
A Comparison of Leading

Switch/Measure Solutions

This application note compares the features, execu-
tion speed and ease of software development for
switch/measure solutions used in functional test
and data acquisition environments. It examines
the Keithley 27xx, Racal 1256, Agilent 34970A and
Agilent 34980A Switch/Measure Units, as well
as an Agilent 3499A/34401A combination, Agilent
E1411B/ E1476A VXI combination, and a National
Instruments PXI-4070/SCXI-1128 PXI combination
in the Visual Studio.NET application development
environment.

Switch/measure system characteristics

While a number of complex measurement functions
can be present in a test system, two components are
almost always present – a digital multimeter (DMM)
and a bank of relays (switches). A fundamental
core, then, is a switch/measure function. This can
be implemented in three different ways:

• Discrete instruments with cable interconnects, such
as an Agilent 34401A standalone DMM or E1411B
VXI DMM connected to an Agilent 3499A/B/C
switchbox or Racal 1256 switchbox.

• VXI or PXI or PXI-hybrid mainframes, such as the
Agilent E1411A VXI DMM and an E1476A VXI
switch card, or the NI PXI-4070 DMM and SCXI-
1128 switch card (the latter being a hybrid configu-
ration in which control signals are shared between
the PXI backplane and the SCXI backplane, either
in a combo chassis or through a cabled arrangement
from a PXI chassis to a standalone SCXI chassis).

• Dedicated instruments with proprietary backplanes
containing a DMM and a variety of switch cards,
such as the Agilent 34980A, Agilent 34970A, and
Keithley 2701 Switch/Measure Units.

Each type of solution has pluses and minuses,
which will be discussed in depth here. However,
the use model of this equipment generally falls into
two categories: Data Acquisition and Electronic
Functional Test. Which solution you choose will
depend greatly on your intended use.

The difference between data acquisition and
Electronic functional test

The same voltmeter and switch can be used in two
types of test systems:

• Data acquisition (DAQ), in which numerous read-
ings are taken to characterize performance of a
mechanical, electrical or electronic device, such as
measuring the temperature at thousands of points
on a spacecraft as it re-enters the atmosphere

• Electronic functional test (EFT), in which stimuli
are applied to an electronic module called a Device
Under Test (DUT) and the outputs monitored for
expected responses and compared to a set of limits,
such as determining whether an engine control
module for an automobile is operating correctly

The throughput that is achievable with the same
hardware differs greatly between these two environ-
ments. In DAQ mode, a voltmeter and a bank of
relays are programmed together to do a scanned

Application Note

2

measurement – a list of switch open/close states is
downloaded into the switchbox, and a hardware
handshake links the DMM measurement to the
appropriate switch setup. A measurement complete
trigger from the voltmeter can be used to make the
switches advance through this list or they can sim-
ply free run. The DMM can either wait a prepro-
grammed delay after it sends out a measurement
complete trigger or it can wait until it receives a
hardware signal from the switches called an advance
trigger, indicating that the switches have gone to
their programmed state and it is OK to take a read-
ing. Because of this hardware handshaking, it is pos-
sible to minimize the amount of I/O being trans-
ferred to and from each instrument. In addition, the
setup time is not duplicated for each measurement;
setup information is downloaded and then a single
initiation command starts the whole operation. The
execution speed can thus be very high — on the order
of 1,000 readings/sec depending upon the desired
measurement resolution and the switching speed.
In such systems, high-speed backplanes can improve
throughput, since a lot of data has to be transferred.
VXI and PXI systems shine here.

In an EFT system, the situation is different. Stimuli
must be applied and single measurements taken,
and this process is repeated many times to cover all
pins on the DUT. Thus the overhead of individual
readings and reconfiguration of the stimulus and
measurement instruments must be incurred repeat-
edly (close a relay, take a reading, open a relay).
Polling is often done to make sure a reading is
ready, which can add extra I/O execution time. The
result is that execution speeds are more like 100-
500 readings per second. Since fewer readings are
made, a high-speed backplane does not help much
here, which makes the lower cost dedicated
switch/measure solutions a better choice.

Cardcages

All switching systems on the market are implement-
ed as cardcages, with a variety of card types offered.
Some have open architectures, meaning that the
backplane interface is documented and implement-
ed by more than one vendor, such as VXI and PXI.
Others have vendor-specific internal backplanes,
such as NI’s SCXI, Racal’s 1256, Keithley’s 27XX
and Agilent’s 3499 family, 34970A and the new
34980A. The reason many vendors prefer their own
designs is so that they (and you) do not have to pay
for the extra capabilities demanded by open stan-
dards. They can put just enough power, just enough

cooling, and just enough backplane speed in the box
to optimize it for the switch cards that they intend
to offer. Vendor-specific architectures often also
allow others to provide customization by means of a
breadboard card that typically has address decoders
already implemented, with room for users to add
their own circuitry.

In addition to relays and DMMs, there are several
other classes of functionality typically implemented
in switch/measure systems because they are often
used together. These are:

• Digital I/O (DIO)

• Digital to Analog converters (DACs), which are
sometimes fast enough to use as waveform
generators at low frequencies

• Frequency counters/totalizers

• Isothermal Terminal Blocks

• Customizable (breadboard) cards (useful for signal
conditioning), such as that typically required by
strain gages

The switch cards come in a variety of types, and
are configured as multiplexers, matrices or general
purpose. These are:

• Low bandwidth (DC-100 MHz)

– FET relays (high switching speed, high
on-resistance, low voltage and current)

– Reed relays (medium switching speed, low
on-resistance, medium voltage and current;
also available with low thermal EMF)

– Armature relays (low switching speed, low
on-resistance, high voltage and current;
also available with low thermal EMF)

• High bandwidth (up to 18 GHz)

– RF relays (low speed, low on-resistance,
low voltage and current)

– Microwave relays (low speed, low on-
resistance, low voltage and current)

3

Ease of programming

Application development environments

In any test system, it is necessary to program the
instruments. Several Application Development
Environments (ADEs) are in common use:

• Graphical Languages:

– Agilent Technologies VEE Pro

– National Instruments LabVIEW

• Textual Languages

– Microsoft Visual Studio.NET (VB/VC++ 7.0,
C# and many more)

– National Instruments LabWindows/CVI

– Previous versions of Microsoft languages
(VB/VC++ 6.0, etc.)

– Rocky Mountain Basic (“HP Basic”)

Of all of these, the three most commonly used are
VEE Pro, LabVIEW and Visual Studio 6.0, with
Visual Studio.NET making gains. In the Visual
Studio.NET environment, Agilent offers a software
product called T&M Programmers’ Toolkit and NI
offers a product called Measurement Studio, both
of which make using instruments easier. In the
benchmarks performed for this application note,
all instruments were programmed using Visual
Studio.NET using both Agilent T&M Toolkit
and NI Measurement Studio.

