
Agilent 16760A Logic Analysis
Module Triggering

Product Note

Acquisition Modes

The Agilent 16760A Logic Analysis
Module supports the following six
acquisition modes:

• 200 Mb/s State Mode
• 400 Mb/s State Mode
• 800 Mb/s State Mode
• 1250 Mb/s Half Channel State Mode
• 800 MHz Conventional Timing Mode
• 400 MHz Transitional / Store Qualified

Timing Mode

The primary reason for differentiat-
ing the four state modes is that
triggering capabilities decrease at
each of the specified data rate bound-
aries. Users whose system data rates
allow operation in one of the lower
speed modes gain greater triggering
capability at each state speed
boundary. At 1250 Mb/s the analyzer
channel count is also reduced by half.

The 200 and 400 Mb/s state modes
and the two timing modes provide the
same triggering capabilities available
in all other VisiTrigger family
analyzers at equivalent speeds with
one exception - the 16760A does not
allow setting actions for the flag bits
in either timing mode. Some of the
limitations and capabilities of the
200 Mb/s and 400 Mb/s modes are
discussed starting on page 11.

VisiTrigger and the Trigger Compiler

Triggering in the 16760A logic
analyzer is setup using Agilent's
VisiTrigger interface. When a meas-
urement is taken (by pressing the run
button), the specified measurement
conditions are translated by the
trigger compiler to actual hardware
pattern resources, combiner
resources, etc. The VisiTrigger
interface does not enforce a strict set
of limits that guarantee that the
specified measurement can be
compiled into hardware because:

1. The user may temporarily make a
change that would violate one of
the rules, but correct it later. For
example, adding a pattern resource
that would put the number of pat-
tern resources over the limit, but
then removing a pattern resource
in another location. Strict enforce-
ment would require the user to
first delete the undesired resource
before adding a new one.

2. Since the trigger interface does not
closely resemble the hardware
actually implementing the meas-
urements, it is difficult to easily
predict when some resource limits
have been exceeded. The interface
would essentially have to execute a
compile after each user change to
determine if any limits have been
exceeded. This would cause the
responsiveness of the interface to
become unacceptably slow.
Interdependencies that exist
between different types of
resources would also make it
impossible for the interface to
determine a specific change that
will correct the problem.

This means that the interface will
allow the user to enter measurements
that will not compile. When the
measurement does not compile, the
user must change the measurement
setup in ways that will allow it
to compile.

The purpose of this document is to
present the rules and guidelines that
represent the actual limits of the
hardware and compiler with
examples illustrating compilable
measurement constructions.

2

Labels

The 16760A module provides 17
channels per pod (16 plus one 'data
on clocks' channel). Each analyzer
card provides two pods (34 bits
per card).

A label can contain a maximum of 32
channels. A label that contains chan-
nels assigned from more than one
pod is referred to as a split label.
Labels that contain only assigned
channels from a single pod are non-
split labels. In the example in figure
1, labels Pod_C1, Pod_C2, Pod_D1,
Pod_D2, and Pod_D2wClk are
non-split labels; the remainder are
split labels.

The type of label (split or non-split)
affects some of the triggering capabil-
ities in all modes. The effect becomes
more apparent as state speed
increases and the effective number of

Figure 1. Logic analyzer inputs are assigned to labels in the format menu.

800 Mb/s State Mode

In 800 Mb/s state mode the following
8 trigger functions are available:

•Find pattern
•Find 2 patterns in immediate

sequence
•Find 3 patterns in immediate

sequence
•Find 4 patterns in immediate

sequence
•Find 2 patterns in eventual

sequence
•Find 3 patterns in eventual

sequence
•Find 4 patterns in eventual

sequence
•Run until user stop

Only one of these functions may be
selected at any one time; sequencing
of the functions is not allowed
(see Figure 2).

Each of the functions allow modifica-
tions such as ANDing or ORing multi-
ple events, changing the operations
on the pattern (=, ≠, <, >, etc.), or
changing the events to another
event type.

