
Hints for Debugging
Microcontroller-based
Designs
Time-saving tips from successful

designers of 8- and 16-bit systems.8

Contents

Hint 1: Tracking down elusive glitches.
Using peak detect and deep memory
to capture a tough glitch in a Motorola
68HC11K1-based digital radio trans-
mitter.

Hint 2: Characterizing analog-to-digital
converters. Using a low-cost oscillo-
scope, an arbitrary waveform genera-
tor, and a PC-hosted logic analyzer
to test analog-to-digital conversion
integrity.

Hint 3: Verifying PWM dead time in
motor controllers. Using mixed analog
and digital channels to verify proper
signal timing in an Infineon C504-
based system.

Hint 4: Verifying I2C bus arbitration.
Implementing I2C routines in Microchip
PIC18CXXX microcontrollers.

Hint 5: What-if testing for MCU debug-
ging. Using an arbitrary waveform
generator to predict how a PICmicro
16C84-based system will respond to
real-world signals.

Hint 6: Resolving hardware/software
integration problems. Using a NOHAU
8031 emulator and a mixed signal
oscilloscope to track down the anoma-
lies that often plague hardware/soft-
ware integration efforts.

Hint 7: Correlating software and analog
outputs in a CAN controller. Using a
combination of analog and digital
measurements to debug program code
that drives a Philips 80C51-based con-
troller area network (CAN) system.

Hint 8: Debugging an MCU-based CCD
camera controller. Using a combination
of TV triggering, analog scope measure-
ments and digital timing measurements
on a Philips 80C552-based camera
control system.

The challenge of debugging
MCU-based designs

It’s almost impossible to design an
electronic or electromechanical prod-
uct these days without using a micro-
controller. While there are plenty of
interesting design challenges, the
debugging tools for MCU-based
designs haven’t always kept up.

If you work with 8- and 16-bit MCUs,
for instance, you’ve probably felt stuck
in the middle, between generic, basic
tools (such as scopes) and higher-end
tools aimed at microprocessors (such
as traditional logic analyzers and emu-
lators). At the same time, you’re prob-
ably dealing with a mix of analog and
digital signals, so a scope by itself or
a logic analyzer by itself is only half a
solution.

Moreover, you probably don’t have
the luxury of specializing. You have
to know analog hardware, digital hard-
ware and firmware—and be good at all
three. And all the while, market win-
dows are getting narrower, competi-
tion is getting stronger, and customers
are expecting more power and capa-
bility from your MCU-based products.
Your job may be a lot of things, but
boring certainly isn’t one of them.

Help is on the way

As the worldwide leader in test and
measurement, we’re working hard to
help engineers like you meet your
MCU-based design challenges. One
way we can help is with the informa-
tion in this booklet, practical debug-
ging hints from engineers working
with a variety of MCUs. You’ll see
how these designers use some of the
latest MCU debugging tools to get
their new products to market faster.

2

Introduction

Get FREE Agilent
test equipment

Would you like to share your

MCU debugging experience

with thousands of engineers

worldwide? Submit a hint like

the ones you’ll find in this book-

let, and if we use it in a future

application note, we’ll say

thanks by providing you with

free Agilent test equipment

valued up to US $1000. If you’re

interested, please email us at

dear-scopie@agilent.com.

Intel is a U.S. trademark

of Intel Corporation

Infrequent, unpredictable events can
present some of the toughest trou-
bleshooting challenges around. I
recently encountered such a glitch
while designing a low-power data
acquisition device. This wireless
instrument system uses a group of
remote sensor units and spread spec-
trum radio transceivers (Figure 1).
Data collected at the system can be
retrieved by a network control unit
connected to a computer.

The system uses the interrupt pin
on a low-power clock chip to trigger
power-up events every 60 seconds.
Between events, the clock and sup-
porting logic are the only devices
drawing current (approximately 50
µA). After getting a trigger from the
clock, the Motorola 68HC11K1 micro-
controller powers up, collects temper-
ature data and listens for transceiver
activity. If it hears a data request on
the transceiver, the MCU transmits
the temperature data.

The glitch in question was showing
up during this 60-second interval,
when the system was supposed to
be quiet. To find and analyze this
anomaly, I used a deep memory (1
Mbyte) digital oscilloscope with peak
detect. Since the glitch occurred so
infrequently, I first set the scope’s
time base at 10 seconds/division in
order to capture the entire 60-second
sequence. Without peak detect, most
narrow events would be impossible
to detect at this time base setting.
But as Figure 2 shows, the glitch in
my system was easily captured and
viewed. Peak detect showed some-
thing unusual happening approximate-
ly 15 seconds after the clock trigger
event.

Once I became aware of the anomaly’s
presence in my system, the scope’s
deep memory made it easy to zoom in
and analyze the glitch in more detail.
With the scope’s 1 Mbyte of acquisi-
tion memory, the initial waveform
capture at 10 seconds/division was
also sufficient to see waveform details
when I zoomed in and viewed at 10
milliseconds/division (Figure 3).

3

Figure 1. Basic block diagram of the wireless instrumentation sys-
tem. One analog input on the scope monitored power-up on the
MCU while the other monitored the carrier detect signal feeding
the transceiver.

Tracking down elusive glitches
By Steven Schram, Invocon. Inc.

