
Agilent
NFA Series Noise Figure Analyzer
Programming Examples

Product Note

Table of Contents

Introduction .3

Conventions used in this product note: .3

Hardware requirements .3

1 Connecting up the NFA via GPIB cable to the host computer. .4

2 How to make basic noise figure and gain measurements on an amplifier 5
2.1 Loading and using an ENR file .5
2.2 Loading and using a limit line file .8
2.3 Set the measurement parameters .9
2.4 Perform a user calibration .10
2.5 Making basic Noise Figure and Gain measurements on an amplifier .10
2.6 Retrieving example results .10

3 How to make narrowband measurements on filters .11
3.1 Loading and using an ENR file .12
3.2 Creating and loading a frequency list into the NFA .12
3.3 Set the measurement parameters .13
3.4 Perform a user calibration .13
3.5 Making basic noise figure and gain measurements on a filter .14
3.6 Retrieving example results .14

4 Advanced noise figure and gain measurements using mixers. .15
4.1 Using a mixer as a DUT .15

4.1.1 Set the measurement system parameters .15
4.1.2 Perform a user calibration .16
4.1.3 Mixer as a DUT noise figure measurement .17
4.1.4 Retrieving some example results .17

4.2 Using a mixer as part of the measurement system .18
4.2.1 Set the measurement system parameters .18
4.2.2 User calibration when using a mixer as part of the measurement system .19
4.2.3 Noise figure measurements with a mixer as part of the measurement system19
4.2.4 Retrieving some example results .20

5 Appendix .21
Minimal pseudocode library .21
Pseudocode for sending a command .21
Pseudocode for sending a query .21
The error cue .22
Pseudocode for querying the error cue .22
Pseudocode for reporting errors from the error cue .23

2

Introduction
This product note will demonstrate how to write

software to enable the automated control of the

new NFA Series noise figure analyzers using SCPI

standard commands.

This product note is meant to compliment the

information and procedures given in the NFA “User’s

Guide” and “Programmer’s Guide” (literature numbers

N8972-90001 and N9872-90002). These and other

documents are shipped on CD ROM with the NFA and

are available via the web at www.agilent.com/find/nfa

The examples in covered in this product note will work with
all Agilent NFA-Series products. The narrowband noise figure
measurement example will work on all models of NFA-series
noise figure analyzers, except the N8972A, which has no narrow
measurement bandwidth functionality. This product note is
applicable to firmware revision A.00.01 and above.

Conventions used
in this product note
Programming examples shown in this note are

illustrated using pseudocode. GPIB indicates the

IEE-488 interface bus for remote instrument control;

the GPIB default address is 8 for the NFA.

Upper case letters in commands must be sent;

lower case letters are optional. (Using the minimum

number of characters minimizes GPIB command

transmission time).

Example of two equivalent commands:

:SENSe:SWEep:POINts 15
[Only the upper case characters need to be sent]

:SENS:SWE:POIN 15
[The same command can be shortened to read

as shown]

Assumptions

• Code will run on a computer connected to the test

set via the GPIB interface.

• Commands described in this product note are

applicable to both the N8972A and N8973A except

where stated otherwise.

• Features described in this product note apply to

NFA firmware revision A.00.01. and beyond.

Hardware requirements
• Controller, GPIB, GPIB cables: A PC or

workstation with an IEEE 488.2 GPIB industry

standard interface.

• NFA: An N8972A, N8973A, N8974A and N8975A.

• 346A: A noise source, whose choice will depend

upon the frequency and noise figure of the DUT

to be measured.

• DUTs: A mini circuits ZFL-1000LN low noise

amplifier is used in both the basic noise figure

and gain measurement example and also the

narrowband measurement example.

• Filters: In the narrowband measurement section

a mini circuits SBP-70 70 MHz bandpass filter

is used.

• RF Cables: A range of Type-N to Type-N cables

will be required in order to make some of the

measurements.

• Adapters: The choice of adapters will be

dependant upon the noise source connector,

some adapters may be needed to connect the

noise source to the DUT and then to the input

of the NFA.

Agilent produces a special option for the NFA

called the K10 demo kit. The K10 demo kit contains

the DUT’s used in the examples shown in this product

note. The kit also contains a range of cables and

connectors to enable most of the measurement

scenarios presented in the product note to be

completed. A noise source is not included in the

kit and should be ordered separately.

To order the K-10 option contact your local

Agilent sales office.

3

1. Connecting up the NFA via
GPIB cable to the host computer
This section describes the layout of the GPIB

connectors located on the NFA’s rear panel.

Figure 1. NFA rear panel view

4

2. GPIB connector to which the local oscillator,
if present, should be connected.

1. Main GPIB connector to which the
local host computer should be connected.

2. How to make
basic noise figure and gain
measurements on an amplifier
Description:

This section demonstrates how the NFA can make

basic noise figure and gain measurements on an

amplifier. Any generic type of amplifier, active filter

or attenuator may be used as the device under test as

long as its frequency range is appropriate and there

is no frequency conversion within the device. This

section also covers the Limit Lines feature of the

NFA, where the DUT results are compared to a

pre-loaded set of test parameters for quick and

easy pass/fail testing.

Practical considerations:

The example is split into the following sections:

2.1 Loading and using the ENR file
2.2 Loading and using a limit line file
2.3 Set the measurement parameters
2.4 Perform a user calibration
2.5 Make the measurement
2.6 Retrieve the results

2.1 Loading and using an ENR file

The following programming example explains how

to load an ENR table from the local host to the NFA.

It also demonstrates how to store the table in the

instruments file system and then how to retrieve

it again. This example assumes that the ENR table

“Source01.ENR” is available on the host computer

that is to be loaded into the NFA.

The :MMEMORY:DATA command

The NFA uses the :MMEMORY:DATA command

and query to transfer files between the local host

and itself. The command transfers files from the local

host to the NFA; the query transfers files in the

opposite direction.

Files are loaded into the NFA using the

:MMEMORY:DATA command, e.g.

:MMEMORY:DATA ‘C:SOURCE01.ENR’,#3252.....

It has two arguments—the file name and a data block.

Currently the file name must be fully qualified with

no directory path e.g. C:SOURCE01.ENR

The data block is actually an IEEE488.2 definite

length arbitrary data block

Files are retrieved from the NFA using the

:MMEMORY:DATA? query, e.g.

:MMEMORY:DATA? ‘C:SOURCE01.ENR’

It takes a single argument, file name, to be retrieved.

The query returns an IEEE488.2 definite length

arbitrary data block

Definite length arbitrary data block

#223 this is the actual data

as the first character lets the NFA know that a

data block is coming

2 lets the NFA know that the block uses two dig

its for the data length

23 is the data length and gives the number of

data bytes in the block

The remaining 23 bytes is the actual data

The arbitrary data block has more than two forms.