The following event resources are
available in 800 Mb/s state mode:
•Patterns / Ranges:

4 patterns, or 2 ranges, or 1 range
and 2 patterns on each pod
- Non-split patterns may use

operations: =, ≠, <, ≤, >, ≥, In
range, Not in range

- Split patterns may only use
operations: =, ≠

- Patterns on labels with re-ordered
bits may only use operations: =, ≠
(same as 200 and 400 Mb/s modes
in all VisiTrigger analysis
modules)

•4 Flags:
- Flag events from other modules

can be checked as set or clear.
- Flags cannot be set or cleared.

•Arm in from intermodule bus
- Received from another module in

the system or from Port In on the
16700 Series logic analysis system
main frame.

Restrictions on the way event
resources can be used and combined
vary with the type of trigger function
selected.

The Find Pattern and Find n
Patterns in Immediate Sequence

trigger functions can use all of the
available pattern events in any
sequence level. However, some
combinations (ANDing and ORing) of
pattern events, while not exceeding
the maximum number of pattern
resources, can use too many
combiner resources. Any
combination of three of the flag or
arm in events can also be combined
with the pattern events in each
sequence level.

When using the Find n Patterns in
Eventual Sequence trigger functions,
only non-split labels may be used and
only one pattern event per sequence
level may be used. The interface
allows insertion of other events in
each sequence level to allow ANDing
or ORing of the pattern event with
other event types (flags or arm in) or
replacement of the pattern event with
another event type. However, if more
than one pattern event is specified,
the trigger compiler will be unable to
compile it.

Pattern events used in the Default
Storing Control count against the
number of available resources.
Example: Find 4 patterns on a
single pod.

3

Figure 2. Find 4 patterns on a single pod.

A maximum of 4 patterns on a pod
may be specified. These may be
ANDed or ORed.

A pattern across all bits of the logic
analyzer may be defined by ANDing
together multiple labels. The
example in figure 3, shows split
patterns being used to define a
pattern that spans all channels of
the logic analyzer.

Although it may at first appear that
we have violated the rule of only four
pattern resources, notice that any
one pod contains only a single pat-
tern resource.

Figure 3. Find a single pattern across the entire analyzer in a 5-card set.

4

This example figure 4, does not
compile. Even though the example
uses only two pattern resources in
each pod pair, the way the resources
are combined requires more
combiner resources than are
available in the hardware.

Combiner resources are allocated as
needed by the trigger compiler. The
way they are allocated is complicated
and difficult to explain. There are
not any simple rules to use to know
when an expression will be too
complex to compile, except to say the
mixing of AND and OR operations
within the same sequence level
greatly increases the complexity of
the expression to be implemented
in hardware.

Parentheses are added automatically
to show the order of evaluation when
AND / OR functions are mixed. The
trigger functions do not, however,
allow arbitrary grouping of the
AND / OR operation with
parentheses by the user.

Figure 4. A combination that uses too many combiner resources

Figure 5. A Multiple ranges

Ranging may be specified only on
non-split labels.

This example figure 5, shows four
ranges on different labels ANDed
together. This trigger specification is
compilable because each range is
specified on a different pod; each pod
has only one pattern range event.

5

The Find 3 patterns in immediate
sequence trigger function finds pat-
terns (or other events) that occur
consecutively, with no other
intervening states. If an intervening
state does occur, the sequence resets
back to looking for the first pattern
(or event).

This example figure 6, uses all 4
available pattern resources in pod
C1 in 3 sequence levels. The last
sequence level uses two pattern
resources.

The example also demonstrates using
a flag event. The sequence will first
wait for the flag to be set true
(presumably by another analyzer
module in the system) AND Pod_C1
to be 1111h, immediately followed by
2222, then 3333 OR 4444.

Figure 6. Using 4 patterns in 3 sequence levels.

