
Keysight Technologies
Test-System Development Guide

Choosing Your Test System Software Architecture

Application Note

This application note is part of the Test-System Development

Guide series, which is designed to help you quickly design a test

system that produces reliable results, meets your throughput

requirements, and does so within your budget.

Gathering and documenting software requirements—Before gathering and documenting your

software requirements, inalize your test system hardware design. Once inalized, start working
with your R&D and manufacturing teams to collect the information you need to create software

requirements speciications (SRS).

Programming and controlling your instruments—The control of instruments is rapidly evolving from

proprietary test and measurement standards to open, computer-based industry standards. This trend

affects the hardware that connects the PC to the instrument as well as the software and drivers that

control the instrument.

Collecting and storing test data—Data collection is the science of obtaining, moving and formatting

data. The integrity of your test system depends on obtaining the right data at the right time.

Designing the user interface—One of the most important (and easily overlooked) aspects of test
systems is the Graphical User Interface (GUI). This is what the test engineers, operators and
technicians see when they interact with your software.

Introduction

The information presented here will help you choose the direction for your software based on the

application you have in mind and the amount of experience you have. We will explore the entire

software development process, from gathering and documenting software requirements through

design reuse considerations.

The complete list of application notes for this series is available on page 19.

This white paper will help you understand the tools required to design, develop and deploy the

software component of your test system

(see Figure 1).

Gather

manufacturing

requirements

Data

collection

Open standards?

Graphical or

textual?

Test executive?

Design operator interface

Prepare data collection strategy

Design for reuse

Performance

Software
Requirements

Specifiaction (SRS)

Test

specification

User interface

Time

Gather

R & D

requirements

Finalize

test system

hardware

Figure 1. Test-system software development process overview

03 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Choosing the development environment— The software environment and tools you choose will have a

signiicant impact on the overall cost of your test system. When choosing your software environment,
consider more than just the purchase price of the software. Also, consider how easy it is to learn and

use the software, how hard it is to connect to other languages, devices or enterprise applications,

as well as support and maintenance costs. Over the life of a test system, software support and
maintenance costs alone can exceed hardware costs.

Working with open standards—Today, the industry trend is to move away from closed, proprietary

development environments. More and more people are embracing open, industry-standard

development environments as their platform of choice for test-system development projects.

Making the right choice now will give you the lexibility and capabilities you need in the future.

Developing a test sequence—Test executives are applications designed to run a series of tests

quickly and consistently in a pre-deined order. Of the 93% of test-system developers who use
test equipment, approximately 37% use a commercial test executive for test sequencing, while
the remaining 56% use a “homegrown” test executive.

Planning for software reuse—Designing for code reuse means you and your co-workers won’t have to

re-create your software components every time you start a new project. Instead, you can build up a

company knowledge base of best ideas, best practices, and software components. This knowledge

base will bring uniformity and consistency to your company’s product testing functions.

This application note will provide you with a solid overview of the testsystem software architecture as

outlined above. For more in-depth information, refer to the sources listed throughout this document.
Now, let’s get started with the irst phase of choosing your test-system software architecture—

gathering and documenting your software requirements.

Introduction (continued)

04 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Gathering and documenting
software requirements

The Software Requirements

Speciications (SRS)1 is a prioritized
list of required test-system software

capabilities and information on

the software’s external interfaces,

performance requirements, system

attributes and design constraints.

Typically, some requirements “musts”
are essential and others “wants” can
be traded for time (e.g., to meet a
project deadline).

The IEEE Society identiies the
following areas you should address

in your SRS:2

 – Functionality—What is the
software supposed to do?

 – External interfaces—How does

the software interact with people,

the system’s hardware, other

hardware and other software?

 – Performance—What is the speed,

availability, response time and

recovery time of various

software functions?

 – Attributes—What are the porta-

bility, correctness, maintainability

and security considerations?

 – Design constraints—What industry

standards do I need to follow? Do

I need to use a speciic language?
What about internal policies for

database integrity, resource limits

and operating environments?

Ideally, the SRS will describe WHAT

you need the software to do, not HOW
the software will do it. In other words,

you can look at the software as a

“black box” that controls a set
of external resources such as

instruments, a computer monitor

and other components (see Figure 2).

The SRS will include implementation

details only if those requirements are

imposed externally. For example, your
company may require that a portion

of the system be implemented in a

speciic programming language. A
good SRS should answer the following

questions:

1. What measurements and tests

are required to exercise the device

under test (DUT)?

2. How will the measurements and

tests be performed given the

available instruments and devices?

3. What types of data need to be

collected?

4. Where will the data be stored?

5. What are the external constraints

(i.e., performance and time
speciications)?

6. How will the operators, test

engineers and technicians

interact with the software?

Within the product development

lifecycle, the R&D department

should provide a formal list of testing

requirements to the test-development

department. The System Requirements

Speciications, also referred to as a
Project Requirements Speciication,
refers to the system as a whole and

therefore is different from the Software

Requirements Speciications.
Furthermore, the manufacturing
department will have their own

requirements, such as safety

standards. It is the combination

of R&D and manufacturing

speciications that determine the
hardware requirements of a test

system and provide the basis for

the Software Requirements

Speciications.

It’s important to note that trying to

build or design software while the

test system hardware is still in a state

of lux typically results in addition-

al software re-work and re-design.

This is one of the challenges you will

face in the real world of test-system

development!

1. May be referred to as an ERS or
simply as “the requirements.”

2. 2 For more information, refer to the
IEEE Standard 830-1998 “Rec-
ommended Practice for Software
Requirements Speciications” and the
IEEE Standard 1233-1998 “Guide for
Developing of System Requirements
Speciications” located on the IEEE
web site (http://standards.ieee.org).

Results

database
Instruments Operator

interface
Other

resources

SRS

Test system hardware

Figure 2. Scope of the SRS

http://standards.ieee.org

05 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Figure 3 provides an SRS template
and a requirements example. As

shown in the template, SRS is more

than requirements. Document within

the SRS what the software is meant

to do and provide deinitions for the
terms you are using. Document the

external constraints imposed upon

you and the external resources you

have available. Describe your users

in detail and the modes of operation

for each user class. Finally, include
appendices and an index. Once you’ve
completed these tasks, you’re ready to

describe the speciic requirements.

The requirements example (user
interface of a test sequencer) is a
snippet from a larger set of require-

ments divided by function. The words

“MUST” and “HIGH WANT” are a way
of ranking the relative importance of

the requirements. You can break up

requirements into more manageable

hierarchies based on function,

program mode, or some other

classiication system that will make
the requirements section easier

to navigate.

IEEE says that requirements must be

correct, unambiguous, complete,

consistent, ranked for importance,

veriiable, modiiable and traceable.
You can see that the above format

meets a number of those goals, but

some additional practices are

necessary to meet them all. If you

refer to requirements in more than

one place, you will need to cross-

reference them using a unique

number (3.4.3, for example) so
that if a requirement changes, you

will know where to ix it elsewhere in
the document.

Each written requirement needs to

be veriiable and unambiguous to
ensure the test program behaves as

expected. As you write the SRS,

refer to the System Requirements

Speciications whenever possible.
This is called backward-traceability,

helping to explain why certain

requirements are included and not

just an arbitrary restriction.

The SRS must describe what testing

resources (instruments) are required
(e.g., the type of voltmeter, switches,
computer monitor, etc.) and whether
any factory resources are needed

(e.g., a results database). In addition,
you need to deine within the SRS the
data collection method, user interface

requirements, performance co straints

and, most importantly, the speciic
DUT test requirements. For example,
if you need to perform a speciic
resistance measurement and you know

you have a Keysight Technologies, Inc.

34401A multimeter, the SRS would

specify a single-sample 4-wire

measurement including a description

of the proper switching path, thus

ensuring access to the pins on the DUT.