The one described here is the definite length variety.

The other form, the indefinite length block is not

covered here. Using # as the first character of an

argument alerts the NFA to the fact that an arbitrary

data block is coming. Any non-zero digit identifies the

block as a definite length block and gives the number

of digits that make up the remainder of the block

header, 2 in the example here. The remaining header

digits give the number of data bytes in the block,

23 in this example. The remainder of the block is

the actual data.

5

Building the :MMEMORY:DATA command

1 function BuildMmemData (string NfaFile,
number length,string command)

2 string fileLengthString = ToString (length)
3 number headerLength = StringLength(fileLengthString)
4 string headerLengthString = ToString (headerLength)
5 string blockHeader = “#” + headerLengthString +

fileLengthString
6 command = “:MMEMORY:DATA ‘” + NfaFile + “‘,” +

blockHeader
7 end function

Comments to code for building the
:MMEMORY:DATA command

Function BuildMmemData constructs the

:MMEMORY:DATA command from the name of the file

to be written to on the NFA.

Line 1 shows that the function has three arguments.

The first is the name of the file to be written to on the

NFA. The second is length of the source file on the

local host. The third is a return parameter that holds

the constructed command.

Line 2 converts the source file length to a string

representation of the number e.g. ToString(123)

gives “123”.

Line 3 determines the length of the source file length

string so that it can generate the first digit of the

block header.

Line 4 converts the header length to a string.

Line 5 builds the block header by concatenating the

parts together.

Line 6 constructs the command by concatenating the

SCPI header with the arguments.

Note that the data does not form part of the command

at this time.

6

Transferring a file to the NFA:

1 function CopyFileToNFA (string fromName, string toFile)
2 string mmemData, byte
3 number length = FileLength(fromFile)
4 BuildMmemData (toFile, length, mmemData)
5 RemoteWrite (mmemData, false)
6 loop length times
7 GetByte (fromFile, byte)
8 if last byte then
9 RemoteWrite (byte, true)
10 else
11 RemoteWrite (byte, false)
12 endif
13 end loop
14 ReportErrors()
15 end function

Transferring a file to the NFA example:
code comments

Line 1 Function CopyFileToNFA copies the contents of

fromFile on the local host to toFile on the NFA. Note

that this is not actually ENR file specific and can be

used to copy any file.

Line 2 declares string variables used to hold the

:MMEMORY:DATA command and data bytes to be

transferred.

Line 3 gets the length of the source file.

Line 4 constructs the command as described

previously.

Line 5 sends the command to the NFA. At this point

no data is sent. To stop the command from terminating

the second argument to RemoteWrite is set to false.

This stops the controller from asserting EOI, which

marks the end of a transmission. See the Appendix

section of this product note for further explanation.

Lines 6 to 13 copy the data a byte at a time. When

sending the last byte the controller is told to

terminate the transfer.

Line 14 checks for error (e.g. out of file system space).

Note that, in this example, it is not possible to use

the SendCommand function because the command

itself had to contain all the data to be transferred.

SendCommand assumes that the whole command is in

a single buffer. It is possible to create a buffer large

enough for the whole file but this is unnecessary and

not always advisable. Because SendCommand wasn’t

used the ReportErrors function were called explicitly.

The following programming example explains how to

load an ENR table from the local host to the NFA. It

assumes an ENR table; “source01.enr” is present on

the host computer that is to be loaded into the NFA.

Example pseudocode for transferring
an ENR file into the NFA

1 CopyFileToNFA (“source01.enr”,”c:source01.enr”)
2 SendCommand (“:MMEMORY:LOAD:

ENR MEASUREMENT,’c:source01.enr’”)

Transferring an ENR file to the NFA example:
code comments

Line 1 uses function CopyFileToNFA, defined above, to

load an ENR file into the device.

Line 2 makes the ENR table, in file c:source01.enr, the

active ENR file.

Within the NFA, there is the capability to use two

ENR tables, one for the calibration and another for

the measurement. This would be useful in the case of

making measurements at Microwave frequencies using

a waveguide noise source. By enabling the use of both

of the ENR tables, the instrument can be correctly

calibrated with the lower frequency noise source and

then the measurements can be made at the higher

frequencies with the waveguide noise source. It is not

possible to achieve accurate results calibrating with a

waveguide connector at lower frequencies.

ENR files are text files with a predefined format. The

following is an example of an ENR file. Lines starting

with a ‘#’ are treated as comments and can be omitted.

ENR Data File
Created by N8973A NFA Series noise figure analyzer
Serial Number 8L39240553 Firmware Revision A.00.00
14:42:35 Jun 7, 2000
Format is: Frequency (Hz), ENR (dB)
[Filetype ENR]
[Version 1.0]
[Serialnumber 3318A05185]
[Model 346A]
10000000, 5.4500
100000000, 5.5300
1000000000, 5.2700
2000000000, 5.0800
3000000000, 4.9400
4000000000, 4.8600
5000000000, 4.8300
6000000000, 4.9100
7000000000, 4.9900
8000000000, 5.1300
9000000000, 5.2500
10000000000, 5.3200
11000000000, 5.2900
12000000000, 5.3100
13000000000, 5.3300
14000000000, 5.3000
15000000000, 5.3400
16000000000, 5.3500
17000000000, 5.3100
18000000000, 5.1600

7

2.2 Loading and using a limit line file

The following programming example explains how to

load a limit line file table from the local host to the

NFA. This example assumes that a limit line table

called “amplev01.lim” is present on the host computer

that is to be loaded into the NFA.

Example pseudocode for transferring
a Limit line file into the NFA

1 CopyFileToNFA (“amplev01.lim”,”c:amplev01.lim”):
2 SendCommand (“:MMEM:LOAD:

LIMIT LLINE1,’c:amplev1.lim’”)

Line 1 shows how to load the limit line file into the

NFA.

Line 2 makes “amplev01.lim” the limit line 1 file.

Within the NFA, there is the capability to use 4 limit

line tables including the choice for an upper and

lower limit line for both noise figure and gain

measurements.

LIM files are text files with a predefined format. The

following is an example of an LIM file. Lines starting

with a ‘#’ are treated as comments and can be omitted.

Limit Line data file
Created by N8973A NFA Series Noise Figure Analyzer
Serial Number GB39490112 Firmware Revision A.00.01
14:54:53 Jun 28, 2000
Format is: Frequency (Hz), Magnitude (unitless),

connected (1 or 0)
[Filetype LIM]
[Version 1.0]
[Limittype UPPER]
10000000, 3.2000, 1
100000000, 3.2000, 1
600000000, 2.4000, 1
800000000, 3.2000, 1
1000000000, 3.2000, 1
1200000000, 3.2000, 1

Format is: Frequency (Hz), Magnitude (will depend

on whether Log/linear units is selected), connected

(1 or 0)

The connected (1 or 0) indicator signifies whether

that measurement point is connected to the previous

one or not. If a zero is placed in this column then the

NFA will not test the section between the unconnected

points, and if a one is placed in this column then the

NFA will test the section between the previous point

and that point.

