
Application Note

How to use VXI Plug and Play Driver
with Agilent VEE, C/C++, Visual
Basic, LabVIEW, and LabWindows/
CVI
Why VXIplug&play and
its history
There are two competing paradigms
for human-instrument interaction. One
is controlling an instrument through a
physical front panel. The other is
controlling the instrument through a
software command set accessible
through a standard I/O interface (e.g.
RS-232, IEEE 488.2, and LAN). The first
paradigm is well suited to using an
instrument for individual
measurements. The second is well
suited for more complex sequences of
measurements, possibly coordinated
over several physical instruments.

To begin with, standard programming
languages (e.g. C) were used to access
instrument command sets. To
accommodate some of the difficulties
of programming instruments, HP
created versions of BASIC (Rocky
Mountain BASIC, HP-BASIC) which
were tuned to engineering in general
and instrument programming in
particular. Eventually the search for
more intuitive ways of creating
instrument programs led HP to develop
ITG (Interactive Test Generator - now
obsolete), which in turn led to HP VEE.

HP VEE is HP’s Visual Engineering
Environment. It provides a way for non-
programmers to visually program test
systems without having to learn a
traditional programming language. The
user creates a data flow diagram using

components provided with VEE. To do
instrument control, VEE requires a
driver (VEE ID) which can bridge the
gap between VEE and the details of the
instrument command set.

VEE ID’s were invented to work with
ITG and VEE. They provide a soft front
panel to which the customer can
connect data flow lines either to
control the instrument or to read
measurements from the instrument.
These drivers are written in a
proprietary VEE language. These
drivers work only in ITG and VEE; they
do not work in other programming
environments. Since VEE’s
introduction, Agilent Technologies has
created a library of over 450 drivers
covering many of Agilent Technologies
instruments.

The problem with VEE drivers is that
they can only be used with VEE. In
addition to programming languages
like C/C++ and BASIC, there are
several other programming
environments for instrument
programming, including National
Instrument’s LabWindows and
LabVIEW. To add to the complication,
each vendor has proprietary ways of
dealing with IEEE 488.2 and VXI I/O.

The VXI Systems Alliance is an
unincorporated consortium of VXI
instrument manufacturers including
HP, National Instruments, Tektronix,
and Racal Dana, among others. One of
its accomplishments is the creation of

a driver standard, which will allow a
single driver to work with a variety of
I/O protocols and programming
environments. This VXIplug&play
Driver standard is now complete. The
main components of the driver
architecture for Windows are the
driver DLL, VISA, the function panel
definition, and the soft front panel.

The driver consists of multiple files. At
the core is a system library (.dll for
Windows). A soft front panel provides
a GUI for the driver, while the function
panel file allows use in graphical
programming environments. A
windows help file, a Visual Basic
include file, and a VXI knowledge base
file round out the normally supplied
files.

The driver DLL is a collection of
functions, which allow the
programmer to access the instrument.
It can be called from standard
programming environments like C/
C++ or Visual Basic. The DLL focuses
on the functionality of the instrument,
not the details of I/O. The DLL is built
on top of VTL/VISA, which handles the
I/O.

VTL (interim) and VISA provide I/O
independence by handling 488.2 and
VXI I/O. VISA implementations are
specific to a particular manufacturer’s
protocols. For instance, if you are using
a HP HP-IB card, you must have a HP
version of VISA installed which
understands HP-IB and SICL. However,
1

2

with the correct VISA installed, you can
use a suitable VXIplug&play driver from
any manufacturer to control an
instrument.

The function panel allows the driver to
be used with several instrumentation
specific programming environments. It
provides information that can be used
to create a graphical window (panel)
from which the .dll functions can be
executed. At the present time HP VEE,
LabWindows, and LabVIEW can
interpret the function panel definition
correctly and use it in their respective
environments.

Finally, the soft front panel is an
executable, which allows an
instrument user to access the
instrument functionality through a
software front panel using the
paradigm of a physical front panel.

The VXIplug&play specification places
requirements on all of the above
components, as well as the functions
available in the driver. There are
required entry points as well as rules
for naming entry points. There are also
rules about how the entry points tie
together with the function panel.

VXIplug&play drivers can be used with
several versions of VEE. VEE 3.12 is
able to call a VXIplug&play driver, but
the mechanism is rather awkward and
does not take advantage of the function
panel file. VEE 3.12 works with
Windows 3.1. VEE 3.2, 4.0, 5.0, and 6.0,
have a very nice interface which takes
advantage of the function panel file,
and work with Windows 95, Windows
NT, and Windows 98. VEE 6.0 also
works on Windows 2000.