Drivers vs. SCPI

Standalone instruments usually require ASCII com-
mands to be sent to them over an interface such as
GPIB, USB or LAN. The command language has
been standardized and is called SCPI (Standard
Commands for Programmable Instruments). These
commands can be sent to the instrument either
directly via low-level function calls that talk to the
appropriate interface, or through higher-level func-
tion calls. These higher-level calls are contained in
software called Drivers. You can write these your-
self or you can use drivers provided by the manu-
facturer or others.

Cardcage-based systems such as VXI and PXI are
most often controlled via data registers rather than
ASCII commands (although there are a few mes-
sage-based cards for VXI that rely on the built-in
word-serial protocol that is a part of the VXI specifi-
cation). Although one could send the necessary data
to these registers using the same low-level interface
function calls mentioned above, it would take quite
a while to write such a program, so it is more cus-
tomary to use a driver provided by the manufactur-
er. It is also possible to send SCPI commands to
some register-based instruments – Agilent provides
Downloadable SCPI Drivers (D-SCPI) for some of its
VXI cards. This code resides in Flash ROM on a
GPIB controller (E1406A Command Module) located
in slot 0 of the VXI mainframe. Agilent also offers
Interpreted SCPI (I-SCPI) for its VXI FireWire inter-
face. I-SCPI is typically much faster than D-SCPI
since it uses the faster command parsing of the PC.
PXI does not provide for a similar arrangement; all
PXI cards are register-based and thus require driv-
ers to be provided by the manufacturer. Drivers for
VXI and PXI instruments are provided as a com-
piled DLL for use with any language, and may also
be offered as special drivers for Agilent VEE Pro or
NI LabVIEW.

Except for PXI cards, which require drivers, most
drivers do not include all possible instrument func-
tionality. There is often a "pass-through" function
available though, allowing SCPI commands that are
not implemented in the driver to be sent to the
instrument from the driver.

In the Visual Studio environment, Microsoft’s
IntelliSense feature makes using a driver quite easy,
since the programmer simply selects easy-to-grasp
names from a drop-down list and views a descrip-
tion of the function and its parameters.

The primary advantages to drivers, at least where
there’s a choice of SCPI or drivers, are:

1.The program is more transportable and more read-
able by other programmers. While the SCPI syntax
is widely understood, figuring out exactly what
string to compose almost always requires a visit to
the instrument’s manual. It is also worth noting
that a driver will eventually generate SCPI com-
mands for you, so you may need to learn it anyway
as you debug your application.

4

2. Built-in help during development via IntelliSense
(VB6 and .NET)

3. Built-in state caching, if implemented, can improve
execution speed (discussed in more detail in the
next section)

4. Quirkiness of the instrument may have been taken
into account for you, reducing the chance that you
will need support.

The primary disadvantage to drivers is that, except
for PXI as mentioned above, they may not include
all possible functionality. Another is that if the driv-
er does not function correctly, it can be difficult to
debug. The task is made simpler by using the I/O
Monitor available in Agilent T&M Toolkit to observe
the actual SCPI commands being sent to the instru-
ment. However, that means that you must under-
stand SCPI in the first place, and you may have cho-
sen to use a driver so you didn’t have to do that.
This is an argument for using drivers that are
released and supported by the instrument manufac-
turer rather than those of independent 3rd parties.

Interface drivers

Before your program can pass commands to a
device, a driver must be written to control the hard-
ware interface, such as LAN, USB, GPIB, MXI-3, and
FireWire. Low-level drivers to handle such hard-
ware are shipped as part of the vendor’s I/O
libraries. NI calls their interface drivers Passport
drivers, while Agilent calls theirs Tulip drivers. We
will not go into detail on these here because you
will not have any reason to use them directly.
However it is useful to know they’re there, especial-
ly when using NI and Agilent hardware and soft-
ware in the same environment. It is possible for NI
software to access Agilent interface hardware and
Agilent software to access NI interface hardware.
This is described in detail in the Agilent I/O Library
online documentation.

VISA, VXIplug&play and IVI

Software drivers are organized into layers. The sim-
plest standardized layer is called VISA (Virtual
Instrument Software Architecture). (It could be
argued that VISA is not really a driver since it is so
generic, but let’s not split hairs). It allows SCPI
commands to be sent to the instruments via simple
C function calls such as viRead and viWrite, and
binary commands to be sent to registers via C
function calls such as viPeek and viPoke. Agilent and
NI are the two major providers of this software.
Agilent also provides a library called SICL
(Standard Instrument Control Library), which pre-
dates VISA and is in fact used as the underlying
code for Agilent’s implementation of VISA. Agilent
has also adopted the industry standard VISA-COM
architecture by providing its VISA C function calls
to “COM-friendly” environments such as Visual
Studio. [COM is an acronym for Component Object
Model, a Microsoft standard for encapsulating
libraries, making it easier to interface with and
maintain them.]

Register-based devices, including most VXI instru-
ments and all PXI instruments, require drivers
unless the developer chooses to use the viPeek and
viPoke commands mentioned earlier, which is a
very tedious process. A layer on top of VISA was
created for this purpose, called VXIplug&play.
Although the name has VXI in it, the concept has
long been extended to non-VXI instruments, includ-
ing most standalone programmable instruments.

VXIplug&play drivers are instrument specific – the
name of the instrument is contained in the function
names. A typical C example is:

hp34401_read_Q (vi, readings, numReadings);

(Many Agilent drivers were written when Agilent
was a part of Hewlett-Packard, and the driver
names were not changed to maintain backwards
compatibility.)

Since many products have similar functionality,
unnecessary duplication of functions resulted from
the VXIplug&play standard. To fix this, instruments
were lumped into classes, such as DMM, Scope,
Function Generator and Switch, and drivers for
these classes were named IVI (Interchangeable

5

Virtual Instruments). Definitions for these drivers
were standardized by an organization called the
IVI Foundation. There are two forms of IVI:

• IVI-C, preferred by NI. Different versions are
required depending upon the language (C,
LabVIEW, etc.). A typical C example is:

IviDmm_ReadMultipoint (vi, maxTime, arraySize,
readingArray, &actualPoints);

• IVI-COM, preferred by Agilent due to its applica-
bility to many development environments without
requiring different versions for each environment
(all Microsoft COM environments including VEE,
LabVIEW, Visual Studio and more). An example
in Visual Basic is:

myDMM.Measurement.ReadMultiPoint (maxTime, readings)

In both cases, it is possible to use instrument-specific
function calls to handle cases in which the class-
specific functions do not map into the available
functionality of an instrument. Using such function-
ality removes the “Interchangeable” from IVI, but
sometimes that is why people buy one instrument
over another —to get functionality not available
elsewhere. You must decide if instrument inter-
changeability is a requirement and write your
code accordingly.