1Hint

Oscilloscope

Motorola
MC68HC11K1

MCU

Spread
spectrum

transceiver

ADC

Clock

Temperature
sensors

Figure 2. The initial measurement using peak detect with a 10 s/div
time base setting.

Figure 3. Once the glitch was identified, zooming in to a faster time
base setting provided the necessary details.

With today’s digital revolution in the
electronics industry, analog-to-digital
converters (ADCs) are increasingly
common. ADCs can be found as
either stand-alone parts or integrated
into microcontrollers as special I/O
peripherals. Depending upon the ana-
log input accuracy requirements of
your particular MCU-based applica-
tion, certain ADC specifications may
require verification prior to releasing
the design to production. This hint
shows how to test analog-to-digital
conversion integrity using a low-cost
oscilloscope, an arbitrary waveform
generator, and a PC-hosted logic ana-
lyzer (test setup shown in Figure 1).
Specifically, this hint will examine

differential nonlinearity
errors as they relate to
missing digital codes of
the ADC.

Generating the
test signal
A common test signal
used to evaluate analog-
to-digital converters is a
voltage ramp. The volt-
age range for the ramp
is the range of analog
inputs applied to the con-
verter for which it is
expected to generate dig-
ital outputs. In this par-
ticular example where
we test the integrity of an
8-bit ADC, the operating
range is 0 to 5 volts.
Because an ADC con-
verts continuous analog
voltages to a discrete
number of digital codes,
a conversion (or quanti-
zation) error will be
introduced. In our case,
each of the 256 possible
digital output values rep-
resents a 19.5-millivolt
voltage range for the ana-
log input.

In this example, we are testing for
missing digital output codes. To
ensure that the ADC has an opportuni-
ty to output the correct code for the
given analog input value, we generate
the voltage ramp slowly enough that
the ADC has at least four chances to
output each digital code. For this
example, the input voltage change is
about 19.5 mV every four sample
clocks. Since our sample clock is 2
kHz, four sample periods represent 2
milliseconds. Applying this voltage
change over the entire 5-volt operating
range results in a 1.95 Hz ramp.

We also have to consider test signal
noise on the ADC input. An input sig-
nal with 50 millivolts of noise could
generate missing ADC output codes
even if the ADC is operating correctly.
Figure 2 shows an oscilloscope mea-
surement using an Agilent 54622A digi-
tizing scope. The test signal was gen-
erated from an Agilent 33120A func-
tion/arbitrary waveform generator. A
close examination of an expanded por-
tion of the signal shows that we have
about 10 millivolts of noise. If the
noise is significant enough to cause
missing ADC codes, multiple applica-
tions of the ramp can be applied. If
the noise is truly random, eventually
we would expect to see all apparent
missing codes.

Capturing the ADC digital outputs
Most logic analyzers have two modes
of operation: synchronous/state analy-
sis and asynchronous/timing analysis.
The asynchronous sampling mode will
produce timing waveforms, much like
an oscilloscope. The synchronous
sampling mode produces a state listing
of captured data on most logic analyz-
ers. To test output codes of ADCs, the
synchronous/state mode is the pre-
ferred sampling method to use. In this
mode of operation, the analyzer sam-
ples digital bus values synchronous to
a clock edge that is provided by the

4

Figure 1. ADC test setup.

Agilent 54622A
Oscilloscope

Agilent 33120A
Arb Generator

8-Bit
MCU

8

88-Bit ADC

Agilent LogicWave
Logic Analyzer

2Hint

Characterizing analog-

to-digital converters using a

PC-hosted logic analyzer

by Steve Warntjes, Agilent Technologies

Figure 2. The oscilloscope measured ADC test signal generated
with an Agilent 33120A.

system under test. In our example, the analyzer’s assigned
sample clock is the ADC sample clock. The advantage of
this method of acquiring data (as opposed to asynchronous/
timing analysis mode) is that the data is sampled only when
data is stable and valid. In synchronous/state analysis, the
data must be stable for the logic analyzer to sample correct-
ly. This stability time is referred to as the setup/hold window
of the logic analyzer. In our example, the rising edge of the
sample clock allows us to capture the data from the previous
analog input. The ADC data sheet usually specifies a data
setup and hold specification relative to the sample clock on
the data outputs. To ensure measurement integrity, the
ADC setup/hold specifications should exceed the logic
analyzer setup/hold requirements.

Figure 3 shows a logic analyzer display (state listing) of the
ADC output. The primary or top window shows the logic
analyzer triggering on the first 00H ADC output. Note that
the ADC output label counts up from the 00H value. Also,
note the absolute time displayed in the far right column.
The time between the X and O markers shows the four sam-
ples that were collected while the ADC output value was 2.

To look for missing ADC codes, a logic analyzer’s trigger
capability is invaluable. Set the logic analyzer to trigger on
a specific ADC code, such as 43H. If the logic analyzer never
triggers, we can be sure that the ADC output is never hit. By
applying a continuous set of input ramps with a specific logic
analyzer trigger condition, we can quickly determine if there
are any missing codes even if the noise on the ADC input is
larger than the ADC step as discussed above.