Figure 7. Find patterns in eventual sequence with custom store qualification

The Find n Patterns in Eventual
Sequence trigger functions allow
finding a sequence of patterns that
do not occur consecutively. In the
example above, any number of other
states can occur between Pod_C1 =
0000 and Pod_C1 = 5555, likewise
between the state 5555 and AAAA.
Once the desired pattern has been
found, the sequencer steps to the
next sequence level, but never resets
back to looking for the first pattern
(nor is there any way to program it to
do so).

This example figure 7, also shows
usage of the Default Storing control.
Default storing is used to conserve
trace memory by allowing control of
the data to be stored. In the example,
only data matching the patterns
4XXX or 8XXX on label Pod_C2 will
be stored.

In the example three pattern
resources are used in pod C1 and two
pattern resources in pod C2 (for
default storing).

6

1250 Mb/s Half Channel
State Mode

The 1250 Mb/s half channel state
mode provides state speed data rates
up to 1250 Mb/s. Only 16 data chan-
nel per module, however, may be
used. Fewer trigger functions are
available and the flexibility of the
available trigger functions is less than
in the 800 Mb/s state mode.

Half Channel State Format Menu

In half channel state mode, only the
even data channels on each probe are
used. This is reflected in the format
menu as shown in figure 8. In half
channel mode, the clock bits
associated with each pod cannot
be used as data bits.

Figure 8. In half channel state mode, it takes a minimum of 4 pods (at 8 bits per pod) to fill a 32 bit
split label as shown by label 'Split4'.

1250 Mb/s State Mode Trigger
Functions

In 1250 Mb/s state mode the
following four trigger functions
are available:

•Find pattern
•Find 2 patterns in immediate

sequence
•Find 2 patterns in eventual

sequence
•Run until user stop

Only one of these functions may be
selected at any one time; sequencing
of the functions is not allowed.

Each of the functions allow modifica-
tions such as ANDing or ORing
multiple events, changing the
operations on the pattern (=, ≠, <, >,
etc.), or changing the events to
another event type.

The following event resources are
available in 1250 Mb/s state mode:
•Patterns / Ranges:

3 patterns, or 1 range and 1 pat-
tern on each pod
- A split pattern uses 1 pattern

from each pod in the module
(not just the pods with assigned
bits).

- Non-split patterns may use
operations: =, ≠, <, ≤, >, ≥, In
range, Not in range

- Split patterns may only use
operations: =, ≠

- Patterns on labels with re-
ordered bits may only use
operations: =, ≠
(same as 200 and 400 Mb/s
modes in all VisiTrigger
analyzers)

•4 Flags:
- Flag events from other

modules can be checked as set
or clear.

- Flags cannot be set or cleared.
•Arm in from intermodule bus

- Received from another module
in the system or the Port In on
the 16700 system main frame.

Restrictions on the ways event
resources can be used and combined
vary with the type of trigger function
selected.

The Find Pattern and Find 2
Patterns in Immediate Sequence
trigger functions can use all of the
available pattern events in any
sequence level. However, some combi-
nations (ANDing and ORing) of pat-
tern events, while not exceeding the
maximum number of pattern

resources, can use too many
combiner resources. Any combina-
tion of three of the flag or arm in
events can also be combined with the
pattern events in each sequence level.

When using the Find 2 Patterns in
Eventual Sequence trigger function,
only non-split labels may be used and
only one pattern event per sequence
level may be used. The interface
allows insertion of other events in
each sequence level to allow ANDing
or ORing of the pattern event with
other event types (flags or arm in) or
replacement of the pattern event with
another event type. However, if more
than one pattern event is specified
the trigger compiler will be unable to
compile it.

Pattern events used in the Default
Storing Control count against the
number of available resources.

7

This example figure 9, uses split
labels to implement a pattern across
a 5-card module. In half channel
mode, two cards (four pods) can be
spanned by a single 32-bit label.

