

Agilent Technologies

Frame Relay to ATM Network Interworking

An In Depth Explanation of FRF.5 Frame Relay/ATM PVC Network Interworking Implementation Agreement White Paper

By Richard Cornetti Product Marketing Manager

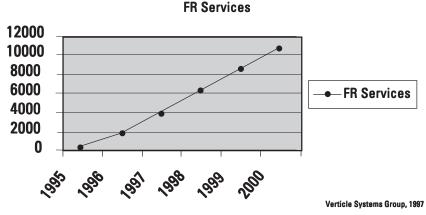
Agilent Technologies Network Systems Test Division

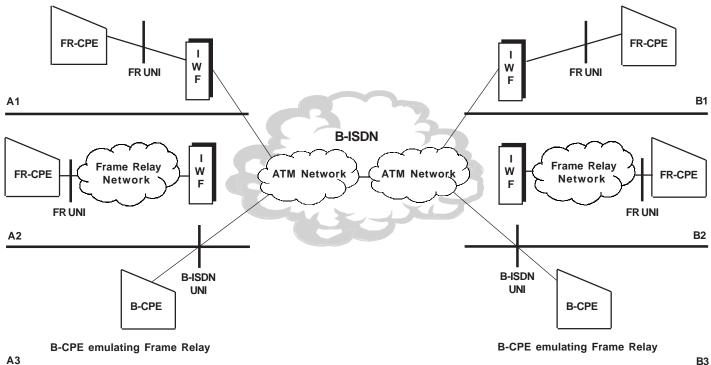
Introduction

The explosive growth of frame relay services since 1994 has motivated deployment of ATM backbone infrastructure by frame relay service providers. This ATM deployment is necessary to support the large and rapidly growing amount of frame relay traffic, as can be seen in figure 1.

Beyond the general growth in the amount of frame relay services, a distinct trend exists toward higher speed frame relay interfaces. This trend results from frame relay users interconnecting a larger number of frame relay sites, deployment of applications with larger bandwidth requirements, and aggregation of data from remote sites for delivery to central locations. This upward pressure on frame relay bandwidth demand, coupled with the deployment of ATM infrastructure and the ripening of the ATM services market, has created the need for frame relay-to-ATM interworking.

The Frame Relay Forum responded to this need in 1994 and 1995 with the creation of two implementation agreements specifying how frame relay and ATM networks and services should interwork. Two types of frame relay/ATM interworking exist, network and service. FRF.5, FR/ATM PVC Network Interworking Implementation Agreement, provides guidance for interworking between frame relay and ATM terminals and networks. FRF.8, FR/ATM PVC Service Interworking Implementation Agreement, provides guidance for interworking between frame relay and ATM services. Both types of interworking are defined for permanent virtual circuits (PVCs); the Frame Relay Forum is currently engaged in the definition of FR/ATM interworking for switched virtual circuits (SVCs).




Figure 1. Worldwide frame relay service revenues

FR/ATM interworking may be used in public or private networks to allow users to select a site specific networking solution based on business and technology requirements. ATM is deployed in the core network to improve scalability and economies of scale. Individual sites are interconnected with frame relay or ATM as needed. Sites may be migrated from frame relay to ATM as business needs dictate.

This white paper explains the technical details of FR/ATM network interworking. A future paper will address frame relay to ATM service internetworking. The Frame Relay Forum implementation agreements, FRF.5 and FRF.8, are available from the Frame Relay Forum and may be found at this URL: http://frforum.com.

Network interworking, figure 2, provides a service where frame relay is used as the WAN ingress and egress technology with ATM in the WAN core network. In this model, frame relay terminals or networks communicate with other frame relay terminals or networks over an intervening ATM network. The ATM service transports the frame relay frames. Frame relay service users are unaware that ATM is involved.

Service interworking provides a service where frame relay or ATM is used as the WAN ingress and egress service technology, and ATM is, typically, used in the WAN core network. In the service interworking model, either frame relay or ATM terminals or networks may communicate with other frame relay or ATM terminals or networks. Translation takes place between the frame relay and ATM services. Neither service user is aware of communicating with a service other than its native service (frame relay or ATM).

Network Interworking **Overview**

Network interworking, defined in FRF.5, can be viewed as the transport of frame relay frames over ATM, an interworking function (IWF) performs the actual frame relay and ATM interworking. The location of the interworking function is not specified by FRF.5 and is left as an implementation detail. As a matter of practice, the IWF is located in the ingress switch. AAL 5 is employed, and there are two network interworking scenarios, which are defined in ITU-T I.555.

In scenario 1, a frame relay terminal or end point communicates with a second frame relay terminal over the ATM network; this is referred to as frame relay transport over ATM. Scenario 1 network interworking is represented by points A1 and A2 communicating with points B1 and B2 in figure 2.