Analyzing the captured data
After the data has been captured, it is a simple matter to
process the information with a tool such as Microsoft®

Excel. From within the Agilent LogicWave logic analyzer
(Figure 3) we can save the captured data and easily import it
into Excel. Once in Excel, the captured data can be charted
versus an ideal voltage ramp. Figure 4 shows a portion of
the voltage ramp comparing the ideal voltage to the ADC
output. Note that a specific ADC code is missing, resulting
in differential nonlinearity error. With the use of PC soft-
ware, the oscilloscope waveform can also be captured and
displayed. Comparing multiple views of the ramp, the ideal
ramp, the oscilloscope measured ramp and ADC output mea-
sured with the logic analyzer, is a good way to analyze ADC
conversion.

Microsoft is a U.S.-registered trademark

of Microsoft Corporation.

5

Figure 4 A comparison of the ideal ADC voltage ramp with the
Excel charted ADC output.

Oscilloscope

Motorola
MC68HC11K1

MCU

Spread
spectrum

transceiver

ADC

Clock

Temperature
sensors

Differential
nonlinearity

Figure 3 The Agilent LogicWave synchronous capture display
of the ADC output codes.

Generating pulse width modulated
(PWM) signals with an MCU is a com-
mon way to control AC motors with
sine-wave shaped currents. A typical
application for an 8-bit MCU is con-
trolling a three-phase induction drive
with variable speed in an open-loop
configuration.

However, the MCU can’t
drive an induction motor
directly, so you need to
amplify the three-phase
signals first. Instead of
using analog amplifiers,
a more efficient way is
to digitally amplify the
PWM outputs with
power switches, such
as MOSFETs or IGBTs.
The three-phase inverter
shown in Figure 1
accomplishes this
function.

The hardware for each
phase of the inverter
consists of two power
switches (high side and
low side) in a push-pull
configuration. This cre-
ates a potential problem,
though, if the control sig-
nals for the switches are
exact complements of
each other. During PWM
switching, both power
switches might momen-
tarily conduct simultane-
ously due to different
transistor turn-on and
turn-off latencies. This
can create a high-current
short circuit and may
destroy the inverter. It’s
therefore important to
use an MCU optimized

for motor control, such as the Infineon
C504 (an 8051 derivative) or C164 (16-
bit architecture). Both can be pro-
grammed to insert “dead time” in the
PWM outputs by hardware without
any software overhead. The dead
time ensures that the two switches
never conduct at the same time.

After programming the microcon-
troller to create the PWM output sig-
nals with dead time, the next step is
testing the wave shape and timing.
A four-channel scope can do the basic
measurement, but if one is available,
a mixed signal scope is a better choice
because you can measure multiple
analog and digital waveforms simulta-
neously and set up complex logic
triggers.

Figure 2 verifies that the programmed
dead time is sufficient for safe PWM
switching. This zoomed-in display
shows the impact of the dead time on
the analog gate-source voltage of the
power switch MOSFETs. The scope’s
cursors simplify the correct timing
measurement and help characterize
the circuit precisely.

With combined digital and analog
measurement channels, you can easily
monitor all six PWM signals and the
phase currents. Figure 3 shows the
two phase currents and corresponding
digital PWM pattern. The time-quali-
fied trigger mode lets you synchronize
the scope’s display to an adjustable
pulse width corresponding to a well-
defined phase angle.

6

Verifying PWM dead time

in motor controllers
Technical staff, Infineon Technologies

Figure 1. Block diagram of an open-loop configuration for generat-
ing safe PWM signals to drive a three-phase motor.

Mixed signal
oscilloscope

Three-phase
motor

Three
phases

PWM
signals

Asynchronous
serial link

Three-phase
inverter

Infineon
C504
MCU

User
interface

(PC)

3Hint

Figure 3. Monitoring all six PWM signals and the phase
currents on the high-side and low-side switches.

Figure 2. Verifying the dead time between the high-side and low-
side PWM outputs.

FET Switches off

FET Switches on

The I2CTM bus allows multiple micro-
controllers to share resources over a
single communication channel. I2C is
a synchronous, bi-directional, multi-
device communication bus. The real
strength of the I2C bus is that it only
requires two wires for communication:
data (SDA) and clock (SCL). Multiple
devices can be attached to these two
lines, thereby easing connection
issues. However, this advantage adds
a layer of complexity to communica-
tion exchanges on the bus. Problems
can occur when two devices try to
communicate at the same time.

The I2C protocol is set up in a
master/slave configuration. A master
must initiate all communication and
control the clock signal. Once a mas-
ter starts communication, all other
masters refrain from starting commu-
nication. However, problems can
arise when two or more masters try to
start communication at the same time.
Thankfully, I2C has a method of self-
arbitration built into the protocol.

Both the SCL and the SDA lines are
configured in an open-collector wired-
AND manner. This means a device
that outputs a ‘0’ will override any
other device trying to output a ‘1’.
Masters on the bus monitor the actual
state of the SCL and SDA lines and
compare the bits on those lines to the
ones they are trying to output. If at
any time there is a mismatch, the mas-
ter knows another master is on the bus,
and it stops trying to communicate.