Figure 9. An analyzer-wide pattern on a 5-card module using 32-bit split labels

Figure 10. An analyzer-wide pattern on a 5-card module using 16-bit split labels.

This example figure 10, does not
compile. Although this example
implements the same pattern as the
previous example, it uses more split
pattern labels (five) to implement the
function than does the previous
example (which used three). Since a
split pattern uses a pattern resource
from each pod, the maximum of
three pattern resources per pod
is exceeded.

This causes a problem for the
compiler because a split label uses a
pattern resource in all pods in the
module, not just the ones with bits
assigned. The complexity of a split
label for the compiler is essentially
the same whether the label spans
only two pods or multiple pods.

The same function that fails to
compile in this example can be
implemented by using 32-bit split
labels (as shown in the previous
example) or by using non-split labels
(one per pod).

8

This example figure 11, uses the
Arm in from IMB event within a
Find 2 patterns in immediate
sequence trigger function. The
function will wait for the arm in
event to be true AND the pattern 55
on Pod_C1, immediately followed by
the pattern 00 OR the pattern FF
on Pod_C1.

The Default Store control has also
been set to store into trace memory
only samples that fall in the range
28-48 on label Pod_C2.

Note that the Arm in from IMB event
is only made available as a selection
when the analyzer has been config-
ured in the Intermodule setup dialog
to be armed from another module or
port in.

Figure 11, shows the 16760A logic
analyzer (module D) in the arming
tree armed from a 16717A logic
analyzer (module C). Figure 12
shows the 16760A logic analyzer
armed directly from Port in.

Figure 11. An Arm in from IMB in a Find 2 patterns in immediate sequence
trigger function

Figure 12 and 13. An IMB setups when using Arm in from IMB event

9

External Triggering Strategies
Using the Arm in from the
intermodule bus event allows the
analyzer to be triggered from the
IMB trigger-in signal. The IMB
trigger-in signal can be generated by
the trigger output of another module
in the main frame, or from an
external signal applied to the Port In
BNC connector on the 16700 Series
main frame. This capability can be
exploited in a number of ways to
trigger the logic analyzer at the
desired time.

Strategies for using external trigger
sources for triggering the logic
analyzer include:

•Trigger the logic analyzer from
another module or instrument

•Use error detection outputs, etc.
provided by the target system

•Modify the software to provide a
unique trigger pattern

•Add trigger generators in the target
system FPGAs and/or ASICs

Deep memory is an asset when a
precise trigger cannot easily be
configured, but a trigger that will
cause the analyzer to trigger in the
near vicinity of the desired location
can be generated. In 800 Mb/s state
mode, the 16760A provides 64M
samples of trace memory, 128M
samples in 1250 Mb/s state mode.

Trigger from Another Module or
Instrument
Often the trigger position of the
analyzer can be determined by
probing other (slower speed) buses in
the system. This allows for the
16760A or another analyzer to run
in a slower speed state mode that
provides more complex triggering
capabilities. For example, an error
on a high-speed local memory access
bus may cause a corresponding error
on an adjacent (slower speed) PCI
bus. In this case the 16760A
(or slower-speed logic analyzer
module) can probe the slower bus in
a state mode that allows more
complex triggering to recognize the
trigger condition, then trigger a
16760A running in a higher speed
state mode with an IMB trigger-in.
(Refer to figures 10,11,12).

Trigger on error detection outputs,
etc. from the target system
Many target systems provide
hardware error or exception signals
that may be used for triggering the
logic analyzer. Examples would
include interrupt signals generated
by an error, write strobes generated
to an I/O port, dedicated memory
location on error, etc.

Modify the target software to
provide a unique trigger pattern
Some target systems have the
flexibility to modify the software to
generate a signal or a unique,
identifiable pattern when an error
condition occurs, which the logic
analyzer can trigger on. Even if the
software takes some time to
determine an error occurred and
then create the trigger condition,
deep memory makes it possible to
still capture the desired information
in trace memory by setting the trigger
position near the end of memory.