In order to accurately describe the

test-system software user interface

requirements, you should develop

speciic use cases for the different
users of the test system (e.g., opera
will not require re-work on your part.

Figure 3. SRS template and requirements

Example SRS template

Table of contents

1 Introduction

 1.1 Purpose

 1.2 Scope

	 	1.3	Deinitions,	acronyms	
and abbreviations

 1.4 References

 1.5 Overview

2 Overall description

 2.1 Product perspective

 2.2 Product functions

 2.3 User characteristics

 2.4 Constraints

	 	2.5	Assumptions	and	dependencies
3	Speciic	requirements
Appendices

Index

Example requirements

3.4		 	User	interface	functionality:
3.4.1		 	(MUST)	The	UI	allows	the	user	to	create,	modify,	run	and	debug	sequences.
3.4.2		 	(MUST)	The	UI	allows	users	to	view	and	export,	load	and	store	sequence	run	

result data.

3.4.3		 	(MUST)	The	UI	represents	sequences	in	a	hierarchical	manner,	which	may	be	
expanded	or	collapsed	to	view	or	hide	internal	details	of	the	sequence.

3.4.4		 	(HIGH	WANT)	The	UI	can	represent	shared	(used	several	places)	sequences	
separate	from	the	main	sequence	hierarchy.

3.4.5		 	(HIGH	WANT)	The	UI	will	use	graphical	icons	to	denote	variations	in	state	
of	sequence	items.

06 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Programming and controlling
your instruments

When designing your test-system

architecture, you need to think about

how your PC will communicate with

different instruments. The two most

important factors are 1) how to
physically connect the PC to other

instruments, and 2) what software will
you use to control and communicate

with other instruments.

Physically connecting
the computer to other
instruments

For decades, the IEEE-488 bus,
commonly known as the general-

purpose instrumentation bus (GPIB),
set the standard for connecting test

instruments to computers and for

providing programmable instrument

control. While GPIB is still a common

and effective instrument interface

technology, PC-based standards such

as USB and LAN tend to be more cost

effective solutions (see Table 1).

USB is the best choice for R&D appli-

cations where the number of instru-

ments in a system is usually small and

a quick and easy interface set-up is

desired.

USB 2.0 and Ethernet-based LAN are

good choices for design veriication
and manufacturing applications where

data-throughput performance, cost,

remote access, and ease of system

assembly are top priorities.

Given the choice between USB 2.0

and Ethernet-based LAN, most people

choose LAN because of its inherent

lexibility and remote system access
and control capabilities. In addition,

LAN performance is on par with USB—

it has captive cable connectors (which
aren’t found on USB), and LAN has the
capability for wireless operation.

The I/O software layer

Once you’ve decided how your
computer and instruments will be

physically connected, you need to

decide what I/O software you will use
to control and communicate with the

instruments (see Figure 4).

The I/O software is the layer of
software that sits between the

software application and the

instruments’ physical interfaces.

Once again, you have two choices.
You can write directly to the

instrument (Direct I/O) or you can
use an instrument driver. Even though

standard instrument drivers are

popular because they are easier to

use, they only express a subset of

the instrument’s functionality.

Your instrument100%

capability

100%

instrument

capability

60%

instrument

capability

Physical interface

Physical interface

I/O software (VISA)

PC application software

Direct I/O
(native instrument

commands)

Driver

Commands sent over GPIB,
RS-232, USB, LAN, VXI or
other physical interface

Your
computer

Figure 4. I/O software layer

Table 1. GPIB, USB and LAN advantages and disadvantages

Interface Theoretical Interface Speed Advantages Disadvantages

GPIB – 8 Mb/s transfer rates –			Ubiquitous	interface	on	test	instruments	 –			Expansion	slot	required
–			Maximize	throughput	for	all	block	sizes	 –			Must	open	PC	housing	to	install	card
– Low cost –			Relatively	expensive

–			Limited	cable	lengths	permitted	between	computer	and	
instruments

USB – USB 1.1 12 Mb/s –			Quick,	easy	setup	 –			Does	not	work	with	Windows	NT‚
– USB 2.0 480 Mb/s – Low cost 	–			Not	available	on	most	deployed	instruments

–			Good	data-throughput	performance
LAN – 10/100/1000 Mb/s

transfer rates
–			Good	data-throughput	performance	 –			Requires	LAN	knowledge	to	set	up
– Low cost –			Not	available	on	most	deployed	instruments
–			Remote	access	makes	it	easy	to	controlsystem	

from	remote	location

07 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

So, how do you decide? Here are a few

factors to consider.

You may want to use Direct I/O if:

 – You need to use instrument

features not supported by the

available drivers (the other 40% to
approximately 80% of the
instrument’s capabilities). You can
often use a combination of direct

I/O and instrument drivers in this
case. Some drivers make

it even easier by providing a direct

I/O connection for
such scenarios.

 – You have instrument programming

experience or access to program-

ming experts.

 – You need the absolute maximum

in system throughput speed.

 – You need to control the exact

coniguration of the instruments
in your system.

 – You have a large volume of legacy

SCPI-based code. You may want

to use an instrument driver if:

 – A driver is available that works

with your development

environment and I/O software,
and supports the majority of

instrument features you want

to use.

 – You want the ease of use

gained by an easy-to-understand

hierarchical organization
of instrument functionality

provided by drivers.

 – You want to simplify the process

of developing and maintaining

your code over time so there is a

single point of interface to

update or change.

 – You need to simplify maintaining

the system when instruments

need to be exchanged.

 – Development time is a

paramount concern.

If you choose an instrument

driver, consider using an industry

standard IVI-COM (Component
Object Model) driver3 together with

a Visual Studio.NET-compliant

development environment (such as
the Keysight T&M Programmers

Toolkit). IVI-COM drivers have the
following advantages.

1. It works with all popular PC

languages and most T&M languages.

2. It uses the most popular types

of I/O.

3. It can be used in the latest

.NET technologies.

By using IVI-COM drivers in the
development of your test-system

architecture, you’ll save time4 and

have a higher degree of hardware and

software interchangeability. You also

will ind that your software is easier to
maintain and is more extensible in

the future.

Collecting and storing the
test data

Data collection is the science of

identifying, collecting, formatting and

distributing important information

about the behavior of your test system

and the devices it tests (see Figure 5).
Quality data collection is the

foundation for controlling your

manufacturing and test processes—

the ultimate goal of a manufacturing

test engineer. Quality data also can

be used to support many functions

throughout your organization and
support products throughout their

development lifecycle.

Response

voltage limits

[12,100]

Loaded battery

response

(volts)

Model 320a

SN:00010145

12:03 pm

Dec. 14, 2004 Fail!

XML

data file

Results

database

Report ticket

printer

Operator

interface

Fail!

Data

Figure 5. Overview of data collection process

3. IVI-Component drivers are based on Microsoft’s
Component Object Model (COM). IVI-C (NI)
drivers are based on C dll’s.

4. A recent survey conducted by
Keysight found that test programmers experience
a 20%-30% reduction in test program development
time when using Visual Studio .NET.

08 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Communicating results of a test

sequence is one use of test data.

Test data also may be used to ensure

regulatory standards are met,

document performance standards,

or provide traceability for the DUT.

Given these applications and others,

you may want to collect more data

than your R&D or manufacturing

colleagues request.

In addition to external data require-

ments, recorded data can be used

to debug a test sequence in ways

debugging runs cannot. Debugging

means slowing down and subtly

changing the behavior of your test

sequence. This means a defect you

see in a normal run may not show

up in a debugging run (and vice-

versa). One way to reduce the burden
of diagnosing test software, and its

associated DUT, is to always collect

the data you need to debug a

problem. You will need to balance

the beneits of collecting extra data
with the costs in performance and

time for your test software.

