Tandem connection monitoring

For point-to-point SDH transmission, user data may be routed and carried by a number of network operators working 'in tandem' to its final destination. In such situations, the traditional SDH model of a single path between two end points is no longer appropriate.

A more relevant model would be to break the path into a series of 'tandem paths', each owned and managed by individual network operators. Errors and defects along the path could then be traced to a particular tandem path, allowing fast troubleshooting and 'finger-pointing' between the different operators. This solution is referred to as tandem connection monitoring (TCM).

This product note explains the implementation of TCM for SDH networks and the type of testing that can be applied to tandem connection paths.

Introduction

Increased revenue opportunities from services, driven by advances in optical networking technology and by deregulation in the industry, have led to a corresponding dramatic increase in the number of telecom network operators and service providers around the globe.

Contents

What is a tandem connection?4
Tandem connection terminating element (TCTE) testing
TCM test with the OmniBER 7186

What is a tandem connection?

A tandem connection is a bi-directional connection between two tandem connection terminating elements (TCTEs) along an SDH path, which is managed as a separate entity. The tandem path is formed from an SDH virtual container (VC) with special maintenance signals carried in the path overhead (POH) bytes. These bytes enable monitoring of tandem paths, performance analysis, and fault location-the ability to 'finger-point'.

How is TCM achieved?

The tandem paths described in this product note are defined in ITU Recommendation G.707 Annex D for VC4 and VC3, and Annex E for VC2 and VC1. ITU-T Recommendation G.707 defines a tandem connection source and sink as shown above, and describes the responses of each when defect (alarm) and error conditions are detected. Tandem connection maintenance signals are carried in the N1 byte for VC4 and VC3, and in the N2 byte for VC2 and VC1. These two bytes are structured similarly, but their functions are not identical.

N1 byte structure

b1	b2	b3	b4	b5	b6	b7	b8
IEC				TC-REI	OEI	TC-APId,	TC-DI,ODI,
(IAIS)						resei	rved

N2	byte	structure
----	------	-----------

b1	b2	b3	b4	b5	b6	b7	b8
	TC-B1P	"1"	IAIS	TC-REI	OEI	TC-APId, T	C-RDI,ODI,
						reserved	

IEC:	Incoming Error Count. Indicates IAIS when set to '1110' (seebelow)
IAIS:	Incoming AIS alarm
TC-REI:	Tandem Connection Remote Error Indication
OEI:	Outgoing Error Indication
TC-APId:	Tandem Connection Access Point Identifier (16-byte message)

- TC-RDI: Tandem Connection Remote Defect Indication
- ODI: **Outgoing Defect Indication**

TC-BIP: 2-bit Bit Interleaved Parity for Tandem Connection

In both N1 and N2, bits 7 and 8 form a 76-frame multiframe to carry remote defect indications and the access point identifier (TC-APId) which is a repeating 16-byte message that identifies the tandem connection source.

Throughout this product note the emphasis is be on the operation of N1. The key differences between N1 and N2 are described later.

The figure below summarizes the actions of the TCM *source* and *sink* in response to *defects* and *errors*.

Error detection on a tandem connection

For VC3 and VC4 the B3 byte in the POH carries a BIP-8 checksum to allow error detection over the whole path. At the TCM source, the number of errors indicated by B3 (that is, errors that occurred before the tandem connection source) is noted and copied into the IEC field of the N1 byte. On its way to the TCM sink, the data may suffer further errors which will 'add' to B3. At the TCM sink, the B3 errors are compared to the IEC value to indicate how many errors were added over the tandem connection. This information is passed to the network management layer allowing network operators to determine if errors are occurring in their part of the network.

In the following example, B3 indicates no BIP errors prior to the sink. The sink, therefore, sets IEC to zero. Two errors are then introduced over the tandem connection so B3 indicates two errors at the tandem sink. The sink subtracts IEC from the B3 errors to deduce that two errors were added by the tandem connection.

This process is not perfect. Errors on the TCM link could cancel errors indicated in B3, and it is possible for the sum B3 - IEC to go negative. For this reason only the magnitude of B3 - IEC is taken so that at low error rates, the correct result is given.

B3 compensation

Because the path overhead data (N1 or N2) is modified by the TCM source and sink, it is necessary for B3 to be compensated before being sent on. In other words, B3 must indicate the same number of errors as it did on entry to the TCM equipment.

TCTE testing

Testing the operation of a TCTE involves sending an SDH stimulus with various impairments and checking the output.