VXIplug&play and IVI drivers for faceless instru-
ments are shipped with code that creates a soft
front panel, which is a standalone executable pro-
gram. It cannot be integrated into an instrument
control program that you write. However, some
of them can generate code snippets that can then
be cut and pasted into certain development
environments.

VXIplug&play drivers are also shipped with a
function panel, which simplifies the calling of
C functions from Agilent VEE Pro and LabVIEW.

LabVIEW and VEE Pro drivers

LabVIEW uses a special type of graphical driver
specific to NI, officially called a G Framework
VXIplug&play driver. These are also referred to as
“G” , “G-Win”, LabVIEW or “LabVIEW Certified Plug
and Play” drivers. However, since LabVIEW can also
use the Windows framework (C-based)

VXIplug&play drivers, it is often difficult to tell
which type of driver you are downloading until you
can open it and look at it.

Agilent’s VEE Pro can also use a variety of drivers,
including VXIplug&play (Windows framework), IVI-
C and IVI-COM drivers. In the past, Agilent devel-
oped a special type of driver, called a "Panel" driver,
that was specific to VEE Pro. Today, Agilent has
standardized on COM and .NET-friendly drivers for
all new instruments to provide more development
environment choices for customers.

What about speed?

Experiments with the hardware used in this bench-
mark have shown that VXIplug&play and IVI drivers
can be as fast as SCPI (via VISA) in modern com-
puters. Although there are some caveats to this,
there is no reason to avoid drivers solely due to
concerns about execution speed.

No matter which way you go, there is a more insidi-
ous problem with instrument programming, and
that is sequencing of commands. If you use SCPI
yourself, you need to understand that some com-
mands cause other instrument states to be changed.
A driver may take care of this for you, at the
expense of having to send a lot of query commands
to the instrument to figure out what state it is in or
by sending extra commands to the instrument to
make sure it is in a given state. This can add a fair
amount of execution time. The problem can be
solved by the use of state-caching, which is com-
monly implemented in IVI drivers and which you
can implement yourself if you are so inclined. A
state-caching driver keeps track of the current state
of the instrument, and when a command comes
along that would not result in any change in state,
it doesn’t send that command to the instrument,
thus saving command transfer time and command
parsing time.

State problems can generally be fixed by issuing a
reset command to the instrument so that it reverts
to a known state. However, reset commands can
take quite a long time to execute within an instru-
ment, so it is good practice to issue only one reset
command the first time a program is run and to
manage the state carefully as the program unfolds,

6

making sure that the instrument is in a state
equivalent to that of a reset command at the end
of the program. It is also usual practice to issue a
reset command when errors are encountered.

Here’s an example of redundant commands that
can add to execution time: suppose you program
in SCPI and send the command “CONF:VOLT DC
10,.001”, which will tell a DMM to go to the DC
function and set the range to 10V and the resolution
to 1 mV. At top GPIB speeds of 1 MB/sec, this
21-character string (including the carriage return
character) would take 21 microseconds plus the
overhead involved in the function calls, which
would add about 10us in a modern PC. The instru-
ment has to parse this command using its consider-
ably slower processor. In the case of a 34401A DMM,
for example, the 12 MHz processor would take about
21 milliseconds of additional time. Now, if the DMM
is already in that state, this is 21.031 ms of time
that did not need to be spent. It may not sound like
much, but a typical test program can have hundreds
or thousands of DMM readings, so it is important to
maximize the efficiency of the I/O and subsequent
processing in the instrument. An IVI driver that has
been implemented with state caching would know
that this is the state the instrument is in and would
not bother to send the command. You can implement
state caching yourself at the expense of extra pro-
gramming time. By the way, this example shows
why LAN and USB are not appreciably faster than
GPIB for small data transfers. The I/O transfer
speed is so much faster in all cases than the instru-
ment processing time that the choice of interface
does not yet matter very much.

The Agilent 34980A (below) is a new class of
instrument that uses a much faster internal micro-
processor. It can execute that same string in about
1.5 ms, reducing the need for state caching.

Common Development Environment

In order to compare apples to apples while bench-
marking the various instruments discussed in this
app note, it was necessary to use a common devel-
opment environment. Although LabVIEW and VEE
Pro are popular graphical environments, much man-
ufacturing test work is done in textual environ-
ments. In this realm, VB6 and C or its derivatives
(VC++, LabWindows/CVI) dominate. However, there
are numerous reasons to develop new applications
using Microsoft’s Visual Studio.NET environment.
Both Agilent and NI have released tools to assist a
test system developer create programs quickly in
this environment (Agilent’s T&M Toolkit, and NI’s
Measurement Studio). Microsoft will also make it
essential for developers to upgrade to .NET as sup-
port for the older programs wanes. VB6 programs
can also be ported into the VB.NET environment
using .NET’s built-in porting tool. For these reasons,
VB.NET was chosen as the common development
environment.

It was also desired to show that NI, Keithley, Racal
and Agilent hardware could work together in a real
test system. Thus, a test system was constructed
using all of these products, as shown in Figure 1
(page 7). LAN was used for some instruments – the
Agilent 34980A and the Keithley 2701 via a LAN
hub. MXI-3 was used to connect the PC to the PXI
cage. FireWire was used to connect the PC to the
VXI cage. Since the VXI cage can also be controlled
via a GPIB command module, that was also tried,
via a dedicated PCI GPIB interface card. Other
instruments were controlled via GPIB, using an
Agilent 82357A USB/GPIB converter.

Figure 1 also shows the relative height of each
of the devices tested, ranging from 2 EIA units
(an EIA unit, or “rack unit” is 1.75 inches) for the
34401A DMM to 4 units for a “3U” PXI/SCXI card-
cage. (The PXI cards are 3U, but the cardcage they
go into is 4U.) No attempt was made to compare
VXI rack sizes. A 4-slot version (3U) was used for
convenience, although a 13-slot frame (7U) is more
typically used in large test systems. It also points
out that although new systems today tend to be
built using non-VXI hardware, a 4-slot frame is a
great solution for the occasional card whose
functionality is only available in VXI.