Just as important as the standard

types of data (e.g., test limits, mea-

sured values and pass-fail judgments)
are the contextual data. Contextual

data are used to communicate every-

thing relevant to the DUT’s testing

environment. This includes the

test-system coniguration, software
version, driver versions and other fac-

tors. The more variables you record,

the more correlation points you and

your colleagues can analyze during
debug. For example, in one particular
manufacturing test situation, a DUT

would fail in the afternoon. The test

engineer was able to correlate the

time of day to the time of the failure

and use that information to look more

closely at a photoelectric component

of the DUT. It turned out that sunlight

would strike that component directly

at certain times of the day, causing

the component to charge a capacitor

and cause the test to fail. A DUT may

fail due to the temperature variations

or relative humidity. Capturing con-

textual information and measurement

conditions can save days of effort.

You want to ensure the writing or

formatting of your data does not

affect the behavior of your test

system. Today’s PCs use a variety of

caching techniques that can dramat-

ically affect how long it takes for a

given ile or network I/O command. If
the time it takes to cache your data

varies between each test run, you will

get inconsistent test results. For that
reason, it’s a good idea to keep your

data in RAM until the end of your DUT

testing and then do your formatting

and data transmission.

Data is useless unless it can be under-

stood. Features of good data include:

 – Identiiable—information to identi-
fy the circumstances surrounding

the data and the condition in

which it was collected.

 – Searchable—regular structure

or ields that are uniquely
identiiable, making it easy for a
script or software tool to identi-

fy and compare across multiple

records or datasets.

 – Transformable—raw data must be

interpreted and displayed (insight
is the goal). This means that
software algorithms can perform

operations on some or all of the

ields of your data and create
a new data format or data

visualization based on your
original data.

 – Permanent—data must remain

available and comprehensible.

Relational databases tend to be

the best choice for long-term

storage of data as these

databases are highly searchable.

If your company does not already

have a database for manufacturing

information, you may want to con-

sider a database solution.

This decision depends on your

company’s data storage policies,

practices and budget.5

Table 2 lists some common data ile
formats and relevant characteristics.

Table	2.	File	data	format	comparisons

Binary Unformatted
text

Comma-separated
variables (.csv)

XML (Extensible
Markup Language)

Identiiable Only	with	
special tools

Only	for	small	
data sets

Needs	good	column	
format	design

No	major	issues

Searchable Only	with	
special tools

Dificult	and	
error-prone

No	major	issues	 Excellent,	but	requires	XML	
expertise

Transformable Only	with	
special tools

Dificult	and	
error-prone

	No	major	issues	 Excellent,	but	requires	XML	
expertise

Permanent	 Only	with	
special tools

Only	for	small	
data sets

No	major	issues 	No	major	issues

Example:	
spreadsheet

analysis

Only	with	
special tools

Not	importable	 Supported	by	
Excel,	others

	Excel	2003	format	
available

5. Tufte, Edward R. “The Visual Display of
Quantitative Information.” Graphics Press, 2001.

09 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Binary formats have the fundamental

issue of not being self-describing. In

addition, you need to acquire a

separate software application to

interpret the data. Depending on

the software application you use for

interpreting the data, you also may

be limited in the number of

transformation functions.

Text iles are hard to search and
transform, and are not very

identiiable. Since plain text iles do
not have regular ields, a text search
for the number 12, for example, could

return the hour twelve, the limit value

12, or the DMM measurement 12.

Comma-separated value (dot-csv) text
formats are a good choice since they

are easy to import into Microsoft

Excel. With Microsoft Excel, it’s easy

to make a table of results with the

row containing the results and

each column containing a unique

description. Another advantage is

most data analysis software can

easily read this format. The downside

of this format is that it cannot store

hierarchical data or easily parse data

sets. You must decide up front as to

the number and types of columns,

with each column containing one

unique data ield.

XML6 is self-describing, very

transformable, and has excellent

search characteristics. There is an

XML language called Extensible

Stylesheet Transforms (XSLT) that can
apply arbitrary algorithms to convert

your XML data into new XML formats,

HTML, or simple text formats.7 A

number of data analysis programs,

including Microsoft Excel 2003, can

import XML data.8 If you fail to output
your data in the right XML format for

an analysis tool, you can write a

relatively small XSLT that will convert

all your XML data into the desired

format. XSLT also provides a

powerful search feature, making it

much easier to identify data values

or data structures.

The manufacturing test industry has

already begun adopting XML. Some

test executive applications support

XML data logging. There is a standard

called IPC 2547 9 that deines an XML

format for communication of

manufacturing test data.

Figure 6 is an example of a standard
test run in XML format. You will still

want to know the test sequence ID,

the variant of the test, if the test limits

are modiiable on the “PowerTest” and
the hardware coniguration of the
test system.

If this were a .csv ile, we would have
to create a ield for every record to
answer those questions. Using XML,

we can insert a record type called

<TestSequence ID=”32”> and fully
describe the current test sequence

in that record. We can then add an

XML attribute called “IDREF” to refer
to that test sequence record in our

<TestRun> records.

In summary, the data format you

choose will have a large impact on

its value over time. You need to

consider how easy or dificult it will
be for someone else to read and

interpret the data once you are no

longer involved in the project.

Figure 6. XML report ile

6. Extensible Markup Language: http://w3.org/xml.
7. Holzner, Steve. “Inside XML.” New Riders, 2000.
8. XML in Microsoft Ofice: http://www.microsoft.com/press-

pass/press/2002/Oct02/10-25XMLArchitectMA.asp.
9. IPC 2547: http://webstds.ipc.org/2547/2547.htm

http://http://w3.org/xml
http://www.microsoft.com/presspass/press/2002/Oct02/10-25XMLArchitectMA.asp
http://www.microsoft.com/presspass/press/2002/Oct02/10-25XMLArchitectMA.asp
http://webstds.ipc.org/2547/2547.htm

10 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Designing the user interface

When a user logs into a test system,

what they see should depend upon

their user class. The user class could

be an operator, test engineer,

technician, or service and calibration

engineer. A well-written SRS will

deine the commands and/or menu
selections available to each user

class. You will want to provide each

user class with only the capabilities

and information they need to do their

job. The more choices you provide, the

greater the possibility for confusion

and mistakes.

To ensure security, you can create

a unique login for each of the users.

Each user login should be linked to the

appropriate class.

You can verify that your GUI meets

the users’ needs with a methodology

called “User-Centered Design”, or
UCD, which consists of prototyping

and storyboarding.9,10 In general, a

test system’s GUI should be able to:

1. Customize its behavior based on the
user class.

2. Provide or allow input of detailed

information about the DUT.

3. Provide information about the state

of the system.

4. Provide operations for controlling

the system’s state and potentially

its coniguration.

5. Display the DUT testing results.

For an operator, the interface you
design should always show the state

of the test system (e.g., running a test,
paused or stopped). For example, you
could use a large color-coded graphic

on the PC monitor in conjunction with

lights mounted on the test system.

The operator also will need a way to

control the state of the test system as

well as a way to input DUT information

(unless this is done automatically via a
bar code scanner).

As a general rule, the test program

you design will require the following.

1. Commands for starting and

stopping the test sequence.

2. Commands for sending test results

to various kinds of printers (defect
report ticket, etc.).

3. Control of the behavior of the test

sequence (i.e., picking a DUT
variant from a drop-down list).

4. A way to display a more detailed

description of test results. The

quality of a test results message

can help in providing a quick diag-

nosis of a user error or a recurring

hardware problem and may ulti-

mately eliminate the need for a test

engineer to visit the factory loor.

The user interface shown in Figure 7
was designed for an operator in a

low-to-mid-mix/high-volume test

application. The operator starts by

logging into the test system, selecting

the name and version of the testplan

and entering the DUT information.

The test status portion of the

display is a little less prominent

and visible than recommended for

a manufacturing test environment,

which may necessitate the addition of

test status lights to the test system.