Q.922 Core	FR-SSCS
	AAL5 CPCS
	AAL5 SAR
	ATM
РНҮ	РНҮ
Frame Relay	ATM

FR-SSCS = Frame Relay Service Specific Convergence Sublayer

CPCS = Common Part **Convergence Sublayer**

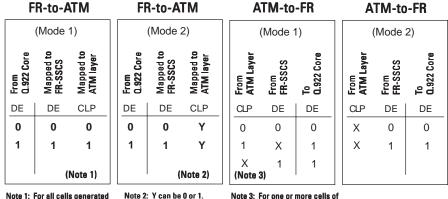
SAR = Segmentation and Reassembly

Frame Relay/ATM Network Internetworking: An in depth explanation

In scenario 2, a frame relay terminal communicates with an ATM terminal over the ATM network. Points A1 (B1) and A2 (B2) communicating with point B3 (A3), in figure 2, depict scenario 2 network interworking. The ATM terminal must support the frame relay service specific convergence sublayer (FR-SSCS) as part of the ATM protocol stack. Figure 3 depicts the FR-SSCS and the AAL 5 ATM protocol stack. The FR-SSCS is defined in ITU-T I.365.1 and is identical to the ITU-T Q.922 core aspects frame relay frame definition, without the 16-bit FCS, flags and zero-bit insertion. The FR-SSCS PDU is a direct mapping of the frame relay frame, shown in figure 4. FR/ATM interworking supports 2-octet frame relay headers and may support 4-octet headers; support for 3-octet headers is for future study.

Network interworking provides a functional mapping between frame relay and ATM AAL 5 and supports the following frame relay features, which are defined in ITU-T Q.922:

- 1. Variable length PDU formatting and delimiting
- 2. Error detection


- 3. Connection multiplexing
- 4. Loss priority indication
- 5. Congestion indication (forward and backward)
- 6. PVC status management

	MSB			LSB
	Upper DLCI	Upper DLCI		EA = 0
	Lower DLCI	Lower DLCI FECN BECN		EA = 1
	Information Field: an integra	Information Field: an integral number of bytes		o 1600
	DLCI = Data Link Connection Identifier C/R = Command/Response bit EA = Address Extension bit FECN = Forward Explicit Congestion Notification Bit BECN = Backward Explicit Congestion Notification Bit			
	Figure 4. FR-SSCS PDU for 2 Octet Headers			
Frame Formatting and Delimiting	FR-SSCS and common-part converge adaptation layer 5 (AAL 5) segments frame error detection is performed calculated over the FR-SSCS PDU. I	Frame relay frame formatting and delimiting is provided by the FR-SSCS and common-part convergence sublayer (CPCS) of ATM adaptation layer 5 (AAL 5) segmentation and reassembly functions. Frame relay frame error detection is performed by the AAL5 CPCS 32-bit CRC, which is calculated over the FR-SSCS PDU. It is these delimiting and error checking functions that allow for the stripping for the frame relay flags, zero-bit insertion and FCS.		
PVC Connection Multiplexing	layer supports connection multiplexi	The FR-SSCS supports connection multiplexing by use of the DLCI field. The ATM layer supports connection multiplexing through the use of the VPI/VCI fields. ITU-I.555 defines two methods of connection multiplexing for FR/ATM interworking.		/VCI fields. ITU-T
	Connection multiplexing provides f (frame relay logical connection) to is then performed by ATM VPI/VCI. FR-SSCS DLCI value in the range of ATM end-systems, or the default val	a single ATM V(This is known a 16 to 991 shoul	CC; connecti as one-to one ld be agreed	on multiplexing e multiplexing. A
	The second connection multiplexing many frame relay connections are ma accomplished at the FR-SSCS by the multiplexing is limited to frame relay system. The FR-SSCS DLCI values ma	apped to a single use of multiple D PVCs that termi	ATM VCC. M DLCIs. Many-t nate on the s	Iultiplexing is to-one ame ATM end

Discard eligibility and cell loss priority

Two operational modes perform the interworking of discard eligibility (DE) and cell loss priority (CLP). In mode 1, for the frame relay-to-ATM direction, the DE bit is copied directly into the FR-SSCS PDU DE bit, which is mapped to the AAL 5 CLP bit of every cell generated by the segmentation of the FR-SSCS PDU. Figure 5 shows the mapping of DE to CLP bits. For mode 1, in the ATM to frame relay direction, if one or more of the cells associated with the reassembled FR-SSCS PDU has its CLP bit set to one, or if the FR-SSCS PDU DE bit is set, then the frame relay DE bit is set by the interworking function, as is shown in figure 5.