8

2.3 Set the measurement parameters

This section will explore how to load a user defined

upper limit line for noise figure, set functions such

as frequency range, number of measurement points,

number of averages and also determine the

measurement bandwidth for the NFA.

In the following example the ENR file is set as

source01.enr and the limit line file amplev01.lim to be

the current .ENR and .LIM file

Example pseudocode for setting basic measurement

system parameters:

1 function SetMeasParams ()
2 SendCommand (“*RST”)
3 SendCommand (“*CLS”)
4 SendCommand (“:MMEM:LOAD:

ENR MEASUREMENT,’c:source01.enr’”)
5 SendCommand (“:MMEM:LOAD:

LIMIT LLINE1,’c:amplev1.lim’”)
6 SendCommand (“:SENSE:FREQUENCY:STOP 1.2 GHZ”)
7 SendCommand (“:SENSE:FREQUENCY:POINTS 21”)
8 SendCommand (“:SENSE:AVERAGE:STATE ON”)
9 SendCommand (“:SENSE:AVERAGE:COUNT 15”)
10 SendCommand (“:SENSE:BANDWIDTH 4000000”)
11 SendCommand (“:SENSE:CALCULATE:LLINE1:

STATUS ON”)
12 SendCommand (“:INITIATE:CONTINUOUS:ALL OFF”)
13 end function

Example pseudocode for setting basic measurement
system parameters: code comments

Line 1 opens the function.

Line 2 puts the NFA into a factory-preset state for

parameters such as frequency range, measurement

bandwidth and number of measurement points.

Line 3 clears the status byte by emptying the error

cue and clearing all the bits in all the event registers.

Line 4 sets the active ENR file in the NFA.

Line 5 loads a limit line file as limit line 1

Line 6 sets the upper measurement frequency limit

for the NFA at 1.2 GHz.

Line 7 sets the number of measurement points

throughout the sweep.

Line 8 turns the “Point” averaging function on.

Line 9 sets the number of average points to 15.

Line 10 indicates to the NFA which measurement

bandwidth to use, In this case 4 MHz.

Line 11 defines a limit line, against which the

measured data can be compared.

Line 12 enables the operator to stop continuous

measurement sweep mode.

Line 13 closes the function.

9

2.4 Perform a user calibration

This section requires the user to physically connect

the noise source to the front of the NFA to enable the

calibration procedure to be completed. The calibration

procedure removes the measurement systems own

noise figure, often called second stage noise contribu-

tion, and the displayed results are shown in a corrected

form. The results for both corrected and uncorrected

measurements can be retrieved from the NFA.

Connect up the NFA and the Noise source as shown in

the diagram below.

Figure 2. Calibration setup

Use a 50Ω BNC cable to connect the NFA to the 28V

Noise source drive on the front of the NFA and an N

type to SMA adapter, to connect the noise source to

the input of the NFA.

Example pseudocode for calibrating the NFA:

1 function UserCalibration ()
2 SendCommand (“:SENSE:CORRECTION:COLLECT:

ACQUIRE STANDARD”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for calibrating the NFA:
code comments

Line 1 opens the function.

Line 2 starts collection of user calibration data.

Line 3 forces the NFA to wait until it finishes

calibrating before processing the next command.

Line 4 ends the function.

2.5 Making basic noise figure and gain
measurements on an amplifier

After the calibration has been completed, follow the

connection diagram below enable the noise figure

measurement to be made. Ensure that the device

under test is powered up before connection to the

noise source and NFA. This pre-connection power up

will ensure that no spikes will be presented to the

input of the NFA.

Figure 3. Basic noise figure and gain measurement connection diagram

Example pseudocode for making a basic noise figure
and gain measurement on an amplifier:

1 function Measurement ()
2 SendCommand (“INITIATE:IMMEDIATE”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for making a basic noise
figure and gain measurement using an amplifier:
code comments.

Line 1 opens the function.

Line 2 the measurement has been selected and is

waiting, this command causes the system to come out

of idle and starts making the measurement.

Line 3 waits to continue.

Line 4 ends the function.

10

Agilent 346 Noise
Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

AnalyserType N to
SMA

adapter
Agilent 346

Noise Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

Analyser

Probe power supply
connectorMini Circuits

ZFL 1000LN
Amplifier

Type N to SMA
adapter

SMA to SMA
adapter

2.6 Retrieving some example results

The NFA provides an opportunity to retrieve multiple

results from a single measurement

1.It is possible to retrieve uncorrected trace data

for noise figure, Y-factor, hot power, cold power

and effective temperature.

2.It is possible to retrieve corrected trace data for

noise figure, gain, hot power, cold power and

effective temperature.

3.The above can be retrieved with or without loss

compensation. It is also possible to get peak,

trough, delta and single amplitude values for

the above.

Example pseudocode for retrieving
some example results:

1 SendQuery (“FETCH:ARRAY:CORRECTED:
NFIGURE?”, corrNfig)

2 SendQuery (“FETCH:ARRAY:CORRECTED:GAIN?”, corrGain)
3 SendQuery (“FETCH:ARRAY:UNCORRECTED:

PHOT?”, uncorrPhot)
4 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

VALUE? NFIGURE,1.0GHZ”,ampl1GHz)
5 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

MAXIMUM? GAIN”, maxGain)
6 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

MINIMUM? NFIGURE”, MinNfig)
7 SendQuery (“TRACE:DATA:CORRECTED:

AMPLITUDE:DELTA? GAIN,50MHZ,100MHZ”, deltaGain)
8 SendQuery (“CALCULATE:LLINE1:DATA?”,limitline)
9 SendQuery (“STATUS:QUESTIONABLE:INTEGRITY:

CONDITION?”,status)

Example pseudocode for retrieving some example
results: code comments

Line 1 retrieves the corrected noise figure sweep.

Line 2 retrieves the corrected sweep of gain

measurements.

Line 3 retrieves the uncorrected sweep of Phot

measurements.

Line 4 retrieves the value of corrected Noise figure

at 1.0 GHz.

Line 5 retrieves the value of maximum gain from

the results.

Line 6 retrieves the minimum noise figure value from

the results.

Line 7 retrieves the amplitude difference between the

Gain values at 50 MHz and 100 MHz.

Line 8 retrieves the list of frequency points and

amplitude values set in the Limit line file.

Line 9 returns the value of the Questionable Integrity

Status register. The returned value is the sum of all

asserted bits in the register. If bit 7 is set it indicates

that the result was outside the limit specified by

limit line 1.

11

3. How to make narrowband
measurements on filters
This section describes how to make narrowband

measurements on a filter and amplifier combination,

using and narrow measurement bandwidth and the

frequency list function.