Figure 7. Low-mix, high-volume user interface

9. Vredenburg, Karel, et al, “User-Centered Design, an
Integrated Approach.” Prentice Hall PTR, 2002.

10. Norman, Donald A., “The Design of Everyday Things.”
BasicBooks, 2002.

11 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

The system message ield displays
the test result information as well as

instructs the user on what to do next.

To help the test engineer during the

debugging process, the system

message ield also can display
error messages.

The user interface shown in Figure 8
was designed for a high-mix, very

lowvolume testing situation (e.g., cell
phone base stations). It also can be
used for test sequence development

or debugging. The class of user for

this interface is highly skilled and

possesses detailed knowledge of the

purpose and function of the available

tests, the DUT, and the test system

coniguration. An unskilled test
operator would not be able to use

this interface effectively.

The two GUIs were created with the

same test software, though they vary

considerably in complexity. The

operator GUI in Figure 7 hides
unnecessary choices and information

critical to the software developer.

Choosing the development
environment

The next step in choosing your test-

system software architecture is to

select a software development

environment. The software

environment and tools you choose

will have a signiicant impact on the
overall cost of your test system. When

choosing your software environment,

consider more than just the purchase

price of the software. You need to

consider how easy it is to learn and

use the software, how hard it is to

connect to other languages, devices

or enterprise applications, as well as

support and maintenance costs. Over
the life of a test system, just software

support and maintenance costs can

exceed hardware costs.

You have a number of options when

it comes to software development

environments, from writing everything

yourself in a language such as C, C++,

C#, VB, VB .NET, VEE or LabVIEW, to

using an off-the-shelf

test executive with pre-written third

party tests. The software environment

you choose needs to accomplish two

goals: 1) meeting your time-to-irst
test requirements and 2) meeting your
test-throughput requirements. How

fast can you get your test system up

and running, and how can you get the

greatest throughput?

Software development environments

can be grouped into two categories:

graphical or textual. Graphical

environments, such as Keysight’s VEE

Pro 7.0 (see Figure 9) or LabVIEW,
are considered easy for engineers

to learn and use, largely because of

engineers comfort with the schematic

enviro ment. In addition, it is easier to

modify small to medium size graphical
programs versus textual programming

languages. Historically, textual

programming languages ran faster in

the manufacturing environment and

yielded higher throughput. Today,

there is less difference between

the runtime speeds of a graphical

environment and a textual

environment.

Even though graphical environments

are easier to use than textual

environments, textual environments

are used more commonly in

manufacturing test systems. Only
about 22% of the halfmillion- plus
users who write code for test and

measurement equipment use a

graphical programming language.11

Graphical or textual programming?

Before you can decide on which

development environment is best for

your application, it’s important to

understand the use model of each

in greater detail.

Figure 8. Software developer’s interface

11. For more information on development
environments, refer to www.keysight.com/ind/vee;
www.softwire.com, www.ni.com/labview, and
Richter, Jeffrey, Applied Microsoft .NET Framework
Programming, Microsoft Press, 1 edition,
January 23, 2002.

http://www.keysight.com/find/vee
http://www.softwire.com
http://www.ni.com/labview

12 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Graphical programming is

accomplished by manipulating

images, called icons or objects, and

the lines that connect these images.

The images represent pre-made

commands while the lines represent

the program low, control points,
and /or how data are generated and

consumed. The icons and intercon-

necting lines are contained within the

integrated development environment

(e.g., the software program).

Many graphical programming

environments provide the ability

to create compiled or packaged

programs that do not need the

programming env ronment to run.

There are several graphical

programming environments

targeted at test and measurement

engineers. These programs tend to

have extensive I/O and instrument
drivers, and T&M-speciic math and
graphing operations. Some of the

advantages of graphical programming

languages over textual languages are

as follows:

1. No complex syntax—The program

instructions, typically presented

as a group of icons connected by

lines, are more immediately

understandable.

2. Easier to visualize the paths of
execution and interaction—Multiple

concurrent activities rely on what is

called a data-low model, where a
command needs to have all its data

available before it will execute. This

is easier than using multithreaded

programming techniques in textual

programming languages such as

C++ or Java.

3. Can use real life metaphors—The

icons representing the commands

can use metaphors (images) that
represent real-world equivalents of

the actions carried out by the icon.

Most test engineers ind graphical
programming to be more intuitive

and user-friendly than textual

programming.

Keysight VEE Pro 7.0 and
T&M Programmers Toolkit

Keysight VEE Pro 7.0

 – Description—easy to use, powerful

graphical instrument

programming environment

 – Applications—data acquisition,

design, low volume

manufacturing test

 – Purpose—graphical program

creation to acquire and analyze
instrument data

 – Features—easy test-system
control, sequencing, support of

Microsoft .NET framework,

MATLAB analysis and

visualization, full support of
ActiveX

Keysight T&M Programmers
Toolkit

 – Description—test code

development (in VB .NET, C++
or C#) integrated into Visual
Studio .NET

 – Applications—design

characterization, design
validation, manufacturing

 – Purpose—writing complex

programswith a variety of drivers

in a PC standard environment

 – Features—instrument I/O and
communication, test code debug,

data collection, display and

analysis, support for IVI-C,

IVI-COM, VXIplug&play drivers

Figure 9. Keysight VEE Pro 7.0 graphical programming environment

13 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

4. Rapid prototyping—With the

intuitive nature of a graphical pro-

gramming language, it can be easier

to quickly build a prototype of your

system. The prototyping capability is

less useful when dealing with a large

test system, but prototyping can aid

development of systems of any size.12

5. Easier to share and learn existing

programs—Using real-life metaphors

as visual cues can make it easier to

share and learn existing programs and

increase productivity.13

Textual programming languages use

special words and syntax to represent

the program’s operations and low.
Most, but not all textual program-

ming languages are based on open

standards. This means you will have

a choice of vendors when it comes to

your programming environment and

software tools. Textual programming

languages have a much larger set of

third-party drivers, tools, and add-ins

because they are based on open

standards and are more widely

used than graphical languages.

This beneits the test engineer.

Some of the advantages of textual

programming languages over

graphical languages are as follows:

1. Textual programming languages

are better suited for creating larger,

more comprehensive programs.

2. For larger programs, textual
programming languages are easier

to navigate and comprehend. A

person can observe only about 50

graphical objects at a time before

the information becomes too

complex or too small to see.14 If a

user is forced to move around in a

program to see all its objects, he

or she can lose track of the control

and data lines and ind it dificult to
understand the overall low of the
program. With that said, you can

improve the understandability of

large graphical programs by

breaking up the program’s large

operations into smaller

suboperations. This is called

functional decomposition and is

achieved by putting a series of

commands into a “black box”.
You then send commands to the

functional block and receive its

output as appropriate. Make

sure the graphical program you

use supports this functional

decomposition15 if you plan on

working with larger programs in a

graphical environment.

3. While the use of a textual program-

ming language can improve overall

system throughput, it’s the time

spent during instrument operations

that will have a greater impact.

For example, you’ll see a negative
impact on performance in a test

system where the DUT to

instrument switching is ineficient,
independent of which programming

language is used (graphical
or textual).

4. You also have a greater choice of

development environments with

textual programming languages.

For example, there are few
graphical programming languages

that have development

environments provided by multiple

vendors. This means that today’s

graphical languages are less likely

to have the advantages created by

competition between vendors.