Many engineers working with embed-
ded systems have wrestled with
adding arbitration into their I2C
firmware designs. Covering all cases
can become a headache, and quickly
add to the size and complexity of the
firmware. Microchip has eased this
burden with their new PIC18CXXX
line of microcontrollers, which include
full master support for the I2C bus,
implemented in a hardware syn-
chronous serial port (SSP). Using the
SSP to control I2C communication
relieves you of the most onerous
aspects of I2C arbitration.

Figure 1 shows a typical system where
master mode arbitration comes into
play. In this case, both masters share
the I2C bus and can try to communi-

cate to either the EEPROM or the tem-
perature sensor at any time. If there
was no arbitration, data could be lost.
However, the PIC18C452 controller
provides a flag indicating that a bus
collision has occurred. Writing
firmware to utilize this bit is a relative-
ly simple matter. If the bit is ever set,
a different master has control of the
bus and the controller has stopped all
I2C action. The system can try again
when the I2C bus is again free. Figure
2 shows a code fragment that accom-
plishes this task.

When communicating to the EEPROM
over the I2C bus, the first byte sent is
a A0H. Likewise, the first byte sent to
the temperature sensor is a 90H. If one
master starts communication to the
EEPROM and the other to the temper-
ature sensor at the same time, the con-
troller talking to the EEPROM should
lose arbitration on the third bit of the
first byte. It loses arbitration because
of the wired-AND configuration of the
bus (the third bit to the EEPROM is a
‘1’ and to the temperature sensor is a ‘0’).

Using Agilent’s new 54622D mixed sig-
nal oscilloscope (MSO), you can easily
verify the arbitration process in the
system shown in Figure 2. By using
this oscilloscope’s I2C triggering capa-
bilities to trigger on a start condition,
you can capture the beginning of an
I2C communication. Figure 3 shows
the capture of Master #1 starting com-
munication with the temperature sen-
sor, while Master #2 is starting to com-
municate to the EEPROM. Master #2
toggles an I/O pin twice any time its
BCLIF bit gets set. The digital channel
D1 on the Agilent 54622D MSO shows
this I/O. As shown in Figure 3, Master
#2 indicates its BCLIF is set during the
third bit of the I2C communication, sig-
naling it has lost arbitration and is no
longer on the I2C bus. At this point,
Master #2 must wait until Master #1
is done with communication before
trying to access the I2C bus again.

Because it only uses two I/O lines, the
I2C bus is a valuable tool to use in your
embedded designs. With Microchip’s
new PIC18CXXX line of microcon-
trollers, it is no longer a daunting task
to create the firmware you need for
implementing I2C routines.

7

Verifying I2C bus arbitration
by David Brobst, Solutions Cubed

I2C is a registered trademark

of Philips Corporation

Figure 1. I2C System

Figure 2. I2C arbitration in the PIC18CXXX

4Hint

Collision_Monitor
btfss PIR2,BCLIF ;If collision, wait till over
goto Collision_Monitor_end

Collision_Wait
btfss SSPSTAT,P ;Bus is idle when a stop bit is detected
goto Collision_Wait
bcf SSPSTAT,P ;No spurious future stop bit detection
bcf PIR1,SSPIF ;Stop condition sets SSPIF so clear

Collision_Monitor_end

<Remaining I2C code goes here>

SCL SDA

Master 1
*PIC18C452

EEPROM
*24LC01B

SCL SDA

Master 2
*PIC18C452

Temperature Sensor
*DS1621

Figure 3. Arbitration loss by master 2.

One of our biggest challenges as
designers is verifying that our devices
will work as well in the messy real
world as they do in the lab. This is
particularly important when a design
needs to handle unpredictable analog
signals.

Our digital remote controllers (Figure
1), which are essentially digital radios,
live in an environment of noisy, often
corrupted, signals. As a result, the
data reception software built into the
receivers needs to handle a variety of
signal conditions appearing at the
received strength signal indicator
(RSSI). When we test over short dis-
tances on a lab bench, however, recep-
tion is usually too good to encounter
random bit errors. And when an error
does occur, it is usually not very
repeatable.

We found a simple solution in an arbi-
trary waveform generator, which can
reproduce virtually any waveform that
we can represent as a set of time/volt-
age pairs. The first step is digitizing a

clean and verified
waveform that rep-
resents a good dig-
ital data packet.
Any digital scope
can perform this
step, although we
use a deep-memo-
ry, mixed-signal
oscilloscope
(MSO) since we
need to capture a
combination of
digital and analog
signals.

The second step is editing the captured
waveform to introduce the sorts of
error conditions we need to check
for. PC connectivity software such as
Agilent BenchLink or LabVIEW® makes
it easy to transfer the scope data to a
PC for editing. Since we’re using the
Agilent 33120A arbitrary waveform
generator, the BenchLink Arb package
offered a convenient way to do the
editing. The editing tools let us mimic
a variety of real-world conditions,
including adding noise to simulate
noisy transmission conditions, deleting
data bits to simulate bit errors, and
reducing the signal amplitude to simu-
late path loss.

The third step is downloading the
modified waveform to the arbitrary
waveform generator and injecting it
into the circuit in place of the regular
RSSI signal. We can then verify that
the errors are detected and/or correct-
ed, depending on the specific receiver.
It’s also easy to add noise in small
increments until bit errors occur,
which helps to characterize each
model’s sensitivity to noise. The arb
generator also makes it possible to
edit a specific bit, or set of bits, to
make sure that errors in all positions
are detected.