The only real differences in this setup from the

previous basic noise figure and gain measurement are

using the frequency list function and also a narrower

measurement bandwidth.

This measurement example shall be split into the

following sections:

3.1) Loading and using an ENR file
3.2) Creating and then loading a frequency list into the NFA
3.3) Set the measurement system parameters
3.4) User calibration
3.5) Measurement
3.6) Retrieving the results

3.1 Loading and using an ENR file

This programming example explains how to load an

ENR table from the local host to the NFA. This example

assumes that an ENR table called “Source01.ENR” is

available on the host computer that is to be loaded

into the NFA. The file can have any filename as long

as it is no more than 8 characters long and is followed

by the .ENR extension.

Example pseudocode for copying the
ENR file into the NFA

1 CopyFileToNFA(“source01.enr”,”c:source01.enr”)
2 SendCommand(“:MMEMORY:LOAD:

ENR MEASUREMENT,’c:source01.enr’”)

Example pseudocode for copying the ENR file into
the NFA: code comments

Line 1 loads ENR file source01.enr, held on the local

host, into the memory file system, denoted ‘c:’, of the

NFA.

Line 2 makes the ENR table held in the file the active

ENR table.

3.2 Creating and loading a frequency list
into the NFA

Creating an example frequency list file: it is possible

to create a file in this format as a text file with a .lst

extension

Frequency list data file
Created by N8973A NFA Series Noise Figure Analyzer
Serial Number GB40050100 Firmware Revision X.00.01
14:20:41 Jun 27, 2000
Format is: Frequency (Hz)
[Filetype LST]
[Version 1.0]
54000000
60000000
70000000
78000000
84000000

In this Example at the five points listed indicate

which to calibrate and then measure, 54 MHz, 60 MHz,

70 MHz, 78 MHz and 84 MHz.

Example pseudocode for copying the frequency list
file into the NFA:

1 CopyFileToNFA (“test0000.lst”,”c:test0000.lst”)
2 SendCommand (“:MMEMORY:LOAD:LIST,’C:test0000.lst”)

Example pseudocode for copying the frequency list
file into the NFA: code comments

Line 1 copies the file “test0000.lst” into the NFA from

the host computer.

Line 2 enables the NFA to use the frequency list

function, with the list file test0000.lst .

12

3.3 Set the measurement parameters

In this section, functions such as frequency range,

number of measurement points, number of averages

and also the measurement bandwidth for the NFA

will be set and examined. In this example a frequency

list file will be loaded. The frequency list file will set

only a number of specific points at which to make

measurements.

Example pseudocode to set the parameters for the
narrowband noise figure measurement:

1 function SetMeasParams ()
2 SendCommand (“*RST”)
3 SendCommand (“*CLS”)
4 SendCommand (“:MMEM:LOAD:

ENR MEASUREMENT,’c:source01.enr’”)
5 SendCommand (“:MMEM:LOAD:

FREQUENCY,’c:test0000.lst”)
6 SendCommand (“:INITIATE:CONTINUOUS:ALL OFF”)
7 SendCommand (“:SENSE:FREQUENCY:MODE LIST”)
8 SendCommand (“:SENSE:AVERAGE:STATE ON”)
9 SendCommand (“:SENSE:AVERAGE:COUNT 15”)
10 SendCommand (“:SENSE:BANDWIDTH 400000”)
11 end function

Example pseudocode to set the parameters for
the narrowband noise figure measurement:
code comments

Line 1 opens the function.

Line 2 puts the NFA into a factory-preset condition.

Line 3 clears the status byte by emptying the error

cue and clearing all the bits in all the event registers.

Line 4 sets the current ENR file to “source01.enr”.

Line 5 loads the frequency list file “test0000.lst into

the NFA as the current frequency list file.

Line 6 gets the NFA ready to make one complete

frequency sweep and then stop.

Line 7 sets the NFA to only calibrate and then measure

at the frequencies specified in the list file “test0000.lst”.

Line 8 sets the NFA Point averaging function to on.

Line 9 sets the number of averaging points to 15.

Line 10 sets the NFA to have a measurement band-

width of 400 KHz. Line 11 closes the function.

3.4 Perform a user calibration

This section requires the user to physically connect

the noise source to the front of the NFA to enable the

calibration procedure to be completed. The calibration

procedure removes the measurement systems own

noise figure, often called second stage noise contribu-

tion, and the displayed results are shown in a corrected

form. The results for both corrected and uncorrected

measurements can be retrieved from the NFA.

Connect up the NFA and the Noise source as shown in

the diagram below.

Figure 4. Calibration setup

Use a 50Ω BNC cable to connect the NFA to the 28V

Noise source drive on the front of the NFA and an N

type to SMA adapter, to connect the noise source to

the input of the NFA.

Example pseudocode for calibrating the NFA:

1 function UserCalibration ()
2 SendCommand (“:SENSE:CORRECTION:COLLECT:

ACQUIRE STANDARD”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for calibrating the NFA:
code comments

Line 1 opens the function.

Line 2 starts collection of user calibration data.

Line 3 forces the NFA to wait until it finishes

calibrating before processing the next command.

Line 4 ends the function.

13

Agilent 346 Noise
Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

AnalyserType N to
SMA

adapter

3.5 Making basic noise figure and gain
measurements on a filter

After the calibration is complete, follow the

connection diagram below to enable the noise figure

measurement to be made.

Figure 5. Basic noise figure and gain measurement connection diagram

Example pseudocode for making a noise figure
measurement on a filter:

1 function Measurement ()
2 SendCommand (“INITIATE:IMMEDIATE”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for making a noise figure
measurement on a filter: code comments

Line 1 opens the function.

Line 2 the measurement has been selected and is

waiting, this command causes the system to come out

of idle and starts making the measurement.

Line 3 waits to continue.

Line 4 ends the function.

3.6 Retrieving some example results

As mentioned previously, the NFA allows retrieval of

multiple results after a single measurement. In this

example the results will be retrieved for both noise

figure and gain, specifically the maximum gain and

minimum noise figure plus the delta between both

noise figure and gain at both of the band edges of

the filter.

Example pseudocode for retrieving some example
results:

1 SendQuery (“FETCH:ARRAY:CORRECTED:
NFIGURE?”, corrNfig)

2 SendQuery (“FETCH:ARRAY:CORRECTED:GAIN?”, corrGain)
3 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

VALUE? NFIGURE,70MHZ”, ampl1GHz)
4 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

MAXIMUM? GAIN”, maxGain)
5 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

MINIMUM? NFIGURE”, minNfig)
6 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

DELTA? NFIGURE, 54MHZ, 60MHZ”, deltaNFIGURE)
7 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

DELTA? GAIN, 54MHZ, 60MHZ”, deltaGain)
8 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:

DELTA? NFIGURE,78MHZ, 84MHZ”, deltaNFIGURE)
9 SendQuery (“TRACE:DATA:CORRECTED:

AMPLITUDE:DELTA? GAIN, 78MHZ, 84MHZ”, deltaGain)

Example pseudocode for retrieving some example
results: code comments

Line 1 retrieves the corrected sweep noise figure

measurements.

