $P(2)=1+$ FNLstr $(64,6)$
$135 \quad 5 \$=" L G "$
$136 \quad P(5)=F N R d _a c t(1,5 \$)$
137 Rf_lul: $5 \$=$ "RL. KSZ"
138 FOR $5=3$ TO 4
$139 \quad \mathrm{P}(5)=F N R d_{\text {_act }}(5 \ldots c t r, 5 \$)$
140
141

-

142 C2_68: $P(2)=1+$ FNLstr $(72,6)$
143
144
145
146
147
148 IF NOT P (5) THEN (26, 1)
149 C2_p6: S=1+FNLstr $(29,3)$

101-107: Description.
108: Subroutines Error and Save required.
110: Define subroutine subprogram Functions with parameters Code,P2,P3,P4,P5,P6 and P7.
111: Declare array indexing to being at 1 .
112: Declare COMmon storage
113: DIMension $\mathbf{S} \$$ up to 15 characters, then array \mathbf{P} for indices from 2 to 7 .
114: Retain only the integer portion of Code.
115: Set error code number Ern $=1$.
116: If Code is illegal, report error.
117: Call Save to obtain the current analyzer state in the $L \$$ string.
118: Function subroutine Lstr (in the SA/RE file), returns the decimal value of the byte specified. The Learn String coding is detailed in the Spectrum Analyzer Remote Operation manual. * Learn String bytes 18 and 19 are LED conditions of the RF Section of the analyzer. The variable Led_bytes is a 16 bit word with the LED states; this saves the states of the coupled functions so they can be restored later, if necessary.
119: Set \mathbf{S} _ctr, the $\mathbf{S} \$$ string place counter, to 1 .
120: If Code is set for amplitude scale (Code $=2$) or coupled function states (Code $=4$), go to line 129 .
121: To read frequency scale values (Code $=1$) or coupled functions values (Code $=3$), start here. Load $\mathbf{S} \$$ string with analyzer command codes for main front panel FUNCTIONS and frequency offset.
122-124: Return active function values into \mathbf{P}-array. If the frequency scale values are requested
(Code $=1$), read CF SP FA FB and KSV values into $P(2)-P(6)$, respectively. If coupled functions values are requested (Code $=3$), read only $C F$ and $S P$ into $P(2)$ and $P(3)$, respectively. ($S P$ will be needed to determine CF step size if step size is in AUTO).
125: Calculate Center Frequency Step Size for AUTO.
126: Force Start/Stop frequency scale label mode.
127-128: Read frequency scale mode from bit 0 of Led_bytes (derived from the Learn String in line 117), and save as P7 and Start_stop. If Start_stop $=0$, scale should be Center Frequency/Span; set this by making Center Frequency the active function.
129: Go to line 152 unless amplitude scale values requested.
130: If Save return parameter Analyzer (line 117) represents an 8568A, then go to line 142. Amplitude scale values are stored differently in Learn Strings from 8566A's and 8568A's.
131: An 8566A analyzer is assumed. If in LOG scale (bit 7 of byte 26 is 1), go to line 134.
132-133: The analyzer is in Linear scale mode. Shift Learn String byte 65 two bits right and extract bits 0 and 1 (originally bits 2 and 3). These are the Ref Level Units bits for Linear scaling. Add one to the value of these bits to create a value in the range 1-4. Go to line 137.
134: The analyzer is in Log scale mode. Shift Learn String byte 64 six bits right and extract the two lower bits (original bits 6 and 7 will be bits 0 and 1). These are the Ref Level Units bits for Log scaling. Add 1 to the value of these bits to create a value in the range 1-4.
135-136: Store Log scale command code "LG" in S\$, and use function subprogram Rd_act (see line 180) to make Log Scale the active function; read the current scale value $\mathrm{P}(5)$.
137: Store command codes "RL" and "KSZ" in S\$.
138-140: Use function subprogram Rd__act (see line 180) to read Ref Level and Ref Level Offset into $\mathbf{P (3)}$ and $P(4)$.
141: Go to line 149.
142: An 8568A analyzer is assumed. Read amplitude scale values (Code $=2$). The reference level units code is read from the Learn String (bit 6 of byte 72); add 1 to create a value in the range 1-4.
143: Store command codes "RL", "KSZ", and "LG" in S\$.
144-146: Read Ref Level, Ref Level Offset, and scale value into $\mathbf{P}(3)-P(5)$, respectively, using Rd__act (see line 180).

