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Introduction

The most general approach to evaluating the time domain response of any electromagnetic system is to 
solve Maxwell’s equations in the time domain. Such a procedure would take into account all the effects 
of the system geometry and electrical properties, including transmission line effects. However, this 
would be rather involved for even a simple connector and even more complicated for a structure such as 
a multilayer high-speed backplane. For this reason, various test and measurement methods have been 
used to assist the electrical engineer in analyzing signal integrity.

The most common method for evaluating a transmission line and its load has traditionally involved  
applying a sine wave to a system and measuring waves resulting from discontinuities on the line.  
From these measurements, the standing wave ratio (s) is calculated and used as a figure of merit for the 
transmission system. When the system includes several discontinuities, however, the standing wave ra-
tio (SWR) measurement fails to isolate them. In addition, when the broadband quality of a transmission 
system is to be determined, SWR measurements must be made at many frequencies. This method soon 
becomes very time consuming and tedious.

Another common instrument for evaluating a transmission line is the network analyzer. In this case, a 
signal generator produces a sinusoid whose frequency is swept to stimulate the device under test (DUT). 
The network analyzer measures the reflected and transmitted signals from the DUT. The  
reflected waveform can be displayed in various formats, including SWR and reflection coefficient.  
An equivalent TDR format can be displayed only if the network analyzer is equipped with the proper 
software to perform an Inverse Fast Fourier Transform (IFFT). This method works well if the user is  
comfortable working with s-parameters in the frequency domain. However, if the user is not familiar 
with these microwave-oriented tools, the learning curve is quite steep. Furthermore, most digital  
designers prefer working in the time domain with logic analyzers and high-speed oscilloscopes.

When compared to other measurement techniques, time domain reflectometry provides a more  
intuitive and direct look at the DUT’s characteristics. Using a step generator and an oscilloscope, a fast 
edge is launched into the transmission line under investigation. The incident and reflected voltage waves 
are monitored by the oscilloscope at a particular point on the line.



Introduction (continued)

This echo technique (see Figure 1) reveals at a glance the characteristic impedance of the line, 
and it shows both the position and the nature (resistive, inductive, or capacitive) of each  
discontinuity along the line. TDR also demonstrates whether losses in a transmission  
system are series losses or shunt losses. All of this information is immediately available from the 
oscilloscope’s display. TDR also gives more meaningful information concerning the broadband 
response of a transmission system than any other measuring technique.

Since the basic principles of time domain reflectometry are easily grasped, even those with 
limited experience in high-frequency measurements can quickly master this technique. This 
application note attempts a concise presentation of the fundamentals of TDR and then relates 
these fundamentals to the parameters that can be measured in actual test situations. Before 
discussing these principles further we will briefly review transmission line theory.

Figure 1. Voltage vs time at a particular point on a mismatched transmission line driven with a step of height Ei
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Propagation on a Transmission Line 

The classical transmission line is assumed to consist of a continuous structure of R’s, L’s 
and C’s, as shown in Figure 2. By studying this equivalent circuit, several characteristics 
of the transmission line can be determined.

If the line is infinitely long and R, L, G, and C are defined per unit length, then

      R + j wL
                     Zin = Zo 
      G + jwC

where Zo is the characteristic impedance of the line. A voltage introduced at the  
generator will require a finite time to travel down the line to a point x. The phase of the 
voltage moving down the line will lag behind the voltage introduced at the generator by 
an amount b per unit length. Furthermore, the voltage will be attenuated by an amount 
a per unit length by the series resistance and shunt conductance of the line. The phase 
shift and attenuation are defined by the propagation constant g, where

  g = a + jß = √ (R + jwL) (G + jwC)

        and a = attenuation in nepers per unit length
        ß = phase shift in radians per unit length

Figure 2. The classical model for a transmission line

The velocity at which the voltage travels down the line can be defined in terms of ß:
                                        w
  Where n

r
 =  — Unit Length per Second

                                                   ß

The velocity of propagation approaches the speed of light, nc, for transmission lines with 
air dielectric. For the general case, where er is the dielectric constant:

√

√er
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r 
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The propagation constant g can be used to define the voltage and the current at any 
distance x down an infinitely long line by the relations

  Ex = Eine –g x and Ix = Iine
–g x

Since the voltage and the current are related at any point by the characteristic  
impedance of the line

                                                   Eine
–g x   Ein

  Zo =               =        = Zin

          Iine
–g x     Iin

 where  Ein = incident voltage
            Iin = incident current

When the transmission line is finite in length and is terminated in a load whose  
impedance matches the characteristic impedance of the line, the voltage and current 
relationships are satisfied by the preceding equations.