Line 2 retrieves the corrected sweep of gain

measurements.

Line 3 retrieves the corrected value of Noise figure at

70 MHz (arbitrary value of frequency).

Line 4 retrieves the value of maximum gain from the

results.

Line 5 retrieves the minimum noise figure value from

the results.

Line 6 retrieves the amplitude difference between the

noise figure values at 54 MHz and 60 MHz.

Line 7 retrieves the amplitude difference between the

gain values at 54 MHz and 60 MHz.

Line 8 retrieves the amplitude difference. between the

noise figure values at 78 MHz and 84 MHz.

Line 9 retrieves the amplitude difference between the

gain values at 78 MHz and 84 MHz.

14

Agilent 346
Noise Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

Analyser

Probe power supply
connector

Mini Circuits
ZFL 1000LN

Amplifier

Type N to SMA
adapter

SMA to SMA
adapter

Mini Circuits
SBP70 bandpass

filter

4. Advanced noise figure and gain
measurements using mixers

4.1 Using a mixer as a DUT

Description:

This section explains how to set-up an NFA to control

a local oscillator, with a mixer being used as the DUT.

This example is based around the Mini Circuits

ZFM-4212 mixer.

The example characterizes the mixer itself from 3.5 to

4.2 GHz, where the LO is varied and the NFA has a

fixed IF of 40 MHz. The measurement will also be DSB

so the gain will be 3 dB higher and noise figure 3 dB

lower than actual. Use a fictitious input loss of -3 dB

at 290 K before the DUT to compensate for this

produce more accurate results.

Practical considerations:

When specifying local oscillators care must be taken.

Factors such as phase noise, spectral purity and noise

floor of the local oscillator may affect noise figure

measurements. Filtering may therefore be required on

some models of signal generators to enable accurate

noise figure measurements to be made.

There are some other LO considerations, which the

NFA must take into account

1. Frequency limits —by default 10 MHz to 26.5 GHz
is assumed

2. Settling time—by default 100 msec is assumed
3. GPIB address—by default 19 is assumed
4. Remote commands—default to SCPI

In this example it is assumed that the default
settings are appropriate.

This measurement example shall be split into the

following sections:

4.1.1 Set the measurement system parameters

4.1.2 Perform a user calibration

4.1.3 Mixer as a DUT noise figure measurement

4.1.4 Retrieving some example results

4.1.1 Set the measurement system parameters

Example pseudocode for mixer as a DUT

This section shows the example pseudocode to set

the following system parameters: Measurement mode,

Loss compensation, Local Oscillator and Sweep.

This example assumes that an ENR table called

“Source01.ENR” is present on the NFA (see example

2.1). The loss compensation function is used in

this example to make the noise figure measurement

more accurate. Often the noise figure is measured

in two sidebands, especially without any filtering

present. The result is that the measurement will be

approximately 3 dB too high, therefore a fictitious

loss of -3 dB is added. This will reduce the measured

noise figure parameter by this approximate level. See

application note 57-2 or the advanced noise figure

measurement techniques section found in the NFA

users guide (part number N8972-90001) for more

details on this type of measurement.

1 function SetMeasParams()
2 SendCommand (“*RST”)
3 SendCommand (“*CLS”)
4 SendCommand (“:MMEM:LOAD:

ENR MEASUREMENT,’c:source01.enr’”)
5 SendCommand (“:INITIATE:CONTINUOUS:ALL OFF”)
6 SendCommand (“:SENSE:CONFIGURE:MODE:

DUT DOWNCONVERTER”)
7 SendCommand (“:SENSE:CONFIGURE:MODE:DUT:

LOSCILLATOR VARIABLE”)
8 SendCommand (“:SENSE:CONFIGURE:MODE:

DOWNCONVERTER:IF:FREQUENCY 40 MHZ”)
9 SendCommand (“:SYSTEM:CONFIGURE:LOSCILLATOR:

CONTROL:STATUS ON”)
10 SendCommand (“:SYSTEM:CONFIGURE:

LOSCILLATOR:TYPE SCPI”)
11 SendCommand (“:SYSTEM:CONFIGURE:LOSCILLATOR:

PARAMETER:POWER:LEVEL 7”)
12 SendCommand (“:SENSE:CORRECTION:LOSS:

BEFORE:VALUE -3”)
13 SendCommand (“:SENSE:CORRECTION:LOSS:

BEFORE:STATE ON”)
14 SendCommand (“:SENSE:CORRECTION:

TEMPERATURE:BEFORE 290”)
15 SendCommand (“:SENSE:FREQUENCY:START 3.5 GHZ”)
16 SendCommand (“:SENSE:FREQUENCY:STOP 4.2 GHZ”)
17 end function

15

Example pseudocode for mixer as a DUT:
code comments

Line 1 opens the function.

Line 2 puts the NFA into a factory-preset condition.

Line 3 clears the status byte by emptying the error

cue and clearing all the bits in all the event registers.

Line 4 sets the current ENR file to “source01.enr”.

Line 5 sets the NFA to make one complete frequency

sweep and then stop.

Line 6 sets the device under test to be a device whose

operation involves frequency downconversion.

Line 7 sets the NFA to know that it is going to be

sweeping a local oscillator, i.e. the local oscillator is

variable.

Line 8 sets the NFA to use a fixed IF of 40 MHz.

Line 9 turns the NFA control over the local oscillator

to on.

Line 10 indicates to the NFA that the local oscillator

uses the SCPI command set.

Line 11 sets the power level of the local oscillator

to 7 dBm; this is the manufacturers power level

recommendations for the Mini Circuits ZfM-4212

mixer in the Agilent K10 demo kit.

Line 12 sets the NFA to have a loss compensation

value of -3 dB’s before the DUT, due to making a

double sideband measurement. If a loss is added

before the DUT then the system shall reduce the

resulting measurement made by 3 dB’s to compensate.

Line 13 sets the NFA loss compensation function to on.

Line 14 Lets the NFA know the temperature at which

the loss occurs, in this case 290 k (room temperature).

Line 15 sets the NFA to start sweeping the local

oscillator from 3.5 GHz.

Line 16 sets the NFA to stop sweeping the local

oscillator at 4.2 GHz.

Line 17 closes the function.

4.1.2 Perform a user calibration

This section requires the user to physically connect

the noise source to the front of the NFA to enable

the completion of the calibration procedure. The

calibration procedure removes the measurement

system’s own noise figure, often called second stage

noise contribution, and the displayed results are

shown in a corrected form. The results for both

corrected and uncorrected measurements can be

retrieved from the NFA.