7

Agilent 34980A

LAN

34922A 70-ch arm mux

34925A 40/80-ch FET mux

34933A 4x8 dual reed matrix

Agilent 3499A
GPIB

N2266A 40-ch reed mux

Racal 1256
GPIB

1260-138A 8, 1x8 arm mux

NI PXI-1010
8-slot PXI / 4-slot SCXI

mainframe
MXI-3

SC
XI

-1
12

8
32

-c
h

FE
T

m
ux

PX
I-4

07
0

 6
.5

-d
ig

it
DM

M

 E1476A 64-ch 3w arm mux

 E1411B 5.5-digit DMM

Agilent E8408A,
4-slot VXI mainframe

FireWire

GPIB command module

Keithley 2701 LAN

7703 32-ch reed mux

Agilent 34970A
GPIB

34901 20-ch arm mux

Agilent
34401A

DMM

Trigger
In/Out

Trigger Out

Trigger In

GPIB PC

OR

LAN Hub

USB / GPIB
converter

Figure 1.

8

Benchmark results

A program was written in VB.NET that controlled
all instruments in both a Data Acquisition mode
(scanned voltage readings) and EFT mode (single
reading with associated switching). The following
software was installed on a Compaq Evo with a
2.4GHz Pentium 4 with 512MB of RAM:

• Agilent’s T&M Toolkit 1.2

• The above Agilent software installs I/O libraries,
including SICL and Agilent VISA, and .NET
wrappers for all Agilent instruments that have
VXIplug&play drivers, including the E1411B
VXI DMM and E1476A VXI switch

• VXIplug&play drivers were downloaded from
the Agilent Developer Network (ADN) web site
for the E1411B and E1476A.

• D-SCPI drivers were downloaded from the ADN
web site for the E1411B DMM and E1476A switch

• IVI-COM drivers were downloaded from the ADN
web site for the 34401A DMM, 3499A Switch Unit
and 34970A Switch/Measure Unit

• HP VIC (not renamed since HP and Agilent split)
was downloaded from the ADN web site in order
to initialize a GPIB Command Module for use
with D-SCPI calls.

• NI Measurement Studio.NET 7.2

• An IVI-C driver was downloaded from the Keithley
web site for the 2701 Switch/Measure Unit

• An IVI-C driver was downloaded from the Racal
web site for the 1256 Switch unit

• NI-SWITCH, NI-DAQ, NI-DAQmx and NI-DMM IVI-C
drivers were installed from the NI driver install
disks and the Toolkit Driver Wrapper Wizard was
run to create .NET compatible calls

Benchmark timing results:

EFT time = time to open and close one relay and
trigger and read one DMM DCV reading on the 10V
range with a resolution of 1mV (4.5 digits).
Reported time is average of 20 such measurements

DAQ time = time per reading to scan a 20-channel
list, taking a measurement as each relay closes.

Driver SCPI

EFT DAQ EFT DAQ

Agilent 34980A

70-ch armature mux 16.9 ms 10.4 ms 15.1 ms 10.1 ms
(34922A)

Dual 4x8 reed matrix 9.6 ms 1 8.4 ms 1
(34933A)

40/80-ch FET mux 10.0 ms 2.7 ms 7.9 ms 2.7 ms
(34925A)

Keithley 2701-7703

32-ch diff. reed mux 440 ms 68 ms n/a n/a

Racal 1256-138A/E1411B

8 1x8 2-wire armature mux 4.13 ms 113 ms2 n/a n/a

Agilent 34970A-34901A

20-ch armature mux 52.2 ms 22.8 ms 70.0 ms 25.2 ms

Agilent 3499A-N2266A/34401A

40-ch reed mux 29.5 ms 21.4 ms 35.3 ms 27.1 ms

Agilent VXI E1476A/E1411B

64-ch 3-wire reed mux 30.1 ms 11.9 ms 46.6 ms3 2.94 ms3

NI SCXI-1128/PXI-4070

32-ch FET mux 12.8 ms 2.91 ms4
N/P N/P

Notes:

1 It is not possible to do a "scanned" measurement using a matrix. This is not the
typical use model for a matrix, which is used most often for EFT testing.

2 The Racal 1256 took 2 seconds to process the "define scan list" command. That is
why its data acquisition time was so long. Without that, the execution time would have
been about 13 ms. Of that, 10 ms was the "trigger delay" parameter that was used, since
the advance trigger output did not appear to work. If that delay were removed, the execu-
tion time would have been about 3 ms, which is consistent with normal DAQ modes.

3 The VXI SCPI numbers were gathered with an E1406A GPIB Command Module

4 The SCXI-1128 was unable to generate a trigger back to the DMM, so a full hand-
shake is not possible. Thus the SCXI measurement is a synchronous type, in which the
DMM takes 20 readings using a sample interval, and its Measurement Complete signal
is used to advance the scanning to the subsequent channel. Therefore the execution
time depended upon the DMM sample interval. The reported number is the execution
time for a sample interval of 0.0, representing the overhead. As sample interval goes up,
the reported time equals the sample interval.

N/P Not possible. PXI instruments require the use of drivers.

9

There are a few interesting nuggets of information
in this data. As mentioned earlier, Data Acquisition
mode results in much faster execution time, some-
times by as much as an order of magnitude. Also,
there are wide variations in execution times;
Keithley’s use of fast reed relays didn’t help much,
for example, since the instrument was so slow at
taking readings. PXI was fastest, but its perform-
ance, which was only measured using FET switches,
was comparable to the 34980A FET switches. Its

execution time would increase by basically the
switching time of reeds or armatures if they were
used instead. Also, depending upon how the driver
is implemented, it can be faster than the SCPI
equivalent by taking advantage of state-caching.

Product breadth

The following charts show the types of modules that
are available for the various platforms.

Agilent 34980A Agilent 34970A Agilent 3499A Agilent VXI NI PXI/SCXI Keithley 2701 Racal 1256

Matrix relay

FET None None None None 4x6 2w None None
4x8 2w

Reed 2, 4x8 2w None None 4x32 2w 4x16 2w None None
4x32 2w
4x64 2w

Armature 2, 4x8 2w 4x8 2w 4x4 2w 16x16 4x6 2w 6x8 2w 12x12 2w
2, 4x16 2w 4x8 2w 4x16 8x16 2w (7 configurations)

8x32
8x8
4x16 2w

Mux relay

FET 40-ch 2w None 8-ch 16-ch 3w 24-ch 2w 20-ch None
2, 4-ch 32-ch 32-ch 2w
4, 2-ch se 16-ch 3w

Reed 40-ch 2w 20-ch 2w 40-ch se 16-ch 3w 64-ch 2w 32-ch 2w 42-ch (dry or
48-ch se 128 2w merc wetted)
64-ch 3w 256 2w
256-ch

Armature 40-ch 2w 20-ch 2w 10-ch 2w 64-ch 2w 20-ch 2w 23-ch 2w
27-ch 2w 40-ch 1w 20-ch-2w 32-ch 2w 16, 1x4