If the load is different from Zo, these equations are not satisfied unless a second wave is 
considered to originate at the load and to propagate back up the line toward the source. 
This reflected wave is energy that is not delivered to the load. Therefore, the quality of 
the transmission system is indicated by the ratio of this reflected wave to the incident 
wave originating at the source. This ratio is called the voltage reflection coefficient, r, 
and is related to the transmission line impedance by the equation:

          Er     ZL – Zo

  r =       = 
                     Ei      ZL + Zo

The magnitude of the steady-state sinusoidal voltage along a line terminated in a load 
other than Zo varies periodically as a function of distance between a maximum and mini-
mum value. This variation, called a standing wave, is caused by the phase  
relationship between incident and reflected waves. The ratio of the maximum and  
minimum values of this voltage is called the voltage standing wave ratio, s, and is re-
lated to the reflection coefficient by the equation

        1 +   | r |
  s = 
        1 –   | r |
 
As has been said, either of the above coefficients can be measured with presently  
available test equipment. But the value of the SWR measurement is limited. Again, if 
a system consists of a connector, a short transmission line and a load, the measured 
standing wave ratio indicates only the overall quality of the system. It does not tell which 
of the system components is causing the reflection. It does not tell if the reflection from 
one component is of such a phase as to cancel the reflection from another. The engineer 
must make detailed measurements at many frequencies before he can know what must 
be done to improve the broadband transmission quality of the system.
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A time domain reflectometer setup is shown in Figure 3.

The step generator produces a positive-going incident wave that is applied to the  
transmission system under test. The step travels down the transmission line at the 
velocity of propagation of the line. If the load impedance is equal to the characteristic 
impedance of the line, no wave is reflected and all that will be seen on the oscilloscope 
is the incident voltage step recorded as the wave passes the point on the line monitored 
by the oscilloscope. Refer to Figure 4.

If a mismatch exists at the load, part of the incident wave is reflected. The reflected 
voltage wave will appear on the oscilloscope display algebraically added to the incident 
wave. Refer to Figure 5.

Figure 3. Functional block diagram for a time domain reflectometer

Figure 4. Oscilloscope display when Er = 0

Figure 5. Oscilloscope display when Er ≠ 0
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Locating mismatches 
The reflected wave is readily identified since it is separated in time from the incident 
wave. This time is also valuable in determining the length of the transmission system 
from the monitoring point to the mismatch. Letting D denote this length:

     T      nr
T         

  D = n
r
 •        = 

     2        2

where n
r
 = velocity of propagation

 T = transit time from monitoring point to the mismatch and
                   back again, as measured on the oscilloscope (Figure 5).

The velocity of propagation can be determined from an experiment on a known length of 
the same type of cable (e.g., the time required for the incident wave to travel down and 
the reflected wave to travel back from an open circuit termination at the end of a 120 cm 
piece of RG-9A/U is 11.4 ns giving n

r
 = 2.1 x 1010 cm/sec. Knowing n

r
 and reading T from 

the oscilloscope determines D. The mismatch is then located down the line. Most TDR’s 
calculate this distance automatically for the user.

Analyzing reflections
The shape of the reflected wave is also valuable since it reveals both the nature and 
magnitude of the mismatch. Figure 6 shows four typical oscilloscope displays and the 
load impedance responsible for each. Figures 7a and 7b show actual screen captures 
from the 86100x DCA. These displays are easily interpreted by recalling:

         Er       ZL – Zo
  r =         =        
         Ei       ZL + Zo

Knowledge of Ei and Er, as measured on the oscilloscope, allows ZL to be determined in 
terms of Zo, or vice versa. In Figure 6, for example, we may verify that the reflections are 
actually from the terminations specified.