Add trigger generators in the target
system FPGAs and/or ASICs
Some target systems have the
flexibility to modify FPGA program-
ming to provide triggering resources.
This can be as simple as routing out
an internal error signal to an exter-
nal pin that can be monitored by the
analyzer, or a more complex
modification to recognize pattern
sequences on internal data paths or
calculate error such as CRC errors,
etc. With pre-planning, ASIC designs
can include circuits to be used to
provide triggering resources.

Debug Bus Processor

More Processors

Memory

I/O

I/O

PCI

PCI

Hub

Figure 14. A computer system, Arrows indicate logic analyzer measurement points.

Figure 14 shows one processor of a
possible multi-processor computing
system. The arrows indicate high-
speed buses that may be desirable to
probe for debugging hardware,
software, and HW/SW integration
problems.

The 16760A logic analyer internal
triggering capabilities can be used
to provide triggering on patterns and
simple sequences of patterns on
these buses.

The debug buses on many processors
can be configured to provide a signal
or simple pattern to trigger on.

Errors that can also be detected on
one of the PCI buses can be probed
with a slower speed logic analyzer
with more sophisticated triggering
capability. The analyzers probing
the high-speed buses can then be
triggered by the trigger-out from
the PCI bus analyzer.

10

Physical Mux
/Demux

Software

Network Processors

Forwarding Tables

Switch Fabric

Routing Tables

System Admin
Standard

CSIX
Proprietary

TDR, BER
Optical Test and
Measurement

PosPhy
GMII
SMII
Utopia
Xaui

Scope,
Logic Analyzers

PCI
Proprietary

System Level
Router Tester

Figure 15. Router system triggering

Figure 15 shows a block diagram of a
router system connected to a router
test system.

Test systems such as the Agilent
RouterTester can be used to
stimulate the system with a known
pattern at the router inputs and
verify that expected data appears at
the output. However, when errors
do occur these test system provide no
visibility on internal buses of the
router for debugging and trouble
shooting. A logic analyzer may be
used to provide access to these
internal buses.

Outputs from the test system
(on error or at a specified location)
may be used to trigger the logic ana-
lyzer. This strategy works well with
the 16760A triggered from
Port In.

As with the computer system
example, an analyzer probing the
higher speed buses can also be cross-
triggered from an analyzer running
on one of the slower speed internal
buses such as a PCI bus, etc.

11

200 Mb/s and 400 Mb/s State Modes

Resource 200 Mb/s State 400 Mb/s State
Patterns 16 patterns evaluated 8 patterns evaluated

as =, ≠, <, >, ≤, ≥ as =, ≠, <, >, ≤, ≥
Ranges 15 ranges evaluated as 4 ranges evaluated as in

in range, not in range range, not in range
Timers 2 timers per module None
Counters 2 global counters, 2 occurrence counters

1 occurrence counter
per sequence level

Flags 4 flags evaluated as set, 4 flags evaluated as set,
clear clear

Arm in Arm in from another module Arm in from another module
on the IMB or from Port In on the IMB or from Port In

Table 1. Available trigger resources in the 200 Mb/s and 400 Mb/s modes.

200 Mb/s State 400 Mb/s State
Go to <arbitrary sequence level> Go to next
Trigger and go to <arbitrary sequence level> Trigger and fill memory
Trigger and fill memory
Store/don’t store sample
Turn default storing on/off
Timer start/stop/pause/resume
Global counter increment/reset
Occurrence counter reset
Flag set/clear

Table 2. Available trigger actions in the 200 Mb/s and 400 Mb/s modes.

Just as in the 800 and 1250 Mb/s
modes, the VisiTrigger interface does
not enforce a strict set of limits to
guarantee that the specified
measurement can be compiled into
hardware. Here are some hints in
case you encounter the following
error messages when the compiler
attempts to compile the trigger
condition you have specified:

Error message: “Branch
expression is too complex”

The "Branch expression is too
complex" message means that the
event list expression for the indicated
branch contains more event terms to
logically combine than the hardware
is capable of combining on a single
branch.