8

What-if testing for

MCU debugging
Jim Clark, LPA Designs

Figure 1. A typical digital receiver circuit showing the RSSI signal
that indicates the quality of the received signal.

Comparator

Microchip
PIC16C84

MCU

Receiver
subsystem

Deep memory
oscilloscope

Arb
generator

PC
GPIB GPIB

RSSI

5Hint

A sequence of waveforms will help
demonstrate the process. Figure 2
shows the sort of RSSI signal we
expect to get from the receiver subsys-
tem. For comparison, Figure 3 shows
the RSSI signal captured by the MSO,
transferred to the PC and then recreat-
ed by the arbitrary waveform
generator.

With the test system operational, we
can now start modifying the wave-
forms to perform the what-if testing.
In Figure 4, a noisy RSSI simulation
exceeds the comparator threshold,
thereby triggering a comparator out-
put transition that is not present in the
original digital signal. A test such as
this helps us measure the sensitivity of
the comparator in noisy environments.

Another common test we need to
make is checking the receiver’s
response to missing, inadvertent or
misplaced bits. In Figure 5, for
instance, we inserted a bit error in the
emulated RSSI signal.

The flexibility of arbitrary waveform
generation means this kind of what-if
testing is more or less limited only by
your imagination and the nature of the
circuit under test.

LabVIEW® is a U.S. registered trademark

of National Instruments Corporation.

Figure 5. A bit error inserted through the arbitrary waveform generator
shows up as a bad data packet on the input of the MCU.

9

Figure 4. A noisy signal exceeds the comparator threshold signal (near the
right side of the display), generating a spurious comparator transition.

Figure 2. A good RSSI signal and the corresponding comparator output that
reconstructs the received serial data stream.

Figure 3. The good RSSI signal recreated by arbitrary waveform generator.

One of the most common problems in
MCU debugging is figuring out whether
an anomaly is based in hardware or in
software. This can be tricky enough if
a single person designs both, and it’s
magnified many times over if a team
of designers is involved.

Traditionally, hardware designers use
an oscilloscope and logic analyzer to
prove it’s a software problem, while
software designers use an emulator
to prove it’s a hardware problem.
Unfortunately, these one-sided meth-
ods often only reconfirm that the
problem exists. What we really need
is a way to witness the problem as it
occurs, while observing how the soft-
ware and hardware behave and/or
misbehave.

Tying a logic analyzer to an emulator
can help, but this can involve a lot of
configuration and connection work.
A faster, easier alternative that’s more
than adequate for most MCU-based
designs uses an emulator’s trace and
triggering capability to trigger a mixed
signal oscilloscope. At the same time,
the emulator selectively stores the sus-
pect software instructions.

In one recent debug scenario, I used
a NOHAU 8031 emulator with a mixed
signal scope to explore some trouble
in the timing signals derived from the
8031 Port1 and an analog signal’s rela-
tionship to these signals. Setup
involved just three signals from the
board to the emulator, one signal to
the scope, and a trigger connection
between the emulator and the scope.

As Figure 1 shows, the emulator
captured the cycles in question while
triggering the scope. (Note the time
stamping.) The scope triggered on
the fetch of the write to the port and
captured the anomalous event (the
slower transitions on lines P1-1 and
P1-0) as well as the analog signal in
question, indicating a hardware prob-
lem, as we can see from the scope dis-
play in Figure 2.

If this had been a software problem,
I could’ve scrolled the trace buffer
while synchronizing it to the source
and program windows, making it easy
to correlate program code to the error
event. If there is more than one pro-
grammer writing to the same port, this
method can save tremendous amounts
of time and money by identifying the
responsible software module. Plus,
hardware engineers can continue to
use the emulator’s trigger-out and the
second analog probe to isolate the
cause of the problem further.

10

Resolving hardware/soft-

ware integration problems
By Charlie Howard, Embedded Technologies Associates, Inc.6

Hint

Figure 1. The emulator’s trace buffer shows the point (t=0) at
which the emulator triggers the scope.

Figure 2. A detailed look with the scope shows a signal delay on
lines P1-1 and P1-0.

11

Until recently, troubleshooting mixed
signal designs, where you need exact
time coherency between analog signals
and MCU code, was extremely diffi-
cult. The problem could be partially
solved by combining a logic analyzer
and an oscilloscope with common
time bases and triggering them simul-
taneously. However, time base differ-
ences between the two instruments
could lead to incorrect results.
Moreover, differences in memory
made things even more difficult. An
alternative is to use a hybrid scope/
logic analyzer. These instruments
enhance cross-domain measurement
accuracy and can reduce debugging
time for mixed-signal designs.

In my application, where a Philips
80C51 MCU interacts with an 82C200
CAN (Controller Area Network) con-
trol chip to establish low-speed data
communication between several
domotics (home automation) devices,
it is not always easy to determine the
cause of an emerging problem. In this
specific case, problems arose when I
tried to send data to a remote device.
It seemed as though several bytes
were not arriving at their destination.