Connect up the NFA and the Noise source as shown in

the diagram.

Figure 6. Calibration setup

Use a 50Ω BNC cable to connect the NFA to the 28V

Noise source drive on the front of the NFA and an

adapter to connect the noise source to the input of

the NFA.

Example pseudocode for calibration:

1 function UserCalibration ()
2 SendCommand (“:SENSE:CORRECTION:COLLECT:

ACQUIRE STANDARD”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for calibrating the NFA:
code comments

Line 1 opens the function.

Line 2 starts collection of user calibration data.

Line 3 waits to continue.

Line 4 ends the function.

16

Agilent 346 Noise
Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

AnalyserType N to
SMA

adapter

4.1.3 Mixer as a DUT noise figure measurement

This section requires the user to physically connect

the NFA, Noise source and signal generator as shown

in the diagram below. Use a 50Ω BNC cable to connect

the noise source to the 28V noise source drive on the

front of the NFA and an adapter, (if applicable), to

connect the noise source output to the input of the

Mixer. The local oscillator should be connected to the

Dedicated LO GPIB connector on the back of the NFA

VIA a GPIB cable and the input to the mixer, from the

LO, may also require an adapter.

Figure 7. Post calibration connection diagram with mixer as the device

under test

Example pseudocode for mixer as a DUT
measurement:

1 function Measurement ()
2 SendCommand (“INITIATE:IMMEDIATE”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for mixer as a DUT
measurement: code comments

Line 1 opens the function.

Line 2 the measurement has been selected and is

waiting, this command causes the system to come out

of idle and starts making the measurement.

Line 3 waits to continue.

Line 4 ends the function.

4.1.4 Retrieving some example results

Example pseudocode for retrieving the results
from the NFA when using a mixer as the device
under test:

The Pseudocode given here retrieves the following

data: the whole corrected measurement sweep for

noise figure and gain, the values over a complete

sweep of uncorrected Phot measurements, the

corrected amplitude value result for noise figure and

gain at 1.0 GHz, the maximum gain throughout the

sweep, the minimum noise figure throughout the

sweep, the max peak to peak gain difference and

the delta difference between gain measurements

amplitudes at 50 MHz and 100 MHz.

1 SendQuery (“FETCH:ARRAY:CORRECTED:
NFIGURE?”, corrNfig)

2 SendQuery (“FETCH:ARRAY:CORRECTED:
GAIN?”, corrGain)

3 SendQuery (“FETCH:ARRAY:UNCORRECTED:
PHOT?”, uncorrPhot)

4 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
VALUE? NFIGURE,1.0GHZ”, ampl1GHz)

5 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
MAXIMUM? GAIN”, maxGain)

6 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
MINIMUM? NFIGURE”, minNfig)

7 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
DELTA? GAIN, 50MHZ,100MHZ”, deltaGain)

Example pseudocode for retrieving the results from
the NFA when using a mixer as the device under
test: code comments

Line 1 retrieves the corrected sweep noise figure

measurements.

Line 2 retrieves the corrected sweep of gain

measurements.

Line 3 retrieves the uncorrected sweep of Phot

measurements.

Line 4 retrieves the value of corrected Noise figure

at 1.0 GHz.

Line 5 retrieves the value of maximum gain from the

results.

Line 6 retrieves the minimum noise figure value from

the results.

Line 7 retrieves the amplitude difference between the

Gain values at 50 MHz and 100 MHz.

17

Agilent 346
Noise Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

Analyser

Mini Circuits
ZFM 4212

Mixer

Type N to SMA
adapter

SMA to SMA
adapter

GPIB
Cable

Signal
Generator

Output

(Signal generator and its associated

cabling and connectors not supplied

in K10 demo kit)

4.2 Using a mixer as part of the
measurement system

This section can be split into 4 sub sections:

4.2.1 Set the measurement system parameters

4.2.2 User calibration when using a mixer as part

of ther measurement system

4.2.3 Mixer as a DUT noise figure measurement

4.2.4 Retrieving some example results

4.2.1 Set the Measurement system parameters

Example pseudocode for using a mixer as part of the
measurement system:

This section shows the example Pseudocode to set the

following system parameters: Measurement mode,

Loss compensation, Local Oscillator and Sweep.

This example assumes that an ENR table called

“Source01.ENR” is present in the NFA

1 function SetMeasParams ()
2 SendCommand (“*RST”)
3 SendCommand (“*CLS”)
4 SendCommand (“:MMEM:LOAD:

ENR MEASUREMENT,’c:source01.enr’”)

5 SendCommand (“:INITIATE:CONTINUOUS:OFF”)
6 SendCommand (“:SYSTEM:CONFIGURE:

LOSCILLATOR:CONTROL:STATUS ON”)
7 SendCommand (“:SYSTEM:CONFIGURE:

LOSCILLATOR:TYPE SCPI”)
8 SendCommand (“:SYSTEM:CONFIGURE:LOSCILLATOR:

PARAMETER:POWER:LEVEL 7”)
9 SendCommand (“:SYSTEM:CONFIGURE:LOSCILLATOR:

PARAMETER:MIN:10MHZ”)
10 SendCommand (“:SYSTEM:CONFIGURE:LOSCILLATOR:

PARAMETER:MAX:20GHZ”)
11 SendCommand (“:SENSE:CONFIGURE:MODE:

DUT AMPLIFIER”)
12 SendCommand (“:SENSE:CONFIGURE:MODE:SYSTEM:

DOWNCONVERTER ON”)
13 SendCommand (“:SENSE:CONFIGURE:MODE:SYSTEM:

LOSCILLATOR:VARIABLE”)
14 SendCommand (“:SENSE:FEQUENCY:MODE:SWEEP”)
15 SendCommand (“:SENSE:CONFIGURE:MODE:SYSTEM:

DOWNCONVERTER:IF:FREQUENCY 40 MHZ”)
16 SendCommand (“:SENSE:FREQUENCY:START 3.5 GHZ”)
17 SendCommand (“:SENSE:FREQUENCY:STOP 4.2 GHZ”)
18 SendCommand (“:SENSE:AVERAGE:STATE ON”)
19 SendCommand (“:SENSE:AVERAGE:COUNT 15”)
20 SendCommand (“:SENSE:BANDWIDTH 4000000”)
21 end function

Example pseudocode for using a mixer as part of
the measurement system: code comments

Line 1 opens the function.

Line 2 puts the NFA into a factory-preset condition.

Line 3 clears the status byte by emptying the error

cue and clearing all the bits in all the event registers.

Line 4 sets the current ENR file to “source01.enr”.

Line 5 sets the NFA to make one complete frequency

sweep and then stop.

Line 6 turns the NFA control over the local oscillator

to on.

Line 7 indicates to the NFA that the local oscillator

uses the SCPI command set.