TCTE source checks

Basic checks:

- 1. Send a valid VC-n with no errors.
- 2. Check the Rx for alarms.
- 3. Check for correct TC-APId (access point identifier).

If there are any problems for example, TCM not enabled on the TCTE, then the TCM Loss of Multiframe alarm (TC-LOM) will be indicated by the test equipment. The absence of any alarms means that TCM is provisioned and working.

Error monitoring checks:

- 1. Inject B3 errors at a rate of 1E-5.
- 2. On the Rx, verify that the B3 rate is 1E-5.
- 3. On the Rx, verify that the IEC reading is also 1E-5.

This verifies that the network element (NE) has correctly copied the B3 count into bits 1-4 of the N1 byte, and that B3 is correctly compensated.

Alarm checks:

- 1. Send an invalid VC-n to the NE.
- 2. Check Rx for a TC-IAIS alarm.
- 3. Check the signal label (in C2 or V5) is set to all-ones, which indicates a VC-AIS.

TCTE sink/source checks

Remote error/alarm checks:

Send the following in sequence to the TCM sink input:

- 1. No signal, loss of frame, loss of pointer check for TC-RDI and ODI
- 2. TC-APId mismatch
- 3. TC-IAIS
- 4. BIP errors at 1E-5
- 5. BIP or IEC errors at 1E-5
- check for TC-RDI and ODI
- check for ODI
- check for OEI at 1E-5
- check for TC-REI at 1E-5*
- Sending BIP errors without IEC errors, or IEC errors without BIP errors, gives rise to a non-zero result when the TCTE calculates [B3 - IEC] . These errors are counted as TCerrors (that is, errors arising on the TCM link) which in turn are reported on TC-REI.

N1 byte vs. N2 byte The emphasis so far has been on the N1 byte which is used at VC3 and VC4. The N2 byte is used in a very similar way except that there is no IEC field. Instead, a completely new BIP-2 calculation is performed over the VC2 or VC1 at the TCTE source, and this value is passed down as N2. The TCTE sink simply has to check the N2 BIP-2 to calculate the errors added by the TCM link. There is no need for 'BIP minus IEC' calculations with N2.

TCM testing with the OmniBER 718

For network operators and service providers operating tandem SDH network paths, the OmniBER 718's TCM test solution can isolate errors and defects to a particular tandem path. This allows both fast trouble-shooting and finger pointing between different

operators.

The OmniBER TCM test capability complies with ITU-T G.707 Annex D and Annex E recommendations, and includes alarm generation and detection, error generation and detection, plus access point identifier generation and decode. The test capability also covers the requirements for both high-order and low-order paths:

SIGNAL STM CLOCK INT FREQUENCY O	-16 OPT 155 ERNAL FFSET OFF	0 ON INTERNAL	
MAPPING 🗈	RU-4	FOREGROUND VC-4 BULK FILLED	
STM-1# 1 TCM PATH		HIGH ORDER	
PATTERN	2^23-1 PRBS	INVERT ITU	
TOTUS.			A

High Order:	VC4 → AU4, VC3 3. Uses N1 byte.
Low Order:	VC3 → TU3. Uses N1 byte.
	$VC2 \rightarrow TU2$, $VC1x \rightarrow TU1x$. Uses N2 byte.

Alarms generation and detection	TARMSHJTTER OUTPUT TEST OVERHERD FUNCTION SETUP TEST FUNCTION SDH ERROR ADD TYPE RATE	SDH Hore Ear & Alaan Entire Frane Off Te-ROJ		Alarms genera	ntion
	STATUS: TC-AD) alarm TC-ROL DOL	RESULTS SDH POMER LOSS LOS LOS HOTOP NS-RIS NU-RI	ALEXAN SECONDS 3 HP-RB) 3 6 H4 LON N/A 6 TC-101 3 6 TC-101 13 6 TD-101 14 6 TD-101 16 6 TD-101 6 6 TD-101 6 6 TD-101 8 6 TD-101 8 6 TD-101 8 7 TD-102 17 6 TD-101 16 7 TD-102 17 8 TD-103 17 8 TD-103 17 8 TD-103 17 9 TP3 I N 1/7 03d d3h d3w 13z 13z PDINTER FRAPH URLUES FRAPH	NORE MULTIFLE NENDON	Alarms detection

Four alarms can be generated and detected using the OmniBER 718:

TC-LOM: Tandem Connection Loss of Multi-frame in bits 7 and 8 of N1/N2

TC-RDI: Tandem Connection Remote Defect Indication

TC-IAIS: Incoming AIS

ODI: Outgoing Defect Indication

Error generation and detection	THHNSMJITEH QUIPUT SDH TEST INUERHERN HORE FUNCTION SETUP TEST FUNCTION SDH EAR & ALARN ERROR ADD TYPE HP TC-JEC RERT TYPE DFF	Error generation The following errors can be generated: TC-IEC: Incoming Error Count (N1only) TC-REI: Remote Error Indication OEI: Outgoing Error Indication TC-BIP: TC BIP Error (N2 only)
	STATUS: DFF ERDR 1E-4 1E-5 NDRE N RESULTS SDH CALIFORMULTING RESULT TYPE COUNT3 FRANE 0 TC-1EC 55624 B1 837P 0 TC-2ER 55624 B2 87P 0 CT 2ER 0 B3 837P 0 TU 87P 0 B3 837P 0 TU 87P 0 B3 837P 0 B3 837P 0 B4 70 70 70 70 70 70 70 70 70 70 70 70 70	Error detection The following can be detected and counted: TC-IEC: Incoming Error Count (N1 only) TC-REI: Remote Error Indication OEI: Outgoing Error Indication TC-ERRORS: Result of IB3-IECI for N1,

NULTIPL

SHORT ERROR MORE TERM DNDLYSES

Access point identifier

ERROR SUMMOR

EUMUL AT LVE

The OmniBER 718 provides the facility to enter a 16-byte TC-APId message for transmission in N1 or N2. Additionally, a received TC-APId message can be decoded and displayed.

TRANSNITTER OUTPUT SDH TEST OUERHERD HDRE FUNCTION SETUP STUP TCM UTHIN STM-H 1 H1 RPJO USER ON DMIBER 713 801	r setup
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ceiver setup
TROMENITIER OUTPUT 3DH TEST DVERMEND PURCTING SELLE SUBJECT OF DEFENSION SUBJECT OF DEFENSION WITHIN STITULE NUMBER TO COLUMN STITULE NUMBER STITULE NUMER STITULE NUMBER STITULE NUMBER STITULE NUMBER STITULE NUMBER STITULE NUMER STITULE NUMBER STITULE NUMER STITULE NUMBER S	Results
RESULTS DH ESECR-ENTRIENT RESULTS TVPF COUNTS FUNCTION STORED SETTING RESULT TVPF COUNTS STORED SETTING NHREFR O BID IP 0 TC-EEC 2001 STORED SETTING NHREFR O B25 IP 0 TC-EEC 2001 SETTING PRCTORY DEFAULT SETTINGS HP-HEI 0 TU DIP NA 2 SETTING NHREFR B1T 0 TU P-HEFI NA 2 SETTING 1 PU-NOTIONER 0 TU POINTER NA 4 SETTING 1 OULD INTER 0 TU POINTER NA 4 SETTING 1	
STATUS: ERROR CUMUL SHORT ERROR MORE SINGLE SUMMARY ATIVE TERM ANALYSIS WINDOW	

OmniBER 718 communications performance analyzer

The Agilent Technologies OmniBER 718 communications performance analyzer is a rugged, portable one-box solution ideally suited to installation and maintenance of SDH/SONET networks and network elements.

It provides full PDH/T-carrier and SDH/SONET capability at all rates up to 2.5 Gb/s, including STM-16c/OC-48c payloads, ATM, jitter, packet over SDH/SONET (POS), service distruption measurement, and channelized payload test.

For network operators and service providers operating tandem SDH network paths, the OmniBER 718's TCM test solution can isolate errors and defects to a particular tandem path.

Product literature

You'll find further details of the OmniBER 718 analyzer's test capability in the product brochure (publication number 5968-8740E), product specifications (publication number 5968-8335E) and configuration guide (publication number 5968-8012E).

Agilent Technologies' **Test and Measurement Support,** Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test & measurement needs

Phone or Fax

United States: (tel) 1 800 452 4844

Canada: (tel) 1 877 894 4414 (fax) (905) 206 4120

Australia:

Europe: (tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan: (tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Latin America: (tel) (305) 267 4245 (fax) (305) 267 4286 (fax) (61 3) 9272 0749

(tel) 1 800 629 485

New Zealand: (tel) 0 800 738 378 (fax) 64 4 495 8950

Asia Pacific: (tel) (852) 3197 7777 (fax) (852) 2506 9284

Product specifications and descriptions in this document subject to change without notice

Copyright © 2000 Agilent Technologies Printed in USA 09/00 5980-2907EN