Other branches in the sequence may
also be too complex. The trigger
sequence compiler stops compiling at
the first convenient place after it
encounters a fatal error.

Because the trigger sequence
compiler tries to optimize the event
list expression to best fit the
capabilities of the hardware, a
precise description of the event list
limits cannot be easily enumerated,
but some general guidelines for all
acquisition modes and some specific
suggestions for particular modes are
listed on the following page.

12

Labels that span multiple pods
(split labels) greatly increase the
compiled hardware expression
complexity, compared with labels
that are entirely contained within
a single pod.

Whenever possible try to arrange the
probing such that labels do not span
pods. This is the single most effective
way to reduce the
complexity required to implement
the event list expression.

NOTE:
For labels that do span pods the
complexity can be reduced to the
same as that of the non-split label
case if all bits in the label on all but
one pod pair can be set to Xs in the
event list expression for the
measurement.

For example, if label ADDR has it's
16 most significant bits on pod A2
and 16 least significant bits on pod
A1 (spanning pods A2 and A1), the
complexity of the compiled
expression will be reduced if all 16
MSBs or all 16 LSBs are set to Xs in
the pattern event.

Inequality compares (<,≤,>,≥) of split
labels increase the expression
complexity compared to equality
(=,≠) compares of split labels. There
is no difference in complexity for
non-split labels.

Ranges are implemented as two
inequality compares, which doubles
the required complexity for non-split
labels but increases the complexity to
an even greater extent for ranges on
split patterns.

Equivalent event list expressions
compile to a much greater hardware
complexity in 400 Mb/s state mode
than in 200 Mb/s state mode. This
is due to the way the hardware
implements 400 Mb/s state mode.
The hardware parallelizes the data in
400 Mb/s mode to allow the internal
sequencer to run at ≤ 200 MHz. This
requires the trigger compiler to
allocate additional sequence levels,
branches, and pattern resources and
combine them in complex expres-
sions to "de-parallelize" the trigger
expression. Using split labels in
400 Mb/s state mode further
compounds the complexity of these
compiler generated expressions.

The trigger compiler first expands all
expression lists to sum-of-products
form [e.g. A(B+C) is expanded to
AB+AC]. The trigger compiler then
does rudimentary Boolean reduction
on the expanded expression.
However, the compiler makes some
trade-offs between complete reduc-
tion and compilation speed.
Manually expanding and reducing a
complex expression may help the
trigger compiler to better fit the
expression into the hardware
resources.

General Guidelines

13

Specific Guidelines - 200 Mb/s state
and all timing Modes
Cannot OR more than 16 non-split
pattern events if the pattern events
are all on the same pod pair.

Cannot OR more than 4 non-split
pattern events if each pattern event
is on a different pod pair. You can,
however, OR 4 patterns together on
each of 4 different pods to make a
total of 16 patterns OR'd across
4 pods.

Cannot AND more than 16 non-split
pattern events if the pattern events
are all on the same pod.

Can AND up to 160 non-split pattern
events if the pattern events are
evenly distributed across all 5 pods
on a 5 card set (16 pattern events
per pod).

Specific Guidelines - 400 Mb/s State
Mode
Cannot AND or OR more than 8 non-
split pattern events if the pattern
events are all on the same pod.

Cannot OR more than 4 non-split
pattern events if each pattern event
is on a different pod. You can,
however, OR 2 patterns together on
each of 4 different pod pairs to make
a total of 8 patterns OR'd across
4 pods.

Cannot AND or OR more than
4 non-split ranges if the pattern
events are all on the same pod.

Cannot AND or OR more than 2 split
equality (=,≠) pattern events.

Cannot specify more than 1 split
inequality (<,≤,>,≥) pattern event.

Cannot specify any range on a split
label.