How do I get it to work
with VEE?
A PnP driver is simply a Windows DLL
(Dynamic Link Library) and so is
accessed and controlled by VEE’s I/O
Instrument Manager objects. First, you
will need the VISA32.DLL interface
library (installed in the
\WINDOWS\SYSTEM directory) to

allow the PnP driver to access an HPIB
or GPIB interface. VISA32.DLL will not
be shipped with VEE; it will be shipped
with the interface card or found in one
of the following URL’s depending on
the interface card. If you have an
Agilent Card you could find them here
at http://ftp.agilent.com/pub/
mpusup/pc/binfiles/iop/index.html or
if you have a National Instruments card
you could go to www.ni.com. (Please
reference Appendix A, Section I for VEE
visuals).

The following instructions assume that
VISA is installed and working properly,
and that the instrument driver has been
installed properly.

Agilent VEE Pro 6.0 works well with
Universal Instrument Drivers. Agilent
VEE 3.1 works with UIDs, but requires
more manual activities on the user’s
part. These instructions assume
Agilent Pro 6.0. The instructions for
Agilent VEE 3.2, 4.0, 5.0 are similar.
Consult the Agilent Pro 6.0 manual
titled Using VXIplug&play Drivers with
HP VEE, for more details.

Configuration

Start up Agilent VEE. From the menu,
select I/O | Instrument Manager.. VEE
will open the Instrument Manager
window. If you have not used VEE with
VXIplug&play drivers before this, the
control labeled Instrument List should
be blank. Click the Add Instrument
button. This opens the Instrument
properties window. This is where you
place the Instrument Name, Interface,
and Address. Next, click the Advanced..
| Plug&Play Driver. The first control is a
drop-down list with all of the installed
VXIplug&play drivers that Agilent VEE
can detect. Select the one you want to
work with. The bottom part of the
window contains all of the parameters
to the hp816x_init function except for
the instrument handle. Fill in the
Address appropriate resource string
(e.g. GPIB0::5::INSTR), and check the
Perform Reset and Perform
Identification Query boxes. Normally,
both of these would be checked.

However, if you want to use a driver
with an instrument for which it is not
intended (for instance, to use utility or
passthrough functions only), do not
check the ID validation box. Click the
OK button on the VXIplug&play Device
Configuration window. The instrument
should now appear as a Currently
Configured Instrument in the
VXIplug&play Instrument Configuration
window.

Using Driver Functions

Agilent VEE helps the user by assuming
some of the more mundane tasks
involved in using VXIplug&play drivers.
For instance, the user does not have to
execute the hp816x_init function. VEE
knows when driver functions need to
be executed and performs the
initialization before that. It also
performs the hp816x_close function
after completing a VEE program that
uses driver functions. Finally, it keeps
track of the instrument handle. The
user never has to deal with it, either in
the device configuration (as noted
above) or for any other function. Since
VEE handles these details, the user is
free to concentrate on instrument
functionality.

To add a driver function to the VEE
program, select I/O | Instrument
Manager from the VEE menu. Highlight
the instrument in question i.e. hp816x
and double click on the Plug&Play
Driver under the Create I/O Object. VEE
will allow you to place a To/From
hp816x box in the programming area.
One or more driver functions may be
added to this box. To add a function to
the box, double click on blank space in
the box. The Select a Function Panel
window appears. This window shows
the entire function tree for the driver.
Single clicking a node on the tree will
display help in the bottom of the
window. Double clicking a function
node selects the function. When a
function is selected, the Select a
Function Panel window disappears and
the function panel for the function is
displayed. Click OK in the panel. The
function panel disappears and the

3

function is listed in the To/From
hp816x box. Any function panel
controls for the function will appear on
the edges of the To/From hp816x box
as input and output terminals. Output
controls on the function panel appear
as output terminals on the right hand
side of the box. All other function panel
controls (except Instrument Handle, as
noted above) appear as input terminals
on the left hand side of the box. These
terminals can then be connected to
other visual elements of the VEE
language as desired.

As a simple exercise, add the
hp816x_reset function to the box.
There are no terminals to hook up, so
this program is easy. Just run it, and
you’re done. Next, try hooking up the
hp816x_revision_query function. Note
that the two output strings also appear
on the right hand side of the To/From
hp816x box. This is because you must
allocate storage for all strings and
arrays before calling driver functions.
VEE Automatically allocates arrays for
its specific output parameters, as
opposed to other languages. At this
point you are ready to run this program
to query the instrument.

How do I get it to work
with Visual Basic?

Configuration

Start up Microsoft Visual Basic with a
Standard EXE. From the menu, select
Project/Add Module.. Visual Basic will
open the Add Module window. Click
the Existing button. This opens the
Look in window. Use normal file dialog
box navigation to get to the
vxipnp\winxx\include directory for the
module hp816x.bas as well as the
visa32.bas. When you have the file
selected, click the open button. You
may only be able to open one file at a
time so you may have to repeat the
described procedure to include both of
these files. (Please reference Appendix
A, Section II for Visual Basic Visual).