40-ch 2w 40-ch 2w 8, 8-ch 2w

RF 4, 1x4 50 or 75Ω 2, 1x4 50 or 75Ω 2, 1x4 2, 1x4 4, 1x4 2, 1x4 10, 1x4
2, 1x6 6, 1x4 50 or 75Ω 8, 1x4 2, 1x4
1x9 50 or 75Ω 1x16 1x6

1x32 50Ω 2, 1x6

GP relay

Armature 28-C/4-A, 20-ch C 7/8/10/20-ch C, 16-ch C 8/16/32/40 C 40-ch A 12 A
20-ch A 40-ch A 32-ch C 16/31/100 A 12 B

40-ch A 12 C
64-ch A 20 DPDT

52 C
80 A, low/hi
power versions

RF 2-ch SPDT, 3-ch SPDT, 18 GHz, 32, 64 relay drivers None 20-ch SPDT
3-ch SPDT relay driver 3-ch SPDT, 50/75 Ω

relay driver 2 SPDT
5 SPDT
2x2 xfer switches

Continued on Page 10Key:

A = Form A
B = Form B
C = Form C
1w = 1-wire
2w = 2-wire

Agilent 34980A Agilent 34970A Agilent 3499A Agilent VXI NI PXI/SCXI Keithley 2701 Racal 1256

DMM 6.5 digit built-in 6.5 digit built-in External 5.5 digit or 5.5 digit or 6.5 digit built-in External
6.5 digit 6.5 digit

Digital I/O 64-ch On multifunction 16-bit, 32-bit TTL 4, 8-bit 11different cards On multifunction 48 oc,
card 72-ch out cards 96 (ttl, cmos, oc)

96-ch dio

64-ch iso in

DAC 4-ch iso On multifunction On multifunction 4-ch, 8/16-ch On multifunction None
waveform card cards card

Counter/totalizer On DIO card On multifunction On multifunction E1333A: 4- or 8-ch to On multifunction None
card cards 2-ch @ 100 MHz + 125 MHz card

1-ch @ 1 GHz

Multifunction 32 dio 16-bit dio, M-modules digitizer, counter, None
2 ±12V DAC 26-bit counter, dio, dac
100 KHz Totalizer 2, 16-bit dac

Analog bus Internal 4Bus 2w None None None PXI: none DMM Hi/Lo DMM Hi/Lo
SCXI: 3Bus 2w

Other Breadboard None None Scopes, arbs, etc Scopes, digitizers, None Breadboard
arbs, etc

10

Cost of ownership

Prices of several Switch/Measure solutions are
shown in the table at right. Those requiring sepa-
rate DMM and switchbox were eliminated. PXI and
VXI suffer from the need to pay for an expensive
cardcage that was meant for high-speed instrumen-
tation. One must also pay for an interface card on
both the computer end and the cardcage end. This
creates an overhead that must be added to the cost
of every slot used. In addition, it can take consider-
ably longer to get a solution implemented using dis-
crete cards than by using a Switch/Measure box.
See the next section for a more thorough discussion
of this. Using VB.NET, it took a few minutes to
implement a scanned measurement on the 34980A
and 34970A Switch/Measure Units. In contrast, it
took two weeks and several support calls to do the
same measurement using PXI and SCXI.

Instrument List price (USD, as of September 1, 2004)

Agilent 34980A $2350 incl. DMM, LAN, USB, GPIB, 8 slots ($294/slot)

Agilent 34970A $1477 incl. DMM, GPIB, RS232, 3 slots ($492/slot)

Keithley 2750 $2995 incl. DMM, GPIB, RS232, 5 slots ($600/slot)

NI PXI $5485 PXI-1042 8-slot cage ($1995), 6 slots avail. ($914/slot)

PXI-4070 DMM ($1995), (uses 1 slot)
MXI-4 interface (PXI-PCI8331) ($1495), (uses 1 slot)

Cards for the Agilent 34980A range from $495 to $2000.

Cards for the Agilent 34970A range from $340 to $501.

Cards for the Keithley 2701/2750 range from $445 to $995,
plus one microwave module at $1995

Switch cards for PXI from NI range from $495 to $1995,
with one high density card at $4795.

Product breadth continued

From nearly any perspective, the 34980A shines.
It holds more cards than many other solutions,
has a wide selection of cards covering higher
frequency ranges, has more computer interface
options, and has the lowest price per slot. It also
has support for more programming environments
(via LabVIEW and IVI-COM drivers).

15 gp/16 dio

4x4 mat/16 dio

2 DAC/16 dio

20-ch 2w mux,
2DAC, 16 dio,
1 counter
10-ch 2w mux,
32 dio

11

Ease of Use issues

Numerous problems were encountered over the
course of the 3 week evaluation period, which are
summarized here:

1. Keithley Firmware update required. If the pro-
gram aborts or is ended without executing a “close”
on the Keithley 2701, that instrument cannot be
used again until power is cycled. The Keithley web
site FAQ has an item that says that version A06 of
their firmware allows a second port (2701) to be
opened in order to send the command “KI2701”
which will reset port 1394 so it can be used again.
The unit used for the testing had version A04, so
A06 was downloaded from their web site and the
unit was re-flashed. No problems were encountered
doing this and it indeed fixed the problem.

2. Unusual behavior. The Keithley 2701 was found to
be resetting the DMM aperture time to SLOW (5
PLC) whenever a ROUT:MULT:CLOS (Close multi-
ple relays) command was sent. This necessitated
the addition of a command to reset the aperture
time to .01 NPLC. This was also necessary in DAQ
mode even though the Configure statement sets the
resolution. No other instruments behaved this way,
so it took a while to understand why the readings
were so slow.

3. NI-VISA setup changes required. If NI VISA is
used, one must also run MAX (Measurement
Automation Explorer) and enable the “Passport to
Tulip” interface driver in the Tools->NI-VISA->VISA
Options->Passports or none of the Agilent
VXI/GPIB instruments will be recognized. However,
with NI Measurement Studio installed, this inter-
face could not be used because the NI Passport
interface driver calls AgVisa32.dll and it caused an
exception upon exit. A support session was initiat-
ed with NI that took a week to resolve. NI’s Tulip
passport driver writer said this is a known problem.
The fix was to install a patched version of
NIVisaTulip.dll. This fixed the problem, but we
observed that the latest NI install disks are still
using the older version.