Graphical programming tends to

be easier to learn and comprehend

while textual programming is more

pervasive and open. Table 3 summarizes
the differences between the two

programming environments. Work-

ing with open standards In addition

to choosing between graphical and

textual programming, you need to

consider whether the environment

you choose will be based on industry

standards or propriety, vendor speciic
technology. C++, Visual Basic, and C#

are all examples of industry standard

programming environments. Keysight

VEE Pro and NI LabVIEW are

examples of proprietary development

environments although Keysight VEE

Pro 7.0 does allow for access into

industry standard technologies such

as .NET. Several factors to consider

when deciding between an industry

standard and a proprietary

development environment are

 – cost

 – industry support

 – upgradeability

 – extensibility

Graphical Textual

Free and open Few	open	standards,	
less extensible

Dominated	by	open	standards,	
very	extensible

Rapid	prototyping	 Excellent	T&M	prototyping	
features

Some	code	wizards,	(T&M	Programmers	
Toolkit,	for	example)	but	slower

T&M support Several	graphical	environments	
targeted	at	T&M,	many	drivers	

Several	T&M-speciic	3rd-party	tools	
available,	many	drivers

3rd-party	tools Hundreds Tens of thousands

Learnable and

shareable

Easy	to	pick	up	and	use	programs	
programs	are	easy	to	share	

Only	small	or	very-well-designed

Table	3.	Graphical	versus	textual	programming

12. Rahman, Jamal and Lothar, Wenzel, “The Applicability
of Visual Programming to Large Real- World
Applications,” 1995, http://www.computer.org/
conferences/vl95/html-papers/wenzel/paper.html.

13. Blackwell, Alan F. and Green, T.R.G., “Does Metaphor
Increase Visual Language Usability?,” IEEE Sympo-
sium on Visual Languages VL’99, 1999, pp. 246-253.

14. Begel, Andrew, “LogoBlocks: A Graphical Program-
ming Language for Interacting with the World,” 1996,
http://www.cs.berkeley.edu/ ~abegel/mit/begel-
aup.pdf.

15. Glinert, E. P., “Visual Programming Environments,”
IEEE Computer Society Press, 1990.

http://www.computer.org/conferences/vl95/html-papers/wenzel/paper.html
http://www.cs.berkeley.edu/ ~abegel/mit/begel-aup.pdf
http://www.cs.berkeley.edu/ ~abegel/mit/begel-aup.pdf

14 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Development environments for

open-standard programming

languages have a greater feature

set and are less expensive than their

proprietary counterparts. Simply

stated, an openstandard environment

tends to create greater competition,

which in turn tends to drive down

prices and create innovation.

Open-standard languages generate a
lot of interest from both software tool

vendors and open-source developers.

Both of these groups spend consider-

able time understanding the needs of

the test-system programmer and, as

a result, develop both free and for-pay

tools and applications to meet those

needs. A good example is the

tremendous number of C and C++

libraries available on the market,

both from vendors and from end-

users. These libraries save devel-

opment time and money given that

it is faster and less expensive for a

developer to buy the domain-speciic
software (such as mathematical
analysis libraries) than create it
from scratch.

Open standard environments also
have a time-to-market advantage, as

most proprietary environments cannot

quickly take advantage of emerging

technologies. Emerging programming

technologies are developed with the

most common open standard

programming languages in mind. It

takes longer for a vendor to release a

new version of proprietary software

that takes advantage of new

technology.

The .NET framework—The .NET

Framework is an open, multi-platform,
multi-vendor set of software

technologies for programming

computers. The C# language has

been submitted to a standards body

as an open language. The underlying

.NET “Common Language Infra-

structure” technology, also an open
standard, is available in multiple op-

erating systems, including Microsoft’s

Windows and Linux.

The .NET technology has excellent

support and applicability to both

web development and PC software

development environments. The .NET

technology has many of the

advantages of Java language

without many of Java’s drawbacks.

For example, the .NET technology
eliminates programmer memory leaks,

makes software deployment easier,

and provides a rich Application

Programming Interface (API) for
system and GUI development. The

.NET technology is fully compiled via

a Just-In-Time (JIT) compiler. The JIT
compiler takes the operating system

(OS) and platformindependent code
and creates optimized, machine-level
code for the target platform.

While there is some additional

overhead required to load the .NET

framework runtime, programs written

with .NET are comparable, or run

faster, than their C/C++ counterpart.16

The reason programs can run faster

in the .NET environment is due to the

ineficiencies inherent in the linker
operation of older languages.17 A

survey of programmers and a number

of case studies have shown signiicant
improvements in productivity via the

.NET environment over the

programmers’ old environment.18

The .NET Framework (the collection of
API services and helper code used by

the .NET languages) is not the same
thing as Visual Studio .NET. Visual

Studio .NET is Microsoft’s development

programming environment with

support for the .NET technologies.

As shown in Figure 10, there are
multiple .NET development

environments and programming

languages available from a number of

different vendors and supported on

multiple platforms.

The best-known .NET languages are

C# and Visual Basic (VB) .NET. C# is a
lot like Java in structure and features,

but its syntax is meant to be an

evolution of C++. A C++ programmer

familiar with object orientation and

exception handling could easily move

to the C# programming environment.

Figure	10.	Programming	languages	within	the	.NET	framework

16. Wilson, Matthew, “Does C# Measure
Up?,” VB .NET, ASP .NET Windows
Developer, Volume 2, Issue 13, Fall 2003,
http://www.wd-mag.com/wdn/webex-
tra/2003/0313

17. Johnson, Mark S. and Miller Terrence C.,
“Effectiveness of a machine-level, global
optimizer,” 1986, http://portal.acm.org/
citation.cfm?id= 13321&dl=ACM&coll=-
portal

18. http://www.microsoft.com/net/case-
studiesPress, 1990.

Open standards

C/C++ Managed
C++

.NET
SDK

.NET class
library API

C.L.I.,
common language

infrastructure

Visual designers,
editor, debugger

.NET

Visual Studio .NET

C#

VB .NET, ASP .NET

http://www.wd-mag.com/wdn/webextra/2003/0313
http://www.wd-mag.com/wdn/webextra/2003/0313
http://portal.acm.org/citation.cfm?id=13321&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=13321&dl=ACM&coll=portal
http://portal.acm.org/citation.cfm?id=13321&dl=ACM&coll=portal
http://www.microsoft.com/net/casestudiesPress
http://www.microsoft.com/net/casestudiesPress

15 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

VB .NET is an upgrade to Visual Basic

6. Engineers with existing VB 6

applications must use an upgrade

wizard to migrate to VB .NET. Once
the upgrade process is complete,

access to .NET applications and the

additional power and lexibility
provided by .NET can be achieved.

Microsoft’s C++ language also has

been enhanced to include a new

version called Managed C++.

Managed C++ makes it easier to

execute calls within the .NET

software. Microsoft provides the

original unmanaged C++ in Visual

Studio .NET as well.

One signiicant advantage of .NET
over older

programming technologies is its

extensibility. Microsoft engineered

.NET so that it avoids a lot of the DLL

installation frustrations Windows

programmers experienced in the past.

There are already a large number of

third-party tools for .NET. Many of

these third-party controls (i.e.,
advanced graphing visual controls) are
useful to test-system programmers.

Additionally, several test and

measurement vendors, including

Keysight Technologies, National

Instruments, and Measurement

Computing, have released .NET-

compatible tools. For a complete list
of released .NETcompatible tools,

refer to Microsoft’s .NET partner web

site at www.vsippartners.com.

Keysight Technologies’ irst add-in for
Visual Studio .NET is called the Test

and Measurement Programmers Tool-

kit (see the sidebar on page 12 of this
application note). The T&M
Programmers Toolkit provides I/O
tools, graphing and mathematical

libraries, T&M speciic help and exam-

ple generators, and .NET

wrappers for instrument drivers

and other software. The T&M

Programmers Toolkit is fully integrated

into the Visual Studio environment.

For more information on Keysight’s
solutions, go to http://www.keysight.

com/ind/toolkit or http://www.

keysight.com/ind/iolib. To download

.NET-related I/O source iles, which
also work with the Keysight I/O
Libraries, go to Keysight Developer

Network (ADN) Web site at
http://www.keysight.com/ind/adn.

Developing a test sequence

In a survey of more than 2,500 test

and measurement equipment users,

93% of the respondents said they use
multiple test instruments and /or are

connecting their test instruments to

a PC. Of that, 37% said they use a
commercial test executive for test

sequencing. The remaining 56% of
these respondents use internal or

“home grown” software for
test sequencing.