Line 8 sets the power level of the local oscillator to

7 dBm.

Line 9 sets the min frequency of the controlled local

oscillator at 10 MHz.

Line 10 sets the maximum frequency of the controlled

local oscillator at 20 GHz.

Line 11 sets the device under test to be an amplifier.

Line 12 sets the NFA to control the local oscillator

as part of the frequency downconverting

measurement system.

Line 13 sets the NFA to know that there is going

to be a variable local oscillator within the

measurement system.

Line 14 sets the NFA to be using the Sweep

frequency mode.

Line 15 sets the NFA to use a fixed IF of 40 MHz.

Line 16 sets the NFA to start measuring Noise figure

of the DUT at 3.5 GHz.

Line 17 sets the NFA to stop measuring Noise figure

when it gets to 4.2GHz.

Line 18 sets the NFA to have the Point averaging

function on.

Line 19 sets the number of average points at 15.

Line 20 sets the measurement bandwidth of the NFA

at 4 MHz.

Line 21 closes the function.

18

4.2.2 User calibration when using a mixer as part of
the measurement system.

Connect the system as shown in the following figure.

The calibration procedure removes the measurement

systems own noise figure, often called second stage

noise contribution, which in this case includes the

mixer and the local oscillator. The displayed results

are shown in a corrected form. The results for both

corrected and uncorrected measurements can be

retrieved from the NFA.

Figure 8. Calibration diagram with a mixer as part of the

measurement system

The filter has been included in this example to make

sure that there is only one sideband generated before

being mixed into the capture range of the NFA. This

can be dependant upon the DUT used and if there are

two sidebands generated, then the final result could

be out by a factor of 2x (3 dB too high).

Example pseudocode for calibrating the NFA:

1 function UserCalibration ()
2 SendCommand (“:SENSE:CORRECTION:COLLECT:

ACQUIRE STANDARD”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for calibrating the NFA:
code comments

Line 1 opens the function.

Line 2 starts collection of user calibration data.

Line 3 waits to continue.

Line 4 ends the function.

4.2.3 Noise figure measurements with a mixer as
part of the measurement system

This section demonstrates the connection diagram for

a mixer to be used as part of the measurement system.

An SSB filter can be included in this measurement

setup after the DUT to ensure that the noise figure

measurement will be as accurate as possible. Without

SSB filtering there may be a problem with the noise

figure measurement being 3dB too high, due to the

measurement of two sidebands, this is usually

dependant upon the DUT operation. See the advanced

measurement section in the NFA Users Guide (part

number N8972A-90001) for further explanation.

Figure 9. Measurement diagram with a mixer as part of the

measurement system

Example pseudocode for making noise figure
measurements using a mixer as part of the
measurement system.

1 function UserCalibration ()
2 SendCommand (“:SENSE:CORRECTION:COLLECT:

ACQUIRE STANDARD”)
3 SendCommand (“*WAI”)
4 end function

Example pseudocode for making noise figure
measurements using a mixer as part of the
measurement system: code comments

Line 1 opens the function.

Line 2 the measurement has been selected and is

waiting, this command causes the system to come out

of idle and starts making the measurement.

Line 3 waits to continue

Line 4 ends the function.

19

Agilent 346
Noise Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

Analyser

Mini Circuits
ZFM 4212

Mixer

Type N to SMA
adapter

SMA to SMA
adapter

GPIB
Cable

Signal
Generator

Output

(Signal generator and its associated

cabling and connectors not supplied

in K10 demo kit)

SSB
 filter

DUT

Agilent 346
Noise Source

NFA Series

50 Ohm
Co-Ax Cable

Noise
Figure

Analyser

Mini Circuits
ZFM 4212

Mixer

Type N to SMA
adapter

SMA to SMA
adapter

GPIB
Cable

Signal
Generator

Output

(Signal generator and its associated

cabling and connectors not supplied

in K10 demo kit)

SSB
 filter

4.2.4 Retrieving some example results

Example pseudocode for retrieving the results
from the NFA:

This section will examine how to retrieve the results

for the entire corrected measurement sweep of noise

figure and gain, the noise figure and gain specifically

at 1.0 GHz, The maximum Gain throughout the sweep,

the minimum noise figure and the delta between gain

measurements at 50 MHz and 100 MHz.

1 SendQuery (“FETCH:ARRAY:CORRECTED:
NFIGURE?”, corrNfig)

2 SendQuery (“FETCH:ARRAY:CORRECTED:
GAIN?”, corrGain)

3 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
VALUE? NFIGURE,1.0GHZ”, ampl1GHz)

4 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
MAXIMUM? GAIN”, maxGain)

5 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
MINIMUM? NFIGURE”,minNfig)

6 SendQuery (“TRACE:DATA:CORRECTED:AMPLITUDE:
DELTA? GAIN, 50MHZ, 100MHZ”, deltaGain)

Example pseudocode for retrieving the results from
the NFA: code comments

Line 1 retrieves the corrected swept noise figure

measurements.

Line 2 retrieves the corrected swept values of gain

measurements.

Line 3 retrieves the value of corrected noise figure

at 1.0 GHz.

Line 4 retrieves the value of maximum gain from the

results.

Line 5 retrieves the minimum noise figure value from

the results.

Line 6 retrieves the amplitude difference between the

gain values at 50 MHz and 100 MHz.

20

5. Appendix

Minimal pseudocode library

RemoteWrite (string command, Boolean terminate)

RemoteWrite is a function that takes a string of bytes

and sends them to the NFA. If terminate, the second

argument, is true then when the last character is

sent EOI is asserted marking the end of the message.

Setting terminate to false allows long sequences of

data (e.g. files) to be split into records that are loaded

into the instrument one at a time. The transmission is

terminated by setting terminate true when sending

the last record only.

RemoteRead (string reply)

RemoteRead reads a string of bytes from the NFA. It

also takes care of the GPIB protocol. This command

will time out after a reasonable time. This ability to

Time out is necessary to recover from query failures.

When a query fails the NFA places an error message

in the error queue but does not output any data to

satisfy the query. If RemoteRead did not time out

then the controlling program would hang.

GetErrorNumber (string errorMessage, number

errorNumber)

GetErrorNumber takes an error message, as returned

by the ‘SYSTEM:ERROR:NEXT?’ query, and extract the

error number as a number.

GetErrorText (string errorMessage, string errorText)

GetErrorText takes an error message and extracts the

error text.

PrintError (string command, number errorNumber,

string errorText)

PrintError formats an error message on the error

output.

FileLength (string fileName)

FileLength returns the size in bytes of the named file

on the local host.

ToString (number n)

ToString converts a number to its string

representation.

StringLength (string s)

StringLength returns the length of the given string.

GetByte (string fileName, string byte)

GetByte gets a byte from the named file on the local

host and returns it in string argument byte.