4. NI IVI-compliance problems. Agilent’s Driver
Wrapper Wizard can only wrap IVI-C and
VXIplug&play drivers that are properly installed
according the IVI Foundation Specs. NI-DMM
and possibly other NI IVI-C drivers did not install
correctly unless the “LabWindows/CVI examples”
box was checked during the installation step.
At the time of this evaluation, NI did not provide
.NET compatibility for their instruments, but they
did offer .NET-wrapped code that can be down-
loaded from their web site and manually attached
to a program. This was done for the NI-DMM
driver. However, NI chose a Namespace of
“InstrumentDriverInterop” in that wrapper, which
conflicted with the one created by Agilent Toolkit.
The NI Namespace was renamed “InstDvrInterop”
to fix the conflict. An alternative is to explicitly
spell out the namespace every time it is used
instead of using shortcuts. For example, if one
specifies “Imports Agilent.TMFramework” at the
beginning of the program, all the subcategories in
that framework can be used without using that pre-
fix. One such category is InstrumentDriverInterop.
So, one can either specify,

Agilent.TMFramework.InstrumentDriverInterop.xxx

or simply,

InstrumentDriverInterop.xxx

(where xxx is the next level of functionality).
However, when one has attached the NI-wrapped
driver with the same namespace, the conflict
must be resolved.

5. Insufficient documentation. NI's examples for use
of their PXI-4070 DMM were in VB6 and VC++ and
LabVIEW. Their examples for DAQmx Switches in
.NET do not include hardware triggers, only soft-
ware triggers. The hardware triggers require use of
the backplane trigger busses, but the parameters
that use these require strings, and there are no
examples of what strings to use. The IntelliSense
help that pops up tried to run a javascript to give
help, but it did not work. Running Start->Programs-
>NationalInstruments->NI-DAQ->DAQmx Documen-
tation manually retrieved the intended help.
However, when using the names that it gave for
trigger busses in the code that they required, none
could be found that worked. This took a lot
of trial and error. Various names that were tried
included PXITRig0, LBR_Trig0, TTL0 and

12

NI_VAL_TRIG_TTL0. A LabVIEW example was
then loaded in order to see what they were using.
It revealed that the new naming conventions
were required, which are all path based—
“/SC1Mod3/TrigIn”, for example. However, none
of the names in the LabVIEW example worked.
Another support session was initiated, and the
response finally came back that the SCXI-1128 does
not support handshaking, only synchronous mode
(unidirectional triggering) and that either a newer
card should be used, or Traditional DAQ should be
used instead. We asked NI how we could have
known this ahead of time. The response was,
“Unfortunately, the triggering limitation is one of
those things that would have been hard to find out
without asking someone or thoroughly reading the
help manual before making the purchase.”

6. PC shutdown required when swapping cards in
PXI. Whenever a card is moved in a PXI cardcage,
power must be cycled, but that can’t be done with
the PC power on since the PXI backplane is an
extension of the PCI bus in the computer. Thus a
PC reboot is required, which is time-consuming.

7. Version conflicts. Many version conflicts were
encountered. For example, while troubleshooting
SCXI switching problems, NI-DAQ 7.1 was installed
on a Measurement Studio 7.0 installation. This
caused numerous problems that were only solved
by uninstalling all NI software and reinstalling it.
This took the better part of a day.

8. How can Agilent and NI hardware be controlled
from one program? NI MAX can find devices on
all NI interfaces, but cannot directly control Agilent
interfaces, such as the FireWire interface to VXI,
USB/GPIB converter or the PCI GPIB card. Agilent
Instrument Explorer cannot currently find PXI
devices. How can this best be resolved in a test
system that needs to communicate with devices
from both vendors? The solution was to install
Agilent I/O libraries in a “side-by-side” mode
(described in the I/O Libraries Help file), then to
enable the Passport-Tulip interface driver in NI
MAX as described earlier. This causes VISA calls
to those interfaces to be routed from NI VISA to
Agilent VISA, which then controls the relevant
Agilent interfaces while still allowing NI interfaces
such as MXI-3 to work directly through NI VISA
and Passport drivers.

13

Code Examples

Here are the programming requirements in the
Visual Basic.NET environment for a simple EFT
(close/measure/open) and DAQ (scanned) measure-
ment using the DMM in DC Volts on the 10V range,
with a 20-channel mux.

There are several things that can be observed by
looking at the code:

1.Switch/measure units with internal DMMs take a
lot of the work out of DAQ measurements. This is
because the triggering functions are done for you.
It literally took only a few minutes to create work-
ing code with these instruments. It took 2 weeks
to get the PXI/SCXI measurement to work, largely
because of difficulty understanding the triggering
requirements.

2.SCPI strings can be concatenated, making long
strings. This saves a little execution time because
there is no extra overhead in multiple function calls.
However, as noted earlier, if it is not necessary to
send the string in the first place, the command
parsing time in a slow instrument can easily dwarf
the function call execution time. If high throughput
is a requirement in your application, you should
spend time evaluating state-caching drivers versus
SCPI.

3.IVI-C (with .NET wrappers), IVI-COM and
VXIplug&play drivers are all very similar in usage
in the .NET environment. All provide various
degrees of IntelliSense help. Not obvious in the list-
ings below is the fact that IVI-COM help is much
more useful than the other two. The PXI/SCXI help
was not adequate, requiring frequent reference to
the on-line manuals and several e-mail support
sessions to NI.

All VB.NET programs that use Agilent T&M Toolkit
automatically insert the following:

Imports Agilent.TMFramework

Imports Agilent.TMFramework.DataAnalysis

Imports Agilent.TMFramework.DataVisualization

Imports Agilent.TMFramework.InstrumentIO

Imports Agilent.TMFramework.InstrumentDriverInterop

When using NI Measurement Studio,
the following must be manually added:

Imports NationalInstruments

Imports niDMM_32.NIDMMMeasurementConstants

Declarations are added automatically by Toolkit to
the “Public Class”:

VXIplug&play Driver declarations:

Dim myHpe1476 As InstrumentDriverInterop.VxipnpWrappers.Hpe1476

Dim myHpe1411 As InstrumentDriverInterop.VxipnpWrappers.Hpe1411

Dim myKe2700 As InstrumentDriverInterop.VxipnpWrappers.Ke2700

Dim myRi1256 As InstrumentDriverInterop.VxipnpWrappers.Ri1256

IVI-C Driver declarations wrapped by Agilent
Toolkit Driver Wrapper Wizard

Dim myniSwitch As InstrumentDriverInterop.IviCWrappers.NiSwitch

Direct I/O (SCPI) declarations

Dim myDSCPI As InstrumentIO.DirectIO

Dim my34980 As InstrumentIO.DirectIO

Dim my34970 As InstrumentIO.DirectIO

Dim my3499 As InstrumentIO.DirectIO

Dim my34401 As InstrumentIO.DirectIO

IVI-COM driver declarations

Dim myAgilent34401 As Agilent.Agilent34401.Interop.Agilent34401

Dim myAgilent34970 As Agilent.Agilent34970.Interop.Agilent34970

Dim myAgilent3499 As Agilent.Agilent3499.Interop.Agilent3499

IVI-C declarations added manually when using
NI Measurement Studio

Dim PXIDMM As InstDvrInterop.Ivi.niDMM

Dim SCXI As InstDvrInterop.Ivi.niSwitch

This is how instruments are initialized:

VXIplug&play Driver initialization for the E1411/E1476 combo:

Separate DMM usage:

myHpe1411 = New InstrumentDriverInterop.VxipnpWrappers.Hpe1411("VXI0::24::INSTR", True, True)

Combined DMM/Switch usage:

myHpe1411and1476 = New InstrumentDriverInterop.VxipnpWrappers.Hpe1411("VXI0::(24,25)::INSTR", True, True)

D-SCPI session for E1411/E1476 VXI using GPIB command module:

myDSCPI = New InstrumentIO.DirectIO("GPIB1::9::3::INSTR", False)

VXIplug&play (Wrapped) Driver session for Ke2701:

myKe2700 = New VxipnpWrappers.Ke2700("TCPIP0::169.254.105.002::1394::SOCKET", False, False)

myKe2700.Reset()

IVI-COM Driver session for 3499:

myAgilent3499 = New Agilent.Agilent3499.Interop.Agilent3499Class

myAgilent3499.Initialize("GPIB0::9::INSTR", True, True, Nothing)

myAgilent3499.Utility.Reset()

SCPI session for 3499:

my3499 = New InstrumentIO.DirectIO("GPIB0::9::INSTR", False, False)

my3499.Timeout = 2000

IVI-COM driver setup for 34401:

myAgilent34401 = New Agilent.Agilent34401.Interop.Agilent34401Class

myAgilent34401.Initialize("GPIB0::22::INSTR", True, True, Nothing)

SCPI session for 34401:

my34401 = New InstrumentIO.DirectIO("GPIB0::22::INSTR", False, False)

my34401.Timeout = 2000

VXIplug&play (Wrapped) Driver session for Racal 1256:

myRi1256 = New InstrumentDriverInterop.VxipnpWrappers.Ri1256("GPIB0::14::INSTR", True, True)

IVI-COM driver session for 34970:

myAgilent34970 = New Agilent.Agilent34970.Interop.Agilent34970Class

myAgilent34970.Initialize("GPIB0::8::INSTR", True, True, Nothing)

SCPI session for 34970:

my34970 = New InstrumentIO.DirectIO("GPIB0::8::INSTR", False, False)

IVI-COM Driver session for 34980:

myAgilent34980 = New Agilent.Agilent34980.Interop.Agilent34980Class

myAgilent34980.Initialize("TCPIP0::169.254.9.80::INSTR ", True, True, Nothing)

myAgilent34980.Reset

SCPI session for 34980:

my34980 = New InstrumentIO.DirectIO("TCPIP0::169.254.9.80::INSTR")

my34980.WriteLine("*RST")

IVI-C Driver session for PXI/SCXI:

PXIDMM = New InstDvrInterop.Ivi.niDMM("DAQ::8::INSTR", True, True)

myniSwitch = New IviCWrappers.NiSwitch("SCXI1::3", False, True)

14

15

Keithley 2701 example

Dim index As Integer

Dim rdgArray(80) As Double

Dim reading As Double

Dim numPts As Integer

myKe2700.ConfigureAutoZeroMode(VxipnpWrappers.Ke2700.AutoZeroModeEnum.Off)

myKe2700.ConfigureMeasurement(VxipnpWrappers.Ke2700.MeasFunctionEnum.ValDcVolts, 10.0, 0.001)

EFT Mode (Close/Measure/Open):

For index = 1 To numChannels

myKe2700.ConfigureSwitches(_

s101, _

VxipnpWrappers.Ke2700.SwitchModeEnum.ValCloseSingleOpenOtherChannels)

myKe2700.ConfigureApertureTimeInfo(.01, VxipnpWrappers.Ke2700.ApertureTimeUnitEnum.Nplc)

myKe2700.Read(5000, reading)

myKe2700.ConfigureSwitches(_

s101, _

VxipnpWrappers.Ke2700.SwitchModeEnum.ValOpenMultiple)

Next

DAQ Mode (Scanned):

myKe2700.SetChannelList(s101120)

myKe2700.ConfigureMultiPoint(_

1, _

numChannels, _

myKe2700.TriggerSourceEnum.Immediate, _

0.0)

myKe2700.ConfigureApertureTimeInfo(.01, VxipnpWrappers.Ke2700.ApertureTimeUnitEnum.Nplc)

myKe2700.ReadMultiPoint(5000, 80, rdgArray, numPts)

16

RACAL 1256/Ext. DMM example

Dim index As Integer

Dim readings(20) As Double

Dim trigDelay As Double = 0.02

myHpe1411.CalZeroAuto(False)

myHpe1411.VoltDcRang(False, _

VxipnpWrappers.Hpe1411.RangeEnum2.VoltDcRang64V)

myHpe1411.VoltDcRes(VxipnpWrappers.Hpe1411.VoltDcResEnum.VoltRes488Micro)

myHpe1411.Trigger(1, False, trigDelay, VxipnpWrappers.Hpe1411.SourceEnum1.Immediate)

myHpe1411.Sample(1, VxipnpWrappers.Hpe1411.SourceEnum.Immediate, 0.0)

EFT Mode (Close/Measure/Open):

For index = 1 To numChannels

myRi1256.OperateSingle138(_

x.ModuleAddressEnum1._1, _

x.OperationEnum.Close, _

x.RelayTypeEnum.Mux0, _

1)

myHpe1411.ReadQ(readings, 80)

myRi1256.OperateSingle138(_

x.ModuleAddressEnum1._1, _

x.OperationEnum.Open, _

x.RelayTypeEnum.Mux0, _

1)

Next

DAQ Mode (Scanned):

myHpe1411.Trigger(1, False, trigDelay, VxipnpWrappers.Hpe1411.SourceEnum1.Immediate)

myHpe1411.Sample(numChannels, VxipnpWrappers.Hpe1411.SourceEnum.Timer, trigDelay)

myRi1256.ConfigOutputTrigState(VxipnpWrappers.Ri1256.OutputTrigStateEnum.Off)

myRi1256.ConfigInputTrigSource(VxipnpWrappers.Ri1256.TriggerSourceEnum1.TrigExt)

myRi1256.ArmTrigger(VxipnpWrappers.Ri1256.ArmTypeEnum.Cont)

myRi1256.DefScanList(New System.Text.StringBuilder("1(0:7,10:17,20:23)"))

myRi1256.TriggerImmediate() ' go to the first relay in the scanlist

myHpe1411.ReadQ(readings, numChannels)