Using Driver Functions

To exercise the functions that the
hp816x.bas has to offer double click on
the Form Window. The Form Window
allows you to create the windows,
dialog boxes, and controls in your
application. You draw and view controls
on a form. You should now have opened
the Form (Code) Window. Here in the
code window you could develop your
program to read and write to the
instrument. The easiest way to find out
what functions are available is to go to
the hp816x.hlp help file found in the
VXIPNP\win95\HP816x directory. The
functions are referenced either by
Alphanumeric or Hierarchical under the
Referenced Information section of the
help file. You may also access the
function by double clicking on the
hp816x.bas module. The functions of
interest will be preceded by the Declare
Function.

Now you are able to begin exploring the
functions and running the instrument
remotely. Please refer to your Visual
Basic manual on proper calling of
DLL’s.

How do I get it to work
with C?

Configuration

The following is a summary of
important compiler-specific
considerations for several C/C++
compiler products when developing
WIN32 applications. (Please reference
Appendix A, Section IV for MS Visual
C++ visuals).

For Microsoft Visual C++ version 6.0
compilers select File | New and select
either Win32 Application or Win32
Console Application depending on your
preference. This will enable you to
create an empty project. Now that the
project has been created, go to Project
| Dependencies…to see whether or not
you have the correct project for
modification. We will now go to the

code generation setting to change the
settings from single to multithread.
VISA requires these definitions for
WIN32. This setting changes the value
of the /MD, /ML, and /MT compiler
switches. It is usually best to use the
multi-threaded options when building a
DLL. If you specify a single-threaded
option, your DLL will work reliably only
when called by single-thread
applications. The way this is done is by
going to the menu bar and selecting
Project | Settings…Click on the C/C++
button. Select Code Generation from
the Category list box and select
Multithreaded DLL from the Use run-
time Libraries list box. Click the OK to
close the dialog boxes.

Specify an object file or standard library
(either static or import) to pass to the
linker. Select Project | Settings from
the menu. Click on the Link button and
add visa32.lib and hp816x.lib to the
Object | Library Modules list box.
Separate file names with a space.
Optionally, you may add the library
directly to your project file. Click on OK
to close the dialog boxes.

You may wish to add include file and
library file to the search paths. They are
set by selecting Tools | Options from
the menu. Click on the Directories
button to set the include file path.
Select Include Files from the Show
directories for: list box. Double-click in
the Directories window to add the
c:\VXIPNP\WINxx\INCLUDE
directory. Now, select Library Files from
the Show directories for: list box.
Double-click in the Directories window
to add the
c:\VXIPNP\WINxx\LIB\MSC
directory.

If using Borland C++ compilers, you
may wish to add the include file and
library file paths. They are set under the
Options | Project menu selection.
Double-click on Directories from the
Topics list box and add
c:\VXIPNP\WINxx\LIB\BC and
c:\VXIPNP\WINxx\INCLUDE
directories.

4

You are now able to begin programming
the hp816X mainframes. Before you
start the coding I would suggest taking
a look at the visa examples we supply
with the driver. They could be found at
c:\VXIPNP\WINxx\hp816x\visa
directory. Have fun.

How do I create a Lab-
VIEW VI Library?
LabVIEW 4.0 and higher works with
VXIplug&play drivers. It reads in the
driver functions, creates an icon for
each function, and adds the Gwin95/
NT error handling terminals.

Configuration

To load a Universal Instrument Driver
into LabVIEW, select Tools
|Instrumentation | Update
VXIplug&play Drivers… from the
LabVIEW menu. The UPDATE VXIPNP
DRIVERS window appears. It contains
two large text boxes. The top one
contains a list of installed
VXIplug&play GWIN drivers, and does
not concern us. The bottom one
contains VXIplug&play drivers that
have not been converted to LabVIEW VI
libraries, or whose VI libraries are out
of date. To convert (or update) one of
these to a VI library for use with
LabVIEW, select it and click FP Options.
Once in the FP Options refer to the
Appendix A, section III for the proper
settings. After clicking OK, the CVI
conversion status box appears. If
everything goes well, it will disappear
when the conversion is complete.