08 | Keysight | Time Domain Reflectometry Theory - Application Note

Figure 6. TDR displays for typical loads
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Assuming Zo is real (approximately true for high quality commercial cable), it is seen that 
resistive mismatches reflect a voltage of the same shape as the driving voltage, with the 
magnitude and polarity of Er determined by the relative values of Zo and RL.

Also of interest are the reflections produced by complex load imped-ances. Four basic 
examples of these reflections are shown in Figure 8.

These waveforms could be verified by writing the expression for r (s) in terms of the 
specific ZL for each example:

             R
    ( i.e., ZL = R + sL ,                 , etc. ) ,
        1 + RCs

                      Ei

multiplying r (s) by       the transform of a step function of Ei,                                                
              s
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Figure 7a. Screen capture of an open circuit  
termination from the 86100

Figure 7b. Screen capture of an short circuit  
termination from the 86100

Figure 7c. Screen capture of a charactersitic  
impedance Zo termination on the 86100

and then transforming this product back into the time domain to find an expression for 
er(t). This procedure is useful, but a simpler analysis is possible without resorting to 
Laplace transforms. The more direct analysis involves evaluating the reflected voltage at 
t = 0 and at t = ∞ and assuming any transition between these two values to be  
exponential. (For simplicity, time is chosen to be zero when the reflected wave arrives 
back at the monitoring point.) In the case of the series R-L combination, for example, at 
t = 0 the reflected voltage is +Ei. This is because the inductor will not accept a sudden 
change in current; it initially looks like an infinite impedance, and r = +1 at t = 0. Then 
current in L builds up exponentially and its impedance drops toward zero. At t = ∞,  
therefore er(t) is determined only by the value of R.

                         R – Zo

  ( r =              When t = ∞ )
            R + Zo

The exponential transition of er(t) has a time constant determined by the effective resis-
tance seen by the inductor. Since the output impedance of the transmission line is Zo, 
the inductor sees Zo in series with R, and

                                           L
   g =  
                        R + Zo
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Figure 8. Oscilloscope displays for complex ZL
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Figure 9. Intermediate positions along a transmission line

A similar analysis is possible for the case of the parallel R-C termination. At time zero, 
the load appears as a short circuit since the capacitor will not accept a sudden change 
in voltage. Therefore, r = –1 when t = 0. After some time, however, voltage builds up on C 
and its impedance rises. At t = ∞, the  
capacitor is effectively an open circuit:

              R – Zo

  ZL = R  and = 
              R + Zo

                   
The resistance seen by the capacitor is Zo in parallel with R, and therefore the time  
constant of the exponential transition of er(t) is:

    Zo R   
               C
   Zo + R

The two remaining cases can be treated in exactly the same way.The results of this 
analysis are summarized in Figure 8.

Discontinuities on the line 
So far, mention has been made only about the effect of a mismatched load at the end of 
a transmission line. Often, however, one is not only concerned with what is happening 
at the load, but also at intermediate positions along the line. Consider the transmission 
system in Figure 9.

The junction of the two lines (both of characteristic impedance Zo) employs a  
connector of some sort. Let us assume that the connector adds a small inductor in series 
with the line. Analyzing this discontinuity on the line is not much different from analyzing 
a mismatched termination. In effect, one treats everything to the right of M in the figure 
as an equivalent impedance in series with the small inductor and then calls this series 
combination the effective load impedance for the system at the point M. Since the input 
impedance to the right of M is Zo, an equivalent representation is shown in Figure 10. The 
pattern on the oscilloscope is merely a special case of Figure 8A and is shown on Figure 
11.
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Figure 10. Equivalent representation

Figure 11. Special case of series R-L circuit
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Evaluating cable loss

Time domain reflectometry is also useful for comparing losses in transmission lines. 
Cables where series losses predominate reflect a voltage wave with an exponentially  
rising characteristic, while those in which shunt losses predominate reflect a voltage 
wave with an exponentially-decaying characteristic. This can be understood by looking 
at the input impedance of the lossy line.