A test executive is a software

application designed to run a series

of tests quickly and consistently in

a predeined sequence. If any of the
tests within the test sequence fail,

then the DUT fails. Over the years,
test executives have improved

considerably both in terms of lexibility
and capabilities. First-generation test
executives were language-speciic
and not powerful enough for a mission

critical manufacturing environment.

Second-generation test executives,

such as Keysight’s TxSL and NI’s

TestStand are more powerful but

more expensive. They also lack the

lexibility required for a low-volume,
high-mix manufacturing environment.

Each of the tests within the test

sequence is a separate module.

Commercial test executives come with

a standard set of test modules and

allow the user to create additional test

modules from scratch (as well as
customize existing test modules).
Test executives control the data to

and from the test module and, after

collecting and analyzing all of the
data, determine if the DUT passed

or failed.

One reason for using a test executive
is it provides a structured framework

for manufacturing test systems. Test

executives work best in medium- to

low-mix, and medium- to high-volume

manufacturing test environments.

Test executives are written so

that sequence design, individual

test design, and test limits and

coniguration management are treated
as separate tasks. Keeping the three

tasks separate results in greater

lexibility, higher quality, and an in-

creased opportunity for code reuse.

It is the test executive that provides

the infrastructure and helper services

required to connect each of the

separate tasks into a complete

program.

Figure	11.	The	test	executive	test	sequencer

http://www.vsippartners.com
http://www.keysight.com/find/toolkit
http://www.keysight.com/find/toolkit
http://www.keysight.com/find/iolib
http://www.keysight.com/find/iolib
http://www.keysight.com/find/adn

16 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

One of the most important features of
a test executive is its test sequencer.

As shown on the left side of Figure
11, the test sequencer is a sequence

of tests that can be manipulated in

design mode. Various test executives

provide different levels of lexibility in
this sequence, such as “test looping.”
At a minimum, test executives should

perform the following tasks.

1. Capture the results (and any
extra data) using their own data
collection model.

2. Keep track of the test limits and

test setup data, passing the setups

to the tests at execution time.

3. Provide limit checkers.

4. Provide run-time analysis of the test

results (pass or fail reporting).

Additionally, test executives may

include a software repository for

maintaining the test modules (and
for encouraging the reuse of tests).
With a software repository, the test

engineer can look for a speciic test by
doing a search within the test module

repository. If all the engineers in a

company settle on one test executive,

it then becomes possible to share test

modules between different product

and manufacturing groups.

Test executives may use a switching

model that makes it possible to

map the physical layout of the test

system’s control and data lines (and
any switch boxes) to the DUT and
instrument’s I/O pins. This allows
the test engineer to think in terms

of logical connections between

instruments and the DUT, rather than

worry about how the system is wired.

Finally, some test executives
include tools for building the operator

interface. While this feature tends to

be less lexible than using one of the
development environments discussed

earlier, it does provide a fast and sim-

ple alternative.

Planning for software reuse

Aside from the use of standard

libraries and operating system API’s,

most software reuse tends to be

opportunistic. A typical reuse scenario

is when a programmer encounters

a problem and remembers a similar

problem handled by a co-worker. The

programmer searches through the old

source code of previous programs to

ind the desired code. If the code is
found, the programmer decides how

and if the software can be adapted

to the current test situation. After

modiications are made, the software
must then to be re-veriied. Most of
the time, adapting software in these

situations is faster than creating

software from scratch.

The scenario above could have been

improved with a systematic software

reuse approach. The advantages of a

systematic approach is in the reduced

time it takes to search, ind, verify,
and adapt test code for new test

situations. A systematic reuse

approach requires following speciic
coding and architectural styles, as

well as adherence to standardized
company policies and practices.

Discussing all of the considerations

for implementing a complete company-

wide systematic reuse program is

outside the scope of this paper, but

there are decisions you can make

to help achieve a more systematic

approach for yourself, your team,

and even your company. Reuse

considerations should begin

after you’ve gathered system

requirements and before you

begin the software development.

Professional test executive or
custom software?

How do you decide if you should

create your own test executive or buy

an off-the- shelf version? Here are a

few factors you will need to consider.

1. The irst thing to look at is whether
you need a test executive at all.

If you don’t have a relatively ixed
sequence of tests, test executives

are probably not right for you.

2. If your company has an internal test

executive, or more likely, several

internal test executives, you’ll need

to investigate their quality, features,

availability of support, and the

collection of tests or other auxiliary

software available for them.

3. If you ind a reasonable choice, it
doesn’t hurt to look at the cost of

porting existing code over to use a

professional test executive.

4. You may decide to use a profes-

sional test executive because of its

support, quality or features.

5. A professional test executive

most likely will have better out-

sourcing characteristics. Third-

party software contractors and

consultants may already have

experience with such a test

executive, and third-party

libraries may be available.

6. A professional test executive

should include a complete set of

documentation. If you choose to go

with a professional test executive,

make sure it’s from a company

that provides high-quality service

and support.

17 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

The design reuse process

The irst step in the design reuse
process is to complete a domain

analysis. This is accomplished by

1) systematically analyzing the
functions and parts of your software

domain, and 2) using this information
to develop a software architecture

with well-deined component types
and algorithms.

Next, you will want to look for natural

boundaries in your software. One
software design practice of inding
and documenting the natural

boundaries is known as Design

Patterns.19 To ind the natural
boundaries, look to those areas where

one type of activity or data set links

with another type of activity or data

set. These areas can then be

grouped into separate modules

and documented accordingly. Once
documented, the same type modules

can then be swapped for one another.

Once you have identiied, collected
and documented your modules,

components and /or individual parts,

you will need to thoroughly test them

before they go into the repository (or
are passed on to your co-workers).
This will save you and your co-workers

from problems later in the process.

Finally, reusable components are
reusable only if your co-workers know

they exist. You need a repository (such
as a relational database) for your
modules where anyone in your team,

division, or company (if appropriate)
can browse and search for them

based on what the components are

and what they do.

A design reuse example

A good model for design reuse of

individual test modules is the test

executive—here’s why.

1. Some test executives break test

software up into swappable tests,

sequencers, limit checkers, test

sequence and test limit data.20

2. Test executives rely on the concept

of modules. For example, you can
have a module that provides the

ability to perform a single pass or

fail judgment, including the

sequencer data type, the sequence

execution operation, and the test

types.

3. Test executives allow reuse of tests

in different test sequences with

no change to the test code. The

sequencer provides the necessary

data to the tests to customize
their operation for the current test

sequence.

4. Test executives keep the tests in

separate modules or iles from the
test sequencer or test executive

application. This allows you to

easily swap tests in and out

without recompilation.

5. Some test executives allow you to

write your own custom limits check-

ers or sequencers.

All of these modules are able to inter-

operate because test executives use

well-deined application programming
interfaces (APIs) for each module.
The modules are placed on natural

boundaries between different types of

data and functions within the

test executives.

You can achieve similar reuse

success in your own code with good

architecture inluenced by the natural
boundaries of your software’s

functions, types and data. To

accomplish this, put information

that changes frequently, such as

the limits for a test, into a Data File.
Put less lexible elements, such as
a test class, into Types or “classes.”
Functions, or “procedures,” should
be reserved for the least

lexible elements.

Design reuse and .NET

While the deinitions of the
boundaries of your software domain

are not speciically inluenced by the
programming language or software

environment, some environments

are better than others in helping

to keep your software modular

and swappable.

.NET provides software tools that

make it easier to develop a formal

software reuse program within your

department or company. Since .NET

is object-oriented, it’s good at

representing boundaries between

different types of objects, such as

tests or sequencers. Nonobject-based

languages, such as C, require you to

keep track of which functions apply to

which objects, without much context-

sensitive help or compile-time error

checking.