147: The Learn String is read (bit 7 of byte 26) to determine whether the analyzer was in Log or Linear scale ($1=\log , 0=$ Linear). If Linear, $\mathbf{P}(5)$ is set to 0 . Othenwise, the current value of $\mathbf{P (5)}$ represents dB /division and is left intact.
148: If Linear mode, return the analyzer to Linear scaling.
149: Calculate the trace detection mode bit field plus 1 , and store in S for use as a pointer.

[^1]150
151
152
153
154
155
156
157
158
159
160
161
162
163 Code4: IF Code〈〉4 THEN Exit
164 FOR S=2 TO 6
$165 \quad P(S)=E I T($ Led_bytes,$S+4)$
166
167
168
169
170
171
172
173
174 Err: E\$="Functions"
175 CALL Error (Ern)
176 PAUSE
177 SUBEND
178 !
179
180
181
182
183 Rd_act: OUTPUT Sa; S\$[Index, Index+2]\&"OA"
184 ENTER Sa;Val
$185 \quad$ Index=Inclex+3
186 RETURN Val
187 FNEND
188 ! End Functions
189 !
190 !
191 ! END OF PROGRAM

> 150-151: Load "324-1" into string S\$ as a look-up table, and convert the \mathbf{S} value to the correct value for the trace detection code.

152: Go to line 163 unless coupled function values requested.
153: Put coupled function commands into string $\mathbf{S} \$$.
154: Reset S_ctr to 1.
155-157: Put RB, VB, ST, AT, and SS values into $P(2)-P(6)$ by reading the active function with Rd_act (see line 180).
158: If center frequency step size is in AUTO mode (BIT(Led_bytes, 10) $=0$), put Step_size into $\mathbf{P (6)}$.
159: Put command codes for coupled function AUTO conditions into $\mathbf{S \$}$. (Each letter in the string will be preceded by a " C " in the command.)
160-162: The coupled functions are returned to their original states as recorded in Led__bytes (from line 118).
163: Go to line 167 unless coupled function states requested.
164-166: Read each of the coupled function LED bits in Led_bytes into $P(2)-P(6)$.
167: Disable the active function.
168-172: Load $\mathbf{P}(2)-\mathbf{P}(6)$ values into return parameters $P 2$ - P6.
173: Return to calling program segment.
174-176: Send error message number Ern and halt program execution.
177: End of subroutine subprogram Functions.
180: Define system function subprogram Rd_act which reads the function activated by sending Index.
181: Declare array indexing to begin at 1.
182: Declare COMmon storage.
183: Transmit the indicated 3 character substring followed by "OA".
184: Read the active function value into Val.
185: Increment Index so that repeated calls to Rd_act will return values for the sequence of functions stored in $\mathbf{S} \$$.
186: Return Val to calling program segment.
187: End of system function subprogram Rd_act.