In mode 2, the frame relay-to-ATM direction, the frame relay DE bit is copied into the FR-SSCS PDU DE bit unchanged, and the AAL 5 CLP bit of every cell generated from the segmentation of the FR-SSCS PDU is set or reset (1 or 0). The CLP bit value is agreed upon when the connection is established (provisioned), as is shown in figure 5. The mode 2 ATM to frame relay direction provides for no mapping between ATM and frame relay layers. The FR-SSCS PDU DE bit is copied unchanged to the frame relay DE bit. All AAL CLP indications are ignored, see figure 5.

Note 1: For all cells generated Note 2: Y can be (from the segmentation process of that frame.

Note 3: For one or more cells o the frame, X indicates that the value does not matter (0 or 1).

Figure 5. DE/CLP mapping courtesy of the Frame Relay Forum

FR-to-ATM

ATM-to-FR

Q.922 FECN

0

1

1

Q.922 FECN	SSCS FECN	ATM EFCI	ATM EFCI	SSCS FECN
0	0	0	0	0
1	1	0	x	1
			1	x

Note: 0 indicates congestion not experienced

1 indicates congestion experienced

X indicates that the value does not matter (0 or 1)

Figure 6. Forward Congestion Indication Mapping courtesy of the Frame Relay Forum

Congestion Indication	Frame relay provides for explicit congestion indication in both the forward and backward directions. Frame relay signals forward congestion by setting the Forward Explicit Congestion Notification (FECN) bit, and signals backward congestion by setting the Backward Explicit Congestion Notification (BECN) bit. At the cell layer, ATM only provides forward congestion indication by setting the Explicit Forward Congestion Indication (EFCI) bit. Network interworking provides for the mapping of forward congestion indication between frame relay and ATM.
	In the frame relay-to-ATM direction, forward congestion indication is not mapped to cell level or EFCI congestion indication. The Q.922 FECN bit is copied directly into the FR-SSCS FECN bit, and the EFCI bit of all associated cells is set to "congestion not experienced." In the ATM-to-frame relay direction, forward congestion indication is mapped between the services. If the EFCI field of an ATM cell, or the FECN of the received FR-SSCS PDU, is set to "congestion experienced," then the FECN bit of the resulting Q.922 frame relay PDU is set to "congestion experienced," as in figure 6.
	Backward congestion indication is only supported at the frame level; the indication is directly mapped from the FR-SSCS PDU to the frame relay PDU in the ATM-to-frame relay direction. For interworking from the frame relay to the ATM direction, two criteria exist for setting the FR-SSCS BECN bit to congestion experienced. If the frame relay PDU BECN is set, or if the EFCI bit of the last received cell in the ATM to frame relay direction was set to congestion experienced, then the FR-SSCS FECN bit is set to congestion experienced.
Traffic Management	Traffic management, including the mapping of frame relay conformance parameters (throughput, Bc, Be and access rate) to ATM traffic conformance parameters (PCR, CDV, SCR, MBS) is accomplished by use of the generic cell rate algorithm (GCRA) configuration found in section 3 of the ATM UNI 3.0 specification.
PVC Management	PVC management for the ATM layer and the frame PVC status management of the FR-SSCS layer can operate independently, where each layer is responsible for its own layer management. When determining the frame relay PVC status, the FR-SSCS uses the ATM layer status. Frame relay PVC management at the frame relay NNI and UNI remains unchanged; the network interworking management functions pertain only to the management of the frame relay PVC carried by the ATM network.
	FR-SSCS layer management is performed by the bi-directional (symmetric) procedures defined in ITU-T Q.933 Annex A. These procedures specify that both
	sides of the network-to-network interface (NNI) perform the PVC management procedures defined for the user-to-network interface (UNI). This provides for symmetrical, complementary management procedures across the NNI for both networks. FRF.2.1, Network-to-network Interface Implementation Agreement, specifies a set of Q.933 Annex A options used for PVC management by the FR/ATM interworking function. For the PVC status management of frame relay PVCs carried by ATM VCCs, DLCI 0 is used by the FR-SSCS PVC management entity.
	procedures defined for the user-to-network interface (UNI). This provides for symmetrical, complementary management procedures across the NNI for both networks. FRF.2.1, Network-to-network Interface Implementation Agreement, specifies a set of Q.933 Annex A options used for PVC management by the FR/ATM interworking function. For the PVC status management of frame relay PVCs carried
	procedures defined for the user-to-network interface (UNI). This provides for symmetrical, complementary management procedures across the NNI for both networks. FRF.2.1, Network-to-network Interface Implementation Agreement, specifies a set of Q.933 Annex A options used for PVC management by the FR/ATM interworking function. For the PVC status management of frame relay PVCs carried by ATM VCCs, DLCI 0 is used by the FR-SSCS PVC management entity. When one-to-one multiplexing is used, the following changes are made to the