Assuming that the lossy line is infinitely long, the input impedance is given by:

             R + jwL
  Zin = Zo =             
             G + jwC`
Treating first the case where series losses predominate, G is so small compared to wC 
that it can be neglected:

                 
                       R + jwL                          L                  R      ½
           Zin =                           =                          ( 1 +        )  
       jwC                            C                jwL

Recalling the approximation (1 + x)a ≈ (I + ax) for x < 1, Zin can be approximated by:

                            L                 R

                         Zin ≈                    ( 1 +            ) When R < wL
        C              j2wL

Since the leading edge of the incident step is made up almost entirely of high frequency 
components, R is certainly less than wL for t = 0+. Therefore the above approximation for 
the lossy line, which looks like a simple series R-C network, is valid for a short time after 
t = 0. It turns out that this model is all that is necessary to determine the transmission 
line’s loss.

`   

``
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In terms of an equivalent circuit valid at t = 0+, the transmission line with series losses is 
shown in Figure 12.

Figure 12. A simple model valid at t = 0+ for a line with series losses
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The series resistance of the lossy line (R) is a function of the skin depth of the  
conductor and therefore is not constant with frequency. As a result, it is difficult to 
relate the initial slope with an actual value of R. However, the magnitude of the slope is 
useful in comparing conductors of different loss. 

A similar analysis is possible for a conductor where shunt losses predominate. Here the 
input admittance of the lossy cable is given by:

             1              G + jwC              G + jwC
   Yin =       =                         =                
          Zin             R + jwL                  jwL

Since R is assumed small, re-writing this expression for Yin :

                 
                    C               G     ½
   Yin  =               ( 1 +         ) 
                    L           jwC

Again approximating the polynominal under the square root sign:

         C              G

  Yin  _                   ( 1 +         ) When G < wC
         L          j2wC

`   `   

`

`     
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A qualitative interpretation of why ein(t) behaves as it does is quite simple in both these 
cases. For series losses, the line looks more and more like an open circuit as time goes 
on because the voltage wave traveling down the line accumulates more and more series 
resistance to force current through. In the case of shunt losses, the input eventually 
looks like a short circuit because the current traveling down the line sees more and more 
accumulated shunt conductance to develop voltage across.

Multiple discontinuities 

One of the advantages of TDR is its ability to handle cases involving more than one dis-
continuity. An example of this is Figure 14.

Figure 14. Cables with multiple discontinuities

The oscilloscope’s display for this situation would be similar to the diagram in Figure 15 
(drawn for the case where ZL < Zo <  Z´o):

Figure 15. Accuracy decreases as you look further down a line with multiple discontinuities
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Going to an equivalent circuit (Figure 13) valid at t = 0+,

Figure 13. A simple model valid at t = 0+ for a line with shunt losses
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It is seen that the two mismatches produce reflections that can be analyzed separately. 
The mismatch at the junction of the two transmission lines generates a reflected wave, 
Er, where
          
         Z´o – Zo

  Er  = r1 Ei = (              ) Ei

                        Z´o + Zo

Similarly, the mismatch at the load also creates a reflection due to its reflection  
coefficient

                               ZL – Z´o
  r2 =  
           ZL + Z´o

Two things must be considered before the apparent reflection from ZL, as shown on the 
oscilloscope, is used to determine r2. First, the voltage step incident on ZL is (1 + r1) Ei, 
not merely Ei. Second, the reflection from the load is

  [ r2 (1 + r1) Ei ] = ErL

but this is not equal to Er2 since a re-reflection occurs at the mismatched junction of the 
two transmission lines. The wave that returns to the monitoring point is

  Er2 = (1 + r1´) ErL = (1 + r1´) [ r2 (1 + r1) Ei ]

Since r1´ = –r1, Er2 may be re-written as:

  Er2    
Er2 = [ r2 

 (1 – r1
2 ) ] Ei

The part of ErL reflected from the junction of

  ErL    
Z´o and Zo  (i.e., r1´ ErL

)

is again reflected off the load and heads back to the monitoring point only to be partially 
reflected at the junction of Zo´ and Zo. This continues indefinitely, but after some time the 
magnitude of the reflections approaches zero.

In conclusion, this application note has described the fundamental theory behind time 
domain reflectometry. Also covered were some more practical aspects of TDR, such as 
reflection analysis and oscilloscope displays of basic loads. This content should provide 
a strong foundation for the TDR neophyte, as well as a good brush-up tutorial for the 
more experienced TDR user.
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