Selecting Driver Functions

To select a driver function, select File |
Open from the LabVIEW menu. The
Choose the VI to Open dialog box
appears. The default directory for this
box is the main LabVIEW directory.
Double click the INSTR.LIB
subdirectory to open it. The file
hp816x.llb should appear in the file list.
Select the file and click OK. LabVIEW
will open the File Dialog box that lists
all of the driver function VI's in

alphabetical order. Select the one you
want to add to your program and click
OK. LabVIEW displays the GWin95/NT
framework VI panel for the function. To
add a driver function to a program, click
the Select a VI… icon from the
functions palette. The Choose the VI to
Open dialog box appears, and the
function is selected as described
above. In this case, however, LabVIEW
adds the function icon to the LabVIEW
program rather than displaying the
GWin95/NT framework VI panel. The
icon can then be connected to other
visual program elements. LabVIEW
error handling terminals were designed
to be connected in series. If any one
function in the series fails, the
downstream driver function VI's will
not execute.

How do I get it to work
in LabWindows/CVI?
Function panels originated in
LabWindows/CVI as a way of seeing
what individual driver functions would
do before integrating them into CVI
programs. LabWindows/CVI is
Agilent's current choice for a function
panel editor. It can also be used to
exercise installed drivers and should
compile all Agilent Technologies
drivers

Exercising Function Panels

To exercise the function panel, select
Instrument | Load… from the menu.
The Load Instrument file dialog box
appears. Navigate to the
vxipnp|winxx|include directory and
select the .fp file. Include the
HP816x_32.lib file into the
LabWindows/CVI project, by clicking
Add Files to Project: Library (*.lib) from
the Edit menu item in the project
window. Make sure the .h and .dll files
are in the same directory as the
LabWindows/CVI project. At this point
the driver is "loaded" into
LabWindows. Next, select Instrument
from the menu again. You will see the
driver you just loaded as a choice on
the top part of the list. Select the

instrument. The first level of the
function tree will appear in a function
tree window. It should include the
Initialize and Close functions, as well
as the first level of function tree
classes (indicated by "…" after the
name, e.g. Utility… Application… etc.)
To select a class or a function, double
click it. If you double click the class, the
function tree window display changes
to the content of the class. If you
double click a function, the function
panel window will appear. Once a
function panel is displayed, the
function tree window disappears. To re-
display it, click on the tree icon.

When exercising driver function
panels, always start with Initialize and
end with Close.

LabWindows/CVI automatically
creates temporary variables with
cryptic names for scalar output
controls. You will need to create
variables for strings and array output.
You may create variables for scalars if
you want meaningful names. To declare
variables, click on a control to select it,
then select Code | Declare Variable…
from the function panel's menu. Once
you have entered values for all input
controls and have taken care of
variables for output, run the function
panel by clicking the runner icon. The
status control will return a 0 if the
function executes correctly.

5

Appendix A Section I: Agilent VEE Pro 6.0

6

Section II: Visual Basic 6.0

7

Section III: Microsoft Visual
C++

8

Continuation…

9

Section IV: LabVIEW Function
Panel Options

Agilent Technologies’ Test and Measurement Support,
Services, and Assistance

Agilent Technologies aims to maximize the value you receive,
while minimizing your risk and problems. We strive to ensure that
you get the test and measurement capabilities you paid for and
obtain the support you need. Our extensive support resources
and services can help you choose the right Agilent products for
your applications and apply them successfully. Every instrument
and system we sell has a global warranty. Support is available for
at least five years beyond the production life of the product. Two
concepts underlie Agilent’s overall support policy: "Our Promise"
and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement
equipment will meet its advertised performance and
functionality. When you are choosing new equipment, we will
help you with product information, including realistic
performance specifications and practical recommendations from
experienced test engineers. When you use Agilent equipment,
we can verify that it works properly, help with product operation,
and provide basic measurement assistance for the use of
specified capabilities, at no extra cost upon request. Many self-
help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of
additional expert test and measurement services, which you can
purchase according to your unique technical and business needs.
Solve problems efficiently and gain a competitive edge by
contracting with us for calibration, extra-cost upgrades, out-of-
warranty repairs, and on-site education and training, as well as
design, system integration, project management, and other
professional engineering services. Experienced Agilent
engineers and technicians worldwide can help you maximize
your productivity, optimize the return on investment of your
Agilent instruments and systems, and obtain dependable
measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test &
measurement needs

Online assistance: www.agilent.com

Phone or Fax

United States:
(tel) 1 800 452 4844

Canada:
(tel) 1 877 894 4414
(fax) (905) 282-6495

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599

Australia:
(tel) 1 800 629 485
(fax) (61 3) 9210 5947

New Zealand:
(tel) 0 800 738 378
(fax) 64 4 495 8950

Asia Pacific:
(tel) (852) 3197 7777
(fax) (852) 2506 9284

Product specifications and descriptions in this document subject
to change without notice.

Copyright © 2001 Agilent Technologies

August 9, 2001

5988-2790EN