17

Agilent 34980A example using driver

Dim index As Integer

Dim rdgArray(80) As Double

EFT Mode (Close/Measure/Open):

myAgilent34980A.Scan.ScanList = ""

myAgilent34980A.Voltage.DCVoltage.Configure("", 10.0,
Agilent.Agilent34980A.Interop.Agilent34980AResolutionEnum.Agilent34980AResolutionLeast)

myAgilent34980A.Voltage.DCVoltage.AutoZero("") =
Agilent.Agilent34980A.Interop.Agilent34980AAutoZeroEnum.Agilent34980AAutoZeroONCE

myAgilent34980A.Display.DisplayEnabled = False

myAgilent34980A.Trigger.Configure(
Agilent.Agilent34980A.Interop.Agilent34980ATriggerSourceEnum.Agilent34980ATriggerSourceImmediate, 1, 0, 1)

For index = 1 To numChannels

myAgilent34980A.Route.Close("1001")

myAgilent34980A.Measurement.Initiate()

rdgArray = myAgilent34980A.Measurement.FetchNumbersOnly

myAgilent34980A.Route.Open("1001")

Next

DAQ Mode (Scanned):

myAgilent34980A.Scan.ScanList = "1001:1020"

myAgilent34980A.Voltage.DCVoltage.Configure("1001:1020", 10.0,
Agilent.Agilent34980A.Interop.Agilent34980AResolutionEnum.Agilent34980AResolutionLeast)

myAgilent34980A.Voltage.DCVoltage.AutoZero("1001:1020")
Agilent.Agilent34980A.Interop.Agilent34980AAutoZeroEnum.Agilent34980AAutoZeroONCE

myAgilent34980A.Display.DisplayEnabled = False

myAgilent34980A.Trigger.Configure(
Agilent.Agilent34980A.Interop.Agilent34980ATriggerSourceEnum.Agilent34980ATriggerSourceImmediate, 1, 0, 1)

myAgilent34980A.Route.Delay("1001:1020") = 0

myAgilent34980A.Measurement.Initiate()

rdgArray = myAgilent34980A.Measurement.FetchNumbersOnly

18

Agilent 34970A example using driver

Dim index As Integer

Dim readings(80) As Double

Dim rdgs(80) As String

myAgilent34970.Display.DisplayEnabled = False

myAgilent34970.Voltage.AutoZero(101) =

Agilent.Agilent34970.Interop.Agilent34970AutoZeroEnum.Agilent34970AutoZeroONCE

EFT Mode (Close/Measure/Open):

myAgilent34970.Voltage.DCVoltage.Configure("101:101", 10, 0.001)

For index = 1 To numChannels

rdgs = myAgilent34970.Scan.Read()

Next

DAQ Mode (Scanned):

myAgilent34970.Voltage.DCVoltage.Configure("101:120", 10, 0.001)

rdgs = myAgilent34970.Scan.Read()

19

Agilent 3499A example using driver

Dim index As Integer

Dim readings(80) As Double

Dim numRdgs As Integer

myAgilent34401.Advanced.AutoZero = _

Agilent.Agilent34401.Interop.Agilent34401AutoZeroEnum.Agilent34401AutoZeroOnce

myAgilent34401.Display.Enabled = False

myAgilent34401.DCVoltage.Configure(10.0, 0.001)

EFT Mode (Close/Measure/Open):

myAgilent34401.Trigger.Source =

Agilent.Agilent34401.Interop.Agilent34401TriggerSourceEnum.Agilent34401TriggerSourceImmediate

For index = 1 To numChannels

myAgilent3499.Route.Close("@200")

readings(0) = myAgilent34401.Measurement.Read(5000)

myAgilent3499.Route.Open("@200")

Next

DAQ Mode (Scanned):

myAgilent3499.Configure.ExtTriggerSource = 0

myAgilent3499.Configure.ExtTriggerOutput = True

myAgilent3499.Scan.ArmSource = _

Agilent.Agilent3499.Interop.Agilent3499SourceEnum.Agilent3499SourceImmediate

myAgilent3499.Scan.ArmCount = 1

myAgilent3499.Scan.TriggerSource = _

Agilent.Agilent3499.Interop.Agilent3499SourceEnum.Agilent3499SourceMIX

myAgilent3499.Configure.MuxFunction(2) = _

Agilent.Agilent3499.Interop.Agilent3499WireEnum.Agilent3499WireWire2

myAgilent3499.Scan.ScanList = "@200:219"

myAgilent34401.Trigger.Source = _

Agilent.Agilent34401.Interop.Agilent34401TriggerSourceEnum.Agilent34401TriggerSourceExternal

myAgilent34401.Trigger.MultiPoint.Count = numChannels

myAgilent34401.System.WaitForOperationComplete(5000)

myAgilent34401.Measurement.Initiate()

myAgilent3499.Scan.Initiate()

myAgilent3499.System.IO.WriteString("*TRG", True)

myAgilent3499.System.WaitForOperationComplete(5000)

myAgilent34401.Measurement.FetchMultiPoint(5000, readings)

20

Agilent E1411B/E1476A example using driver

Dim index As Integer

Dim opc As Short

Dim readings(80) As Double

myHpe1411and1476.CalZeroAuto(False)

myHpe1411and1476.VoltDcRang(False, VxipnpWrappers.Hpe1411.RangeEnum2.VoltDcRang64V)

myHpe1411and1476.VoltDcRes(VxipnpWrappers.Hpe1411.VoltDcResEnum.VoltRes488Micro)

EFT Mode (Close/Measure/Open):

For index = 1 To numChannels

myHpe1476.ClosCardChan(1, 0)

myHpe1411.ReadQ(readings, 80)

myHpe1476.OpenCardChan(1, 0)

Next

DAQ Mode (Scanned):

myHpe1411and1476.ConfigureList(VxipnpWrappers.Hpe1411.FuncEnum1.ConfListVoltDc, "100:119")

myHpe1411and1476.InitImm()

myHpe1411and1476.TimedFetchQ(5000, readings, 20)

21

NI PXI-4070/SCXI-1128 example

Dim index As Integer

Dim readings(80) As Double

Dim numRdgs As Integer

Dim SampInt as Double

EFT Mode (Close/Measure/Open):

PXIDMM.ConfigureAutoZeroMode(NIDMM_VAL_AUTO_ZERO_ONCE)

PXIDMM.ConfigureMeasurement(NIDMM_VAL_DC_VOLTS, 10.0, 0.001)

PXIDMM.ConfigureTrigger(NIDMM_VAL_IMMEDIATE, 0.0)

For index = 1 To numChannels

myniSwitch.Connect("ch0", "com0")

PXIDMM.Initiate()

PXIDMM.Fetch(5000, readings(0))

myniSwitch.Disconnect("ch0", "com0")

Next

DAQ Mode (Scanned):

PXIDMM