I connected the digital inputs of the
scope to the MCU data bus and con-
nected the scope’s analog inputs to
the transmission line (Figure 1). I
then used pattern triggering to syn-
chronize the measurement to the spe-
cific transmission request code word
for the 82C200. Next, I set the trigger
pattern in such a way that the mea-
surement system triggered when the
code word and the desired transmis-
sion frame occurred simultaneously.
I quickly discovered that I had a soft-
ware problem and had to review the
code. Contrary to my first assump-
tion, the test revealed that a data loss
existed between the MCU and the
CAN controller, and not on the trans-
mission line (Figure 2).

The integrated scope and logic chan-
nels made it possible to compare with
great accuracy the analog signals with
their digital originators (the MCU
code). In addition, deep memory is
a big plus, since it let me sample the
full length of the transmission frame
(approximately 300 ms) and at the
same time have enough detail to
investigate the microcontroller code
(approximately 150 ns).

Although conventional test equipment
probably could’ve solved this problem,
I saved a considerable amount of time
using a hybrid analog-digital solution
with deep memory.

Correlating software and analog

outputs in a CAN controller
By Pascal Mestdagh, EUROCORPS, Telecommunications Division

Figure 1. Measurement connections used to debug the CAN
controller setup.

7
Hybrid

scope/logic analyzer

Philips
80C51
MCU

82C200
CAN

controller

Line
transceiver

CANH

CANL

Hint

Figure 2. The simultaneous occurrence of the transmission request
code word and the analog transmission frame revealed an incon-
sistency in my software code. Bytes did not arrive at their destina-
tion because the MCU didn’t verify the “transmission complete” bit
of the status register in the CAN controller.

12

Like many MCU-based designs, the
CCD camera systems we’ve been
designing require simultaneous mea-
surement of digital and analog signals,
often with complex trigger require-
ments.

As Figure 1 shows, the horizontal syn-
chronization pulses are first separated
from the video signal. Using these
Hsync pulses, the phase lock loop
(PLL) generates the 10 MHz ADCLK
signal. The falling edge of ADCLK
samples the TV signal into the ADC;
its rising edge updates the ADC out-
put. The programmable logic device
(PLD) converts ADCLK to generate
the WR signal. The WR rising edge
writes the data from the ADC into the
FIFO memory, which then contains a

digitized signal of one TV line. The
Philips 80C552 MCU reads data from
the FIFO and calculates the feedback
control data for camera positioning
and zooming. Systems like this are
commonly used in applications that
need to track and measure objects
visually, such as navigation and non-
contact measurement.

Using the single-shot TV trigger mode
and Autostore function of our mixed
signal scope (MSO), we discovered a
25 ns edge instability or jitter on the
ADCLK signal. With the MSO, we easi-
ly captured and stored a complete 20
ms stream of one-half of the TV pic-
ture at 50 MSa/s for further processing
and analysis (Figure 2).

Figure 3 shows the critical timing of
writing the data from ADC into the
memory; 5 ns was not enough time for
the memory to store the data. This
problem, which was impossible to find
with a conventional scope, was obvi-
ous when we measured with a hybrid
scope/logic analyzer. Using these
results, we were able to reprogram the
PLD to avoid the problem.

The ability to trigger the MSO with a
TV signal made it easier to debug the
MCU software routine. The combina-
tion of analog and digital acquisition
gave us a complete view of some
rather complex behavior in our design.

Jan Fischer and Petr Kocourek are with

Czech Technical University and Petr

Navratil is with T&M Direct.

Debugging an MCU-based

CCD camera controller
by Jan Fischer, Petr Kocourek, and Petr Navratil

Figure 1 Block diagram of the CCD camera controller showing analog and digital test connections.

Mixed signal scope

TV in
ADC

PLL ADCLK WR

PLD

Data
Bus

HSYNC

FIFO
Philips
80C552
MCU

Sync
separator

8
Hint

Figure 2. The analog output of the CCD camera
and the relevant digital signals in the control
system. The output of the ADC is on lines 0-7,
the ADCLK signal is on line 10, and the WR
signal is on line 11.

Figure 3. The display markers highlight the tim-
ing relationship between ADCLK and WR.

Tackle your test and verification tasks
using the clean, stable waveforms built
into these function/arbitrary waveform
generators from Agilent — and when
a standard signal isn’t enough, create
your own custom arbitrary waveforms
to simulate real-world signals.

Both the Agilent 33120A and the
33250A function/arbitrary waveform
generators offer a lot of capability and
performance for a very affordable price.
Standard outputs include sine, square,
ramp, noise, sin(x)/x, dc volts and
more. AM, FM and FSK capabilities
make it easy to modulate waveforms
with or without a separate source.

With the 33250A, you can also generate
simple pulses up to 50 MHz. And the
color graphical display and user-friend-
ly front panel make complicated tasks
easy to accomplish.

For system applications, both GPIB
and RS-232 interfaces are standard,
and support full programmability using
SCPI commands.