In 400 Mb/s state mode, the trigger
sequence compiler must combine
elements of the trigger events of the
previous sequence level and the next
sequence with the current sequence
level, therefore increasing the total
complexity of the current level. A
sequence level that may compile fine
when it’s the only level in the
sequence, may be too complex to
compile if another level is inserted
before or after it.

One possible work around to this
limitation is to insert a simple "If
anything" sequence level in between
two complex levels. The disadvan-
tage to this approach, of course, is
that the trigger sequence will miss
one state between the two complex
sequence levels.

If the following sequence does not
compile:

1. If (complex event list)
occurs 1 time then Goto Next

2. If (complex event list)
occurs 1 time then Trigger
and fill memory

This one may:

1. If (complex event list)
occurs 1 time then
goto next

2. If anything occurs 1 time
then Goto Next

3. If (complex event list)
occurs 1 time then Trigger
and fill memory

In 400 Mb/s state mode, the trigger
sequence compiler must always add
some additional complexity to the
compiled expression for the first
sequence level that is not needed in
subsequent sequence levels.
Additional complexity is also
required in the first sequence level
for the following 2 conditions:

1. When using the "Find pattern1, or
reset on pattern2" trigger function
in 400 Mb/s state mode, the event
list of the first sequence level must
be combined with reset branch of
each subsequent sequence level by
the trigger compiler in order to
evaluate the parallelized samples.

2. When using double edge clocking
mode (rising and falling edges) in
400 Mb/s state mode, an
additional pattern resource is
allocated and combined with the
event list in the first sequence
level by the trigger compiler to
prevent triggering on an initial
garbage state.

Inserting an "If anything" state as the
first state can simplify the complexity
of the compiled event list in the first
sequence level and subsequent
"If/Else" sequence levels. The disad-
vantage is that the sequence will then
miss the first state after the reset
condition is met in an "If/Else"
sequence level.

If the following sequence does not
compile:

1 If (complex event list) occurs
1 time then Goto Next

2 If (complex event list)
then Trigger and fill memory
Else if (complex event list)
then Goto 1

This one may:

1. If anything
occurs 1 time
then Goto Next

2. If (complex event list)
occurs 1 time
then Goto Next

3. If (complex event list)
then Trigger and fill memory
Else if (complex event list)
then Goto 1

14

Error message: “Trigger Specification
is too complex”
The "Trigger Specification is too
complex" message means that the
trigger sequence contains more
unique event list expressions than
can be allocated to the available
combiner resources in the analyzer
hardware.

The analyzer has a maximum limit
of 16 event list combiner resources.
Each unique event list expression
requires the use of at least one of
these combiner resources. A complex
event list may require more than
one combiner resource.

The message does not mean that any
single event list expression was too
complex to combine (see “Branch
expression is too complex”), but that
the overall number of unique branch
expressions specified has exceeded
the limit of 16.

In order to compile and run, the total
number of unique event list
expressions must be reduced to 16
and the complexity of some of the
expressions may also have to
be reduced.

Branch expressions that are identical
(and simple enough to be combined
by a single combiner resource - see
below) share the same combiner
resource. Reusing identical event list
equations where possible will opti-
mize the use of combiner resources.

Combiner resource allocation
guidelines
Labels that span multiple pods
(split labels) increase the number
of required combiner resources
as compared with labels that
are entirely contained within a
single pod.

Whenever possible try to arrange the
probing such that labels do not span
pods. This is the single most effective
way to reduce the number of
required combiner resources.

NOTE: For labels that do span pods,
the complexity can be reduced to the
same as that of the non-split label
case, if all bits in the label on all but
one pod can be set to Xs in the event
list expression for the measurement.

For example, if label ADDR has it's 16
most significant bits on pod A2 and
16 least significant bits on pod A1
(spanning pods A2 and A1), the
complexity of the compiled expres-
sion will be reduced if all 16 MSBs
or all 16 LSBs are set to Xs in the
pattern event.