Listing and Annotation for STATE

```
    ! State (File: STATE)
    HP 08566-10002, 810702
    For HP 8566A or 8568A with System 35 or 45
    CALL: returns 8566A/8568A Control State
            Code = request code ( }1,2,3=m\mathrm{ mrkr fns, trac:es, mi.sc)
                                    8568A ONLY: (4 = input states)
    P2-P7 = requested values (R)
    EXTERNALS: Error: Save
            SUE State(Code,P2,P3,P4,P5,P6,P7)
        OPTION BASE 1
        COM R,Sa,E$[20],L$[80]
        DIM S$[8]
        CALL Save(Analyzer)
        Code=INT(Code)
        Ern=1
        IF Codle<1 THEN Err
        IF (Analyzer=8566) AND (Code)3) THEN Err
        IF (Analyzer=8568) AND (Code>4) THEN Err
        Rf_leds=FNLstr(19,0)+FNLstr(18, -8)
        Ds_leds=FNLstr(21,0)+FNL.str (20,-8)
Code_1: IF Code<>1 THEN Code_2
        P2=MAX(1, FNLStr (63,0)-16)
        IF Pこ)4 THEN P2=P2-3
    P3=BIT(Rf leds,14)
    P4=@IT(Rf_leds,3)
    IF Analyzer=8568 THEN P5=BIT(Rf_leds:13)
Code_2: IF Code<>2 THEN Code_3
        5$="70128345"
        FOR S=1 TO 8
            IF NOT EIT(Ds_leds,VAL_(S$[5,5.)) THEN Next_5
            IF S<5 THEN P2:=S
            IF 5>4 THEN P3=5-4
Next_5: NEXT S
            OUTPUT Sa;"DA307201DR"
    ENTER Sa;P4
    P4=3+(P4=1044)
    P5=BIT (Ds__leds,6)
    P7=BIT(Rf_leds,4)
    PG=EIT(FNLstr(73,0), 2)
    IF NOT PG THEN Code_3
    OUTPUT Sa;"KSGOA"
    ENTER Sa;PG
        P2=BIT(Ds_1eds,10)+1
        P3=1
        FOR S=1 TO 3
        P3=P3+S*BIT(Ds_1eds,5+10)
    NEXT S
    OUTPUT Sa;"DA219201DR"
    ENTER Sa;P4
    P4=(P4\>145)
```

101-107: Description.
108: Subroutines Error and Save required.
110: Define subroutine subprogram State with parameters Code,P2,P3,P4,P5,P6 and P7.
111: Declare array indexing to begin at 1.
112: Declare COMmon storage.
113: DIMension $\mathbf{S} \$$ up to 8 characters.
114: Call Save to obtain the current analyzer state in the $\mathbf{L} \$$ string.
115: Retain only the integer portion of Code.
116: Set error code number $\operatorname{Ern}=1$.
117-119: If Code is illegal, report error. (The legal range for Code is different for 8566A's and 8568A's.)
120: Function subroutine Lstr (in the SA/RE file) returns the decimal value of the byte specified. The Learn String coding is detailed in the Spectrum Analyzer Remote Operation manualł. Learn String bytes 18 and 19 are LED conditions of the RF section of the analyzer. The variable Rf_leds is a 16 bit word with the LED states; this saves the states of the coupled functions so they can be restored later if necessary.
121: Bytes 20 and 21 (LED conditions of the Display Section) are packed into a second 16 bit word, Ds_leds.
122. If Code is not set for Marker states, go to line 128.