.NET also includes improved

versioning and deployment features.

In addition, .NET has the ability to tell

Windows that you will only accept a

certain version of an external library.

This eliminates one of the common

frustrations with earlier versions of

Windows where you rely on an

external library (DLL), but then the
DLL changes and your software no

longer functions correctly.

19. Shalloway, Alan and Trott, James R., “Design Patterns
Explained: A New Perspective on Object-Oriented
Design,” Addison-Wesley Pub Co, 2001.

20. This is a good example of a design pattern speciic to
the test and measurement domain.

18 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Design reuse beneits
In summary, the reasons for

implementing a design reuse

program include improved

software quality, increased

software development eficiency,
and better use of expert knowledge.

Design reuse improves quality in

a couple of different ways. First,
software errors are reduced as a

result of the extra architectural

analysis, improved system design,

and lexibility and transparency.
With good reuse policies implemented

throughout the organization, you
have access to thoroughly tested

and veriied components, reducing
the opportunities for creating

new defects.

Design reuse increases

software development eficiency
by reducing duplication of effort.

Components need to be designed,

implemented and tested only once.

Good reuse practices make it easier

to reuse an existing component as

opposed to re-writing or even

re- creating a new component.

Design reuse takes advantage of an

organization’s expert knowledge. For
example, most software developers

spend time specializing on a particular
set of skills and will write components

based on those skills. With time, the

set of available components for reuse

becomes the set of the best know

edge of your organization. The
company’s expert skills and deep

knowledge will be evident in a rich set

of reusable software components.

These beneits are not theoretical. The
Software Engineering Laboratory at

the National Aeronautics and Space

Administration’s (NASA) Goddard
Flight Center achieved signiicant
beneits by implementing software
reuse in the development of software

products in its Flight Dynamics
Division. According to the software

engineering lab, NASA realized a
35% reduction in the effort needed to
deliver a line of code, a 53% increase
in daily productivity, and an 87%
increase in code quality.21

Design reuse summary

Systematic design reuse across

your company requires that your

management value the extra efforts

required by designing for reuse.

Failure to invest and do the job right
the irst time will lead to frustration
and wasted time down the road.

One or more repositories of software
components must be made available

to all the engineers who will need

them. You also need to be aware of

any copyright or patent limitations

of the code you plan to reuse. For
example, if your software is written

under contract with another company,

they may have exclusive rights to

that code.22

Summary

Before you begin writing code for

your test system, you need to make a

number of important decisions about

the system’s software architecture.

You will want to start by creating

a detailed software requirements

speciication that deines what you
want the system to do and how it

should operate. The SRS should

include an outline of how you will

gather, store, analyze and present
your data as well as how end users

will interact with your system.

Another important decision you

need to make upfront is which

programming environment and

language you will use for writing

your code. Using a standards-based

environment such as Visual Studio

.NET maximizes your lexibility and
helps you prolong the useful life of

your software. By combining

Microsoft’s Visual Studio .NET with

Keysight’s T&M Programmers Toolkit,

you can wrap objects written in a

variety of languages such as Keysight

VEE Pro 7.0. This allows you to pull

them forward into your new

programming environment,

making the most of your legacy

code investment.

Whether you choose a graphical

or textual environment will depend

on the size and complexity of your
system, your skill set, your company

standards, and the size of your
programming team. The decision

usually comes down to which

environment—graphical or textual—

will make you more productive.

Textual environments are almost

always the best choice for creating

code for large, high-throughput

manufacturing test systems because

they offer the most power and lexibil-
ity, and they allow faster throughput.

Finally, you need to decide whether
to use an off-the-shelf test executive

or write your own test routines. Test

executives can speed up your test

system development and lower your

costs but will require an up-front

training investment. If you are only

performing a few tests, you may want

to consider writing your own code.

21. Proceedings of the Sixteenth Annual NASA/Goddard
Software Engineering Workshop: Experiments in
Software Engineering Technology, Software
Engineering Laboratory, December 1991.

22. Defter, Frank W, et al, “Software Reuse: Major
Issues Need to Be Resolved Before Beneits Can Be
Achieved,” United States General Accounting Ofice,
1993, http://www.defenselink.mil/nii/bpr/bprcd/
vol2/272c.pdf.

http://www.defenselink.mil/nii/bpr/bprcd/ vol2/272c.pdf
http://www.defenselink.mil/nii/bpr/bprcd/ vol2/272c.pdf

19 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Appendices

Glossary

ActiveX—A standard method for

encapsulating COM-compliant
software modules so they can be

used in standard PC applications.

ActiveX controls can be used in

any ActiveX-compliant application,

regardless of where they

were created.

ADE (Application Development
Environment)—An integrated suite
of software development programs.

ADEs may include a text editor,

compiler, and debugger, as well

as other tools used in creating,

maintaining, and debugging

application programs. Example:

Microsoft Visual Studio.

API (Application Programming
Interface)— An API is a well-deined
set of software routines through which

an application program can access

the functions and services provided

by an underlying operating system or

library. Example: IVI Drivers.

C# (pronounced “C sharp”)—New
C-like, component-oriented language

that eliminates much of the dificulty
associated with C/C++.

COM — See Microsoft COM.

Direct I/O—Commands sent directly to
an instrument, without the beneit of
or interference from a driver. SCPI

Example: SENSe:VOLTage:RANGe:AUTO

Driver (or device driver)—A
collection of functions resident on

a computer and used to control a

peripheral device.

DLL (Dynamic Link Library)—An
executable program or data ile bound
to an application program and loaded

only when needed, thereby reducing

memory requirements. The functions

or data in a DLL can be simultaneously

shared by severalapplications.

IDE (Integrated Development
Environment)—See ADE.

Input/Output (I/O) layer—The software
that collects data from and issues

commands to peripheral devices.

The VISA function library is an

example of an I/O layer that allows
application programs and drivers to

access peripheral instrumentation.

IVI (Interchangeable Virtual
Instruments)—A standard instrument
driver model deined by the IVI
Foundation (http://www.ivifounda-

tion.org) that enables engineers to
exchange instruments made by

different manufacturers without

rewriting their code.

IVI COM drivers (also known as IVI
Component Drivers)—IVI COM
presents the IVI driver as a COM
object. You get all the intelligence and

all the beneits of the development
environment because IVI COM does
things in a smart way and presents an

easier, more consistent way to send

commands to an instrument. It is

similar across multiple instruments.

Libraries—Files containing reusable
software operations or functions

meant to be used by other programs.

They can be C based libraries, Visual

Basic libraries, .NET libraries, COM
libraries, or based on other software

technologies.

Microsoft COM (Component Object
Model) — The concept of software
components is analogous to that of

hardware components: as long as

components present the same

interface and perform the same

functions, they are interchangeable.

Software components are the

natural extension of DLLs. Microsoft

developed the COM standard to allow
software manufacturers to create

new software components that can

be used with an existing application

program, without requiring that the

application be rebuilt. This capability

allows T&M instruments and their

COM-based IVI-Component drivers
to be interchanged.

.NET Framework—The .NET
Framework is an object-oriented
API that simpliies application
development in a Windows

environment. The .NET Framework has
two main components: the com-

mon language runtime and the .NET

Framework class libraries. New
frameworks can be added by anyone.

Plug and Play drivers (also known
as universal instrument drivers)—An
important category of proprietary

drivers. Plug and Play driver stan-

dards were originally developed for

VXI instruments and were known as

VXI plug&play standards. When these

standards were adapted for non-VXI

instruments they became known

simply as “Plug and Play” drivers.
Library functions are in accessible

C-language source and you can call

them from programs written in C,

Basic, VEE, LabVIEW, or

LabWindows/CVI.

SCPI (Standard Commands for
Programmable Instrumentation)—
SCPI deines a standard set of
commands to control programmable

test and measurement devices in

instrumentation systems. Learn more

at http://www.scpiconsortium.org.