Event lists with up to 4 unique pat-
tern events can be combined in any
combination of ANDs and ORs by a
single combiner resource if all of the
pattern labels are non-split and con-
tained on the same pod.

Combining more than 4 labels on the
same pod will require another
combiner resource.

Non-split label pattern events from

different pod pairs that are OR'd
together require an additional
combiner resource for each addition-
al pod included in the event list.
(ANDing on non-split pattterns from
different pod does not increase the
required number of combiner
resources).

An inequality compare (<,≤,>,≥) with
a split label pattern event requires 2
combiner resources.

A range on a split label pattern event
requires 4 combiner resources.

The event list in the custom store
qualification dialog also allocates
combiner resources from the same
pool of 16 resources. If the store
qualification event list equation is the
same as one of the branch event list
equations in the trigger sequence, the
combiner resource will be shared.
A unique store qualification event list
requires the allocation of 1 (or more)
of the combiner resources.

400 Mb/s state mode requires many
more combiner resources to imple-
ment the same trigger sequence as
compared to 200 Mb/s state mode
and all timing modes. Refer to the
discussion of complexity in the
"Branch expression is too complex"
topic above.

Agilent Technologies’ Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk
and problems. We strive to ensure that you get the test and measurement capabilities
you paid for and obtain the support you need. Our extensive support resources and
services can help you choose the right Agilent products for your applications and apply
them successfully. Every instrument and system we sell has a global warranty. Support is
available for at least five years beyond the production life of the product. Two concepts
underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its
advertised performance and functionality. When you are choosing new equipment, we
will help you with product information, including realistic performance specifications and
practical recommendations from experienced test engineers. When you use Agilent
equipment, we can verify that it works properly, help with product operation, and provide
basic measurement assistance for the use of specified capabilities, at no extra cost upon
request. Many self-help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and
measurement services, which you can purchase according to your unique technical and
business needs. Solve problems efficiently and gain a competitive edge by contracting
with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education
and training, as well as design, system integration, project management, and other
professional engineering services. Experienced Agilent engineers and technicians
worldwide can help you maximize your productivity, optimize the return on investment of

For more information on Agilent
Technologies products, applications or
services, please contact your local Agilent
office.

The complete listing is available at:
www.agilent.com/find/contactus

Phone or Fax
United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 905 282 6495

China:
(tel) 800 810 0189
(fax) 800 820 2816

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (080) 769 0800
(fax) (080) 769 0900

Latin America:
headquarters:
(tel) (305) 269 7500

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6755 0042
Email: tm_ap@agilent.com

Product specifications and descriptions in
this document subject to change without
notice.

© Agilent Technologies, Inc. 2004
Printed in USA June 28, 2004

5988-2994EN

Agilent Technologies Warranty

Agilent hardware products are warranted against defects in materials and workmanship for a period of
one year from date of shipment. Some newly manufactured Agilent products may contain remanufac-
tured parts, which are equivalent to new in performance. If you send us a notice of such defects during
the warranty period, we will either repair or replace hardware products that prove to be defective.
Agilent software and firmware products that are designated by Agilent for use with a hardware product
are warranted for a period of one year from date of shipment to execute their programming instructions
when properly installed. If you send us notice of defects in materials or workmanship during the war-
ranty period, we will repair or replace these products, so long as the defect does not result from buyer
supplied hardware or interfacing. The warranty period is controlled by the warranty statement included
with the product and begins on the date of shipment.

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions with confidence.

Agilent Email Updates

Agilent Direct

	Acquisition Modes
	800 Mb/s State Mode
	1250 Mb/s Half Channel State Mode
	External Triggering Strategies
	200 Mb/s and 400 Mb/s State Modes
	General Guidelines
	Specific Guidelines - 200 Mb/s state and all timing Modes
	Error message: “Trigger Specification is too complex”
	Agilent Technologies’ Test and Measurement Support, Services, and Assistance