Choose the performance that’s right
for your application

Agilent 33120A
• 15 MHz sine and square wave outputs

• Build arbitrary waveforms with 40
MSa/s speed and storage for four
16,000-point waveforms

Agilent 33250A
• 80 MHz sine and square wave outputs

• Build arbitrary waveforms with 200
MSa/s speed and storage for four
64K-point waveforms

• 50 MHz pulse waveforms with variable
rise/fall times

13

Rock-solid waveforms at rock-bottom prices

MCU Debugging Tools

33120A 33250A

Waveforms

Standard Sine, square, ramp, triangle, noise, Sine, square, ramp, pulse, noise,
sin(x)/x, exponential rise and fall, sin(x)/x, exponential rise and fall,
cardiac, dc volts cardiac, dc volts

Arbitrary
Waveform length 8 to 16,000 points 1 to 64 K points
Nonvolatile memory 4 waveforms 4 waveforms

(each from 8 to 16,000 pts) (each from 1 to 64K pts)
Vertical resolution 12 bits 12 bits
Sample rate 40 MSa/s 200 MSa/s

Frequency characteristics

Sine/Square 1 µHz to 15 MHz 1 µHz to 80 MHz
Ramp/ Triangle 100 µHz to 100 kHz 1 µHz to 1 MHz
Pulse 500 µHz to 50 MHz
White noise 10 MHz bandwidth 50 MHz bandwidth
Resolution 10 µHz or 10 digits 1 µHz; except pulse, 5 digits
Accuracy 10 ppm in 90 days (18 °C to 28 °C) 0.3 ppm (18 °C to 28 °C)
THD (dc to 20 kHz) 0.04% <0.2% + 1 mVrms
Output characteristics

Amplitude
Into 50 Ω 50 mVp-p to 10 Vp-p 10 mVp-p to 10 Vp-p
Accuracy (at 1 kHz) ±1% of specified output ±1% of setting ±1 mVp-p

Flatness <100 kHz ±1% (0.1 dB) <10 MHz ±1% (0.1 dB)
(sine wave relative to 1 kHz, 100 kHz to 1 MHz ±1.5% (0.15 dB) 10 MHz to 50 MHz ±2% (0.2 dB)
Autorange,into 50 Ω) 1 MHz to 15 MHz 50 MHz to 80 MHz ±5% (0.4 dB)

Ampl >3Vrms ±2% (0.2 dB)
Ampl <3Vrms ±3.5% (0.3 dB)

Modulation

AM
Modulation Any internal waveform, including arb Any internal waveform, including arb
Frequency 10 mHz to 20 kHz 2 mHz to 20 kHz
Source Internal/external Internal/external
Depth 0% to 120% 0% to 120%

FSK
Internal rate 10 mHz to 50 kHz 2 mHz to 1 MHz
Frequency range 10 mHz to 15 MHz 1 µHz to 80 MHz

FM
Modulation Any internal waveform, including arb Any internal waveform, including arb
Frequency 10 mHz to 10 kHz 2 mHz to 20 kHz
Deviation 10 mHz to 15 MHz dc to 80 MHz
Source Internal only Internal/external

Sweep

Type Linear or logarithmic Linear or logarithmic
Start/Stop Frequency 10 mHz to 15 MHz 100 uHz to 80 MHz
Sweep Time 1 ms to 500 s 1 ms to 500 s
Trigger single, external, or internal Single, external, or internal
Marker Falling edge of sync (programmable)

Burst

Waveform frequency 5 MHz max. 1 µHz to 80 MHz
Count 1 to 50,000 or ∞ cycles 1 to 1,000,000 or ∞ cycles
Start/Stop phase –360.0° to +360.0° –360.0° to +360.0°
Internal period 10 mHz to 50 kHz 1 µs to 500 s
Gate source Internal/external External
Trigger source Single, external, or internal Single manual trigger, internal,

or external
Warranty 3 years 3 years

∞ = infinity symbol
See an interactive product overview at
http://www.agilent.com/find/waveform

33120A 33250A

14

Agilent 54600 Series scopes are opti-
mized with just the capabilities you
need for verifying and debugging
designs that include embedded 8-
or 16-bit microcontrollers:

• 2 MB MegaZoom deep memory on
each channel so you can capture
long, non-repeating signals, main-
tain high sample rate and quickly
zoom in on areas of interest;

• a revolutionary ultra-responsive,
high-definition display that’s a
clearer “window into your world”—
it lets you see more signal detail
than ever before;

• flexible triggering that lets you easi-
ly isolate and analyze the complex
signals and fault conditions com-
mon in mixed analog and digital
designs.

Multiple configurations
to meet your needs
Mixed signal scopes: With 2 analog
channels and 16 digital channels, these
scopes combine the detailed signal
analysis of a scope with the multi-
channel timing measurements of a
logic analyzer, so you can simultane-
ously test and monitor the high-speed
digital control signals and the slower
analog signals in your design.

4-channel scope: If your designs
include heavy analog content, the 100-
MHz 54624A will give you the channel
count and measurement power you
need to get your debug and verifica-
tion done with ease.

2-channel scopes: The 2-channel
scopes give you an affordable way to
see long time periods while maintain-
ing high sample rate so you can see
details in your designs.

See for yourself with a
free demo
Every scope user knows that the real
test is how well the instrument per-
forms in your environment, with your
design. Call Agilent Technologies to
arrange a free demo.

You can also check out the benefits
of MegaZoom at
www.agilent.com/find/MegaZoom.