See “Direct I/O” for example.

Universal drivers—Another name for

Plug and Play drivers VISA (Virtual In-

strument Software Architecture)—The
VISA standard was created by

the VXIplug&play Foundation. Drivers
that conform to the VXIplug&play

standards always perform I/O through
the VISA library. If you are using Plug

and Play drivers, you will need the

VISA I/O library. The VISA standard
was intended to provide a common set

of function calls that are similar across

physical interfaces. In practice, VISA

libraries tend to be speciic to the
vendor’s interface.

http://www.ivifoundation.org
http://www.ivifoundation.org
http://www.scpiconsortium.org

20 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

Appendices (continued)

Glossary (continued)

VISA-COM—The VISA-COM library
is a COM interface for I/O developed
as a companion to the VISA specii-

cation. VISA-COM I/O provides the
services of VISA in a COM-based API.
VISA-COM includes some higher-level
services not available in VISA, but in

terms of low-level I/O communication
capabilities, VISA-COM is a subset of
VISA. Keysight VISA-COM is used by
its IVI Component drivers and requires

that Keysight VISA also be installed.

VXIplug&play—A hardware and

software standard that allows

interoperability between VXI

instruments made by different

manufacturers. Learn more at

http://www.vxipnp.org

XML (eXtensible Markup Language)—
A subset of SGML constituting a

particular text markup language for

interchange of structured data. The

Unicode Standard is the reference

character set for XML content.

Related literature

Data sheets

Keysight VEE Pro, 7.0

pub. no. 5988-6302EN

Keysight Toolkit,

www.keysight.com/ind/toolkit

Application notes

Test-System Development Guide:

 – Introduction to Test-System

Design (AN 1465-1) pub. no.
5988-9747EN http://literature.

cdn.keysight.com/litweb/pdf/

5988-9747EN.pdf

 – Computer I/O Considerations

(AN 1465-2) pub. no. 5988-
9818EN, http://literature.cdn.

keysight.com/litweb/

pdf/5988-9818EN.pdf

 – Understanding Drivers and

Direct I/O (AN 1465-3) pub. no.
5989-0110EN http://literature.

cdn.keysight.com/litweb/

pdf/5989-0110EN.pdf

 – Choosing Your Test-System

Software Architecture (AN 1465-4)
pub. no. 5988-9819EN http://lit-

erature.cdn.keysight.com/litweb/

pdf/5988-9819EN.pdf

 – Choosing Your Test-System

Hardware Architecture and

Instrumentation (AN 1465-5)
pub. no. 5988-9820EN http://lit-

erature.cdn.keysight.com/litweb/

pdf/5988-9820EN.pdf

 – Understanding the Effects of

Racking and System Intercon-

nections (AN 1465-6) pub. no.
5988-9821EN http://literature.

cdn.keysight.com/litweb/

pdf/5988-9821EN.pdf

 – Maximizing System Throughput

and Optimizing Deployment

(AN 1465-7) pub. no. 5988-
9822EN http://literature.cdn.

keysight.com/litweb/

pdf/5988-9822EN.pdf

 – Operational Maintenance

(AN 1465-8) pub. no. 5988-
9823EN http://literature.cdn.

keysight.com/litweb/

pdf/5988-9823EN.pdf

 – Using LAN in Test Systems:

The Basics (AN 1465-9) pub no.
5989-1412EN http://literature.

cdn.keysight.com/litweb/

pdf/5989-1412EN.pdf

 – Using LAN in Test Systems:

Network Coniguration

(AN 1465-10) pub no. 5989-
http://literature.cdn.keysight.

com/litweb/pdf/

5989-1413EN.pdf

 – Using LAN in Test Systems: PC

Coniguration (AN 1465-11) pub
no. 5989-1415EN http://litera-

ture.cdn.keysight.com/litweb/

pdf/5989-1415EN.pdf

 – Using USB in the Test and

Measurement Environment

(AN 1465-12) pub no. 5989-
1417EN http://literature.cdn.

keysight.com/litweb/

pdf/5989-1417EN.pdf

 – Using LAN in Test Systems:

Applications, (AN 1465-14)
(available in February 2005)

 – Simpliied Instrument
Communication and

Programming Using Textual

Programming Languages

(AN 1409-2), pub. no.
5988-6617EN

Other resources
Keysight Developer Network (ADN)
http://keysight.com/.com/ind/adn
To discover more ways to simplify

system integration, accelerate

system development and apply the

advantages of open connectivity,

please visit the Web site at

www.keysight.com/ind/

systemcomponents.

Once you’re there, you can also
connect with our online community

of system developers and sign up for

early delivery of future application

notes in this series. Just look for the

link “Join your peers in simplifying
test-system integration.”

http://www.vxipnp.org
http://www.keysight.com/find/toolkit
http://literature.cdn.keysight.com/litweb/pdf/5988-9747EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9747EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9818EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9818EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9818EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-0110EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-0110EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-0110EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9819EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9819EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9819EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9820EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9820EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9820EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9821EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9821EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9821EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9822EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9822EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9822EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9823EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9823EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5988-9823EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1412EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1412EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1412EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1413EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1413EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1413EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1415EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1415EN.pdf
http://literature.cdn.keysight.com/litweb/pdf/5989-1415EN.pdf
ttp://literature.cdn.keysight.com/litweb/pdf/5989-1417EN.pdf
ttp://literature.cdn.keysight.com/litweb/pdf/5989-1417EN.pdf
ttp://literature.cdn.keysight.com/litweb/pdf/5989-1417EN.pdf
http://keysight.com/.com/find/adn
www.keysight.com/find/systemcomponents
www.keysight.com/find/systemcomponents

For more information on Keysight
Technologies’ products, applications or

services, please contact your local Keysight

office. The complete list is available at:

www.keysight.com/find/contactus

Americas

Canada (877) 894 4414
Brazil 55 11 3351 7010
Mexico 001 800 254 2440
United States (800) 829 4444

Asia Paciic
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 6375 8100

Europe & Middle East

Austria 0800 001122
Belgium 0800 58580
Finland 0800 523252
France 0805 980333
Germany 0800 6270999
Ireland 1800 832700
Israel 1 809 343051
Italy 800 599100
Luxembourg +32 800 58580
Netherlands 0800 0233200
Russia 8800 5009286
Spain 0800 000154
Sweden 0200 882255
Switzerland 0800 805353

Opt. 1 (DE)
Opt. 2 (FR)
Opt. 3 (IT)

United Kingdom 0800 0260637

For other unlisted countries:
www.keysight.com/find/contactus

(BP-07-10-14)

21 | Keysight | Test-System Development Guide Choosing Your Test System Software Architecture - Application Note

This information is subject to change without notice.
© Keysight Technologies, 2004 - 2014
Published in USA, July 31, 2014
5988-9819EN
www.keysight.com

myKeysight

www.keysight.com/find/mykeysight

A personalized view into the information most relevant to you.

Three-Year Warranty

www.keysight.com/find/ThreeYearWarranty

Keysight’s commitment to superior product quality and lower total cost

of ownership. The only test and measurement company with three-year

warranty standard on all instruments, worldwide.

Keysight Assurance Plans

www.keysight.com/find/AssurancePlans

Up to five years of protection and no budgetary surprises to ensure

your instruments are operating to specification so you can rely on

accurate measurements.

Keysight Channel Partners

www.keysight.com/find/channelpartners

Get the best of both worlds: Keysight’s measurement expertise and product

breadth, combined with channel partner convenience.

www.keysight.com/find/systemcomponents

http://www.keysight.com/find/contactus
http://www.keysight.com/find/contactus
http://www.keysight.com
http://www.keysight.com/find/mykeysight
http://www.keysight.com/find/ThreeYearWarranty
http://www.keysight.com/find/AssurancePlans
http://www.keysight.com/find/channelpartners
www.keysight.com/find/systemcomponents