Pseudocode for sending a command

1 function SendCommand (string command)
2 RemoteWrite (command, true)
3 ReportErrors (command)
4 end function

Pseudocode for sending a command code comments:

SendCommand is a function that is used to send a

command string to the NFA.

Line 1 shows the function definition, which takes a

string argument. A string in this pseudocode is simply

a sequence of byte values of known length. The byte

values can be presented and displayed as ASCII text.

Line 2 uses the pseudo code library call described

earlier to send the command to the NFA. Note that

SendCommand assumes that the whole command is

passed to it because it terminates the message.

Line 3 calls a function that displays any errors

associated with the execution of the command.

ReportErrors is detailed on a later slide.

Pseudocode for sending a query

1 function SendQuery (string query, string response)
2 RemoteWrite (query, true)
3 RemoteRead (response)
4 ReportErrors (query)
5 end function

Pseudocode for sending a Query code comments:

Line 1 shows the function definition. It differs from

the SendCommand only in that it takes a second

argument, which is used to return the response to

the query.

Line 2 is as for the previous example except that

string is a SCPI query.

Line 3 reads the response from the NFA. This com-

mand must timeout if it does not receive a response

within a reasonable time. Note that some of the NFA

queries can take a very long time and so it is good to

be able to tune the timeout to the query. I/O libraries

such as SICL have this ability.

Line 4 reports any errors associated with the query.

21

The error cue

When the instrument detects an error condition, it

places an error message in an error queue. The

remote error queue is 30 entries deep.

Error messages have a signed error number followed

by some error text in double quotes.

Negative error numbers are for predefined SCPI

errors e.g. error -350,“Queue overflow” which is issued if

an error occurs when the error queue is already full.

Positive errors are instrument specific.

The query used to get the head of the error queue is

“SYSTEM:ERROR:NEXT?”. It can only retrieve one error

at a time.

The special error message +0,“No error” indicates

that the error queue is empty. It is possible to query

the error queue often, when it is empty the result is

+0, “No error”.

A single command or query can generate more than

one error message. For this reason it is best to drain

the error queue after each command or query. If not,

there is a danger of loosing track of what commands

caused the particular errors.

Errors can occur that are not directly related to the

last command issued. To determine if the command

generated an error refer to status information. Status

information will report if a different type of error has

occurred. However, if the status information indicates

there are different types of error in the error queue,

it is impossible to determine which of the errors was

caused by the last command unless it is obvious from

the error itself.

It is important that the read routine can time out to

avoid hanging the program.

Pseudocode for querying the error cue

1 function QueryError (number errorNumber,
string errorText)

2 string errorMessage = ‘-999,”QueryError failure!”’
3 RemoteWrite (‘:SYSTEM:ERROR:NEXT?’, true)
4 RemoteRead (errorMessage)
5 GetErrorNumber (errorMessage,errorNumber)
6 GetErrorText (errorMessage,errorText)
7 end function

Querying the error cue code comments:

Function QueryError gets the error at the head of the

error queue.

Line 1 shows that it takes two arguments used to

return the error number and text to the enclosing

scope.

Line 2 defines a string variable used to hold the

error message read from the NFA. It is initialized

to an error message that is not generated by the

NFA but that is used to indicate that the program

can’t access the NFA’s error queue.

Line 3 sends the query that causes the NFA to output

the error message for the error at the head of the

error queue. If there is no error then it outputs the

special message ‘+0,“No error”’.

Line 4 gets the error message ouput by the NFA. If

this command times out then string errorMessage will

not be updated and will therefor contain the special

case message ‘-999,” Error queue failure!”’.

Lines 5 and 6 fill in QueryError’s arguments by extract-

ing the information from the error message.

There are as many schemes for handling errors in

SCPI as there are programmers writing SCPI programs.

This following is a simple example of something that

can be done to handle errors in SCPI. It does not

carry error information into the outer scope of the

controlling program; however, it can easily be

extended to perform this function.

22

Pseudocode for reporting errors from the error cue

1 function ReportErrors (string command)
2 number errorNumber
3 string errorText
4 loop
5 QueryError (errorNumber,errorText)
6 if errorNumber equals 0 exit loop
7 PrintError (command,errorNumber,errorText)
8 if errorNumber equals -999 exit loop
9 end loop
10 end function

Reporting errors from the error cue code
comments:

ReportErrors reports any errors that are on the error

queue, draining the queue in the process.

Line 1 shows that ReportErrors takes a single

argument, the last command (or query) executed. As

mentioned earlier, errors can be placed in the error

queue that are not in direct response to a command

or query but because of some other event within the

NFA. In this example it is assumed that all errors are

a result of the previous command.

Lines 2 and 3 declare local variables used to hold the

error number and error text from the error message

returned by the NFA.

Line 4 marks the start of a loop that extends to line 9.

Line 5—function QueryError gets the details of the next

error from the error queue.

Line 6 exits the loop (and therefor the function) if the

error number is zero (i.e. there was no error).

Line 7 prints the details of the error.

Line 8 is a special case test. It stops the code getting

caught in an infinite loop caused when the error

query itself fails.

Line 9 ends loop.

23

Agilent Technologies’ Test and Measurement
Support, Services, and Assistance

Agilent Technologies aims to maximize the value you

receive, while minimizing your risk and problems. We

strive to ensure that you get the test and measurement

capabilities you paid for and obtain the support you

need. Our extensive support resources and services

can help you choose the right Agilent products for

your applications and apply them successfully. Every

instrument and system we sell has a global warranty.

Support is available for at least five years beyond the

production life of the product. Two concepts underlie

Agilent's overall support policy: "Our Promise" and

"Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement

equipment will meet its advertised performance and

functionality. When you are choosing new equipment,

we will help you with product information, including

realistic performance specifications and practical

recommendations from experienced test engineers.

When you use Agilent equipment, we can verify that

it works properly, help with product operation, and

provide basic measurement assistance for the use of

specified capabilities, at no extra cost upon request.

Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range

of additional expert test and measurement services,

which you can purchase according to your unique

technical and business needs. Solve problems efficiently

and gain a competitive edge by contracting with us for

calibration, extra-cost upgrades, out-of-warranty

repairs, and on-site education and training, as well as

design, system integration, project management, and

other professional engineering services. Experienced

Agilent engineers and technicians worldwide can help

you maximize your productivity, optimize the return on

investment of your Agilent instruments and systems,

and obtain dependable measurement accuracy for the

life of those products.

For more assistance with your test and
measurement needs or to find your local
Agilent office go to:

www.agilent.com/find/assist

Product specifications and descriptions
in this document subject to change
without notice.

Agilent Technologies Literature Part
Number: 5968-9498E

Revision: Release 1.0 (11/01/00)

Copyright ©2000 Agilent Technologies
Printed in USA November 27, 2000
5968-9498E