Upper Layer Protocol Encapsulation	Protocol encapsulation provides for the multiplexing and demultiplexing of upper-layer protocols over the frame relay connection. The use of protocol encapsulation is configured when the frame relay PVC is provisioned. The rules governing protocol encapsulation are found in FRF.3.1, Multiprotocol Encapsulation Implementation Agreement. In the event that scenario 2 interworking (ATM terminal implementing FR-SSCS) is used, the ATM terminal must implement the FRF.3.1 protocol encapsulation procedures.
Summary	The explosive growth in frame relay services and the trend to higher speed interfaces, coupled with today's higher degree of remote site interconnection and resulting data aggregation, are a perfect match for deployment of ATM services. Service providers are aggressively deploying ATM in their network infrastructures, as well as marketing ATM and frame relay services. This has set the stage for the need to interwork frame relay and ATM on a site by site basis. Recognizing this evolutionary trend early on, the Frame Relay Forum addressed the need by producing implementation agreements for the interworking of frame relay and ATM. Frame relay/ATM interworking is widely deployed, and the market continues to grow. Network managers must be familiar with this technology so that they can make intelligent service purchase decisions and maintain and troubleshoot installations. Armed with the information in this white paper and an advanced troubleshooting tool, such as the Agilent Internet Advisor, network managers can ensure the highest service levels for their users. More information on the Internet Advisor and frame relay and ATM troubleshooting may be found at this URL: http://www.agilent.com/comms/onenetworks
References	1. FRF.2.1, Network-to-Network Interface Implementation Agreement, July 1995, The Frame relay Forum.
	2. FRF.3.1, Multiprotocol Encapsulation Implementation Agreement, June 1995, The Frame Relay Forum.
	3. FRF.5, Frame Relay/ATM PVC Network Interworking Implementation Agreement, December 1994, The Frame Relay Forum.
	4. FRF.8, Frame Relay/ATM PVC Service Interworking Implementation Agreement, April 1995, The Frame Relay Forum.
	5. I.365.1, Congestion Management in Frame Relaying Networks, 1991, ITU-T.
	6. I.555, Frame Relaying Bearer Service Interworking, 1994, ITU-T.
	7. Q.922, ISDN Data Link Layer Specifications for Frame Mode Bearer Services, 1992, ITU-T.
	8. Q.933, DSS1 Signaling Specifications for Frame Mode Basic Call Control, 1992, ITU-T.
	9. RFC-1490, Multiprotocol Interconnect over Frame Relay, July 1993, IETF.

Thanks is given to the Frame Relay Forum for permission to use various figures from the relevant Implementation Agreements.

Connect with us!

http://www.agilent.com/comms/onenetworks

This product is Y2K compliant.

Agilent Sales and Support Offices

For more information about Agilent Technologies Test and Measurement products, applications, services, and for a current sales office listing, visit our web site: http://www.agilent.com/find/tmdir You can also contact one of the following centers and ask for a Test and Measurement sales representative.

United States:

Agilent Technologies Test and Measurement Call Center P.O. Box 4026 Englewood, CO 80155-4026 (Tel) 1 800 452 4844

Canada:

Agilent Technologies Canada Inc. 5150 Spectrum Way Mississauga, Ontario L4W 5G1 (Tel) 1 877 894 4414

Europe:

Agilent Technologies European Marketing Organisation P.O. Box 999 1180 AZ Amstelveen The Netherlands (Tel) (31 20) 547 9999

Japan:

Agilent Technologies Japan Ltd. Call Center 9-1, Takakura-Cho, Hachioji-Shi, Tokyo 192-8510, Japan (Tel) (81) 426 56 7832 (Fax) (81) 426 56 7840

Latin America:

Agilent Technologies Latin American Region Headquarters 5200 Blue Lagoon Drive, Suite #950 Miami, Florida 33126 U.S.A. (Tel) (305) 267 4245 (Fax) (305) 267 4286

Australia/New Zealand:

Agilent Technologies Australia Pty Ltd. 347 Burwood Highway Forest Hill, Victoria 3131 (Tel) 1-800 629 485 (Australia) (Fax) (61 3) 9272 0749 (Tel) 0 800 738 378 (New Zealand) (Fax) (64 4) 802 6881

Asia Pacific:

Agilent Technologies 24/F, Cityplaza One, 1111 King's Road, Taikoo Shing, Hong Kong, SAR (Tel) (852) 3197 7777 (Fax) (852) 2506 9284

Technical data subject to change Printed in U.S.A. 04/00 Copyright® Agilent Technologies, 2000

5968-2382E