123: Get the marker state byte from the learn string (byte 63). The possible values for this byte are 0 , and 18-20. (The 8568A also allows values $21-23$ which represent marker counter states.) Subtract 16 to convert the $18-20$ range to $2-4$ (and the $21-23$ range to $5-7$); replace 0 with 1 , using the max function.
124: In the case of the 8568A, P2 may now be in the range 2-7. if P2 is greater than 4, a marker counter state is indicated. Replace P2 with (P2-3) to shiff the value into the $2-4$ range.
125: Bit 14 of Ri_leds is the SIGNAL TRACK state; enter into P3.
126: Bit 3 of $\mathbf{R i}$ _leds is the NOISE MARKER state; enter into P4.
127: In case of the 8568A, bit 13 of Rf_leds is the FREQ COUNT state; enter into P5.
128: If Code is not set for Trace states, go to line 144.
129: Construct a bit pointer table in string $\mathbf{S} \$$. The table consists of two fields of four numbers each. The first four numbers specify the location of the proper bit in Ds_leds for each of the four Trace A states: CLEAR-WRITE A, MAX HOLD A, VIEW A, BLANK A. The numbers in the second field similarly specify the bit positions in Ds_leds for Trace B's state data.
130-134: Test the contents of the bit positions specified by the pointer table in $\mathbf{S} \$$. One of the four Trace A bits, and one of the four Trace B bits will be set; the other bits will be 0 . A Value of \mathbf{S} from 1 to 4 is the correct value for Trace A , and the one for which the bit is set is returned as P2. A Value of \mathbf{S} from 5 to 8 corresponds to Trace B ; sublract 4 from the one for which the bit is set, and return as P3.
135-136: Set the display address to the control word for Trace C (first word of page 4 of the trace memory). Specify O1 format, and read the word into P4.
137: Set P4 = 4 if the control word is 1044 (End of Memory), indicating Trace C is in BLANK. Otherwise, the trace is assumed in VIEW, so $\mathrm{P4}=3$.
138: Return bit 6 of Ds_leds (A-B Mode) as P5.
139: Return bit 4 of Rf_leds (Display Line state) as P7.
140-143: Return bit 2 of byte 73 (Video Averaging state) as P6. If Video Averaging is on, read the number of samples averaged and return as P6 instead.
144: If Code is not set for Miscellaneous states, go to line 154.
145: Read bit 10 of Ds_leds (Single Sweep bit). Add 1 so that 1,2, correspond to S1, S2 programming codes. Return as P2.
146: Assume Free Run TRIGGER mode: P3 = 1 .
147-149: If bit 11, 12, or 13 of Ds_leds is set, increment P3 by $\mathbf{1 , 2}$, or 3 to make P3 correspond to T1, T2. T3, T4 programming codes.
150-151: Set the display address to the display control word in page 3 of the trace memory that enables the CORR'D message. Read the word in O1 format into P4.
152: Set P4 $=0$ (CORR'D off) if the word is 145 (control word to skip to next 16 block), else $\mathbf{P 4}=1$.
*All 8566A Remote manuals, and 8568A Remote manuals dated October, 1981, and later.

```
153 PS=ETT(Rf_leds,12)+2*ETT(Rf_1eds,11)
154 Code_4: IF Code<>4 THEN C]r...act_fnc%
15G P2=EIT(FNL_str (23,0),3)+1
156 S$="КSく"
157
158
159
160
161
162
163 Err: E\psi="State"
164 CALL Error(Ern)
165 PAUSE
166 GUBFND
167 ! End State
168 !
169
170 ! END OF PROGRAM
```

153: Merge the contents of bit 12 (Instrument Check Light I) and bit 11 (Instrument Check Light II) of Rf_leds, and return Instrument Check Light status as P5.
154: If Code is not set for Input state (8568A only!), go to line 161.
155: Read bit 3 of byte 23 (Input number); add 1 to convert the 0,1 to 1,2 and return as P2.
156-157: Depending on P2, set either "KS <" or "KS>" into S\$.
158-159: Output the selected string, and read the preamp gain into $\mathbf{P 4}$.
160: Read bit 4 by byte 72 (input impedance bit). If the bit is 0 , set $\mathbf{P} 3$ to 50 (ohms); if the bit is 1 , set $\mathbf{P} 3$ to 75 (ohms).
161: Clear "active function" display area.
162: Return to calling program segment.
163-165: Send error message number Ern and halt program execution.
166: End of subroutine subprogram State.

[^0]: 'REV A includes the Subprogram Library subroutines documented here in Volume 2, along with those previously documented in Volume 1.
 ${ }^{2}$ The 8568A Learn String is documented only in 8568A Remote manuals dated October, 1981, and later.
 ${ }^{3}$ Contains execution time data for the 8568A alone.
 "Hewletr-Packard Interface Bus, the Hewlett-Packard implementation of IEEE STD $488-1978$ and ANSI STD MC 1.1, "Digital Interface for
 Programmable Instrumentation".

[^1]: - All 8566A Remote manuals, and 8568A Remote manuals dated October, 1981, and later.