Easily see what’s happening in your mixed analog and digital designs

Dependable, trouble free con-
nection to fine-pitch ICs

The Agilent Wedge probe tip adapter

solves the problem of connecting your

scope or logic analyzer to fine-pitch,

TQFP and PQFP surface-mount ICs. It

works by inserting compressible dual

conductors between adjacent IC legs.

The flexible conductors conform to the

size and shape of each leg to ensure

tight contact. It’s then a simple matter

to connect your scope or logic analyzer

to the Wedge.

The Wedge’s unique design delivers

secure, redundant contact on each leg,

with little chance of shorting to adja-

cent legs. Plus, it’s mechanically non-

invasive, so it won’t damage your

device under test.

Agilent Wedges are available with 3-,

8- and 16-leg connections for 0.5 and

0.65 mm IC packages.

54621A 54621D 54622A 54622D 54624A

Channels 2 2+16 logic 2 2+16 logic 4

Scope
Bandwidth 60 MHz 60 MHz 100 MHz 100 MHz 100 MHz

Sample rate 200 MSa/s

Memory depth 2 MB/ch
Logic

Max sample rate n/a 400 MSa/s n/a 400 MSa/s n/a

Max memory depth n/a 4 MB/ch n/a 4 MB/ch n/a

Display High definition with 32 levels gray scale; 1,000-point horizontal resolution

Display update rate Up to 25,000,000 vectors/sec per channel

Timebase (per division) 5 ns to 50 s

Triggering Edge, pulse width, pattern, I2C, TV, sequence, duration

Peak detect 5 ns

Measurements Peak, average, RMS, max, min, frequency, period, pulse width, rise/fall time, duty cycle

Waveform math Subtraction, multiplication, FFT, integration, differentiation

Storage Built-in 1.4 M floppy disk

Connectivity RS-232, parallel standard; optional GPIB; optional integrated printer

Built-in help In 9 languages

Warranty 3 years standard, optional increase to 5 years

The Agilent Wedge provides dependable,
trouble-free connection to fine-pitch ICs.

Agilent 54600 Series scopes

15

MCU Debugging Tools

The Agilent LogicWave PC-based logic
analyzer will have you making mea-
surements in just minutes. With its
familiar Windows interface, LogicWave
is easy to set up and use, yet it still
offers the speed and performance
you need for serious logic analysis.

LogicWave features 34 channels of
intuitive logic analysis (32 state chan-
nels), 100 MHz state analysis, and 250
MHz timing analysis, with memory
depths up to 128 K. Reliability, signal
fidelity and other quality measures far
exceed the typical PC-based logic
analyzer, too.

And LogicWave is priced low enough
that it’s the ideal personal analyzer for
design teams who currently share a
primary logic analyzer.

Experience this new level of simplici-
ty yourself by downloading the free
user interface software from the

LogicWave web site:
www.agilent.com/find/LogicWave or
call Agilent and ask for the the soft-
ware on CD-ROM.

Affordable and user friendly logic analysis

Model Agilent Technologies LogicWave (E9340A)
State/timing channels 34
Maximum state clock 100 MHz
Maximum timing sample-rate 250 MHz
Memory depth 128K timing, 64K state
User interface Windows 95/98/NT, PC-hosted (runs as an application on any

Pentium or better, desktop or laptop)
“WYDIWYC”timing trigger “What you draw is what you capture” visual timing trigger

events
Printers Shared with the host PC — can print to any local or network

printer supported by the PC
Probing Agilent patented, 100 kΩ, 1.5 pF
Dimensions 11.5” x 9” x 2.5” (29.1 x 22.8 x 6.3 cm)
Weight 4.5 pounds (2.1 kg)
I/O ports Enhanced Parallel connection to PC for fast deplay update

rates, trigger IN/OUT BNC

www.agilent.com/find/gp

Get FREE

Agilent test

equipment.

See page 2

for details.

By internet, phone, or fax, get assistance with all
your test & measurement needs

Online assistance: www.agilent.com/find/assist

Phone or Fax

United States:
(tel) 1 800 452 4844

Canada:
(tel) 1 877 894 4414
(fax) (905) 206 4120

Europe:
(tel) (31 20) 547 2000

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Latin America:
(tel) (305) 267 4245
(fax) (305) 267 4286

Australia:
(tel) 1 800 629 485
(fax) (61 3) 9272 0749

New Zealand:
(tel) 0 800 738 378
(fax) 64 4 495 8950

Asia Pacific:
(tel) (852) 3197 7777
(fax) (852) 2506 9284

Product specifications and descriptions in this
document subject to change without notice.

Copyright © 2000
Agilent Technologies
Printed in USA 4/00
5980-0943EN

Agilent Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive and minimize
your risk and problems. We can help you choose the right products and
apply them successfully. Every instrument/system we sell has a global
warranty and is supported at least five years beyond its production life.
Two concepts underlay the Agilent support policy: “Our Promise” and
“Your Advantage.”

Our Promise means your Agilent test and measurement equipment will
meet its advertised performance and functionality. We can verify that it
works properly, help with product operation, and provide basic measure-
ment assistance for specified capabilities, at no extra cost. Many self-help
tools are available.

Your Advantage means that Agilent offers additional expert test and mea-
surement services at extra cost. Solve problems efficiently by contracting
us for calibrations, extra-cost upgrades, out-of-warranty repairs, on-site
training, professional engineering services, and more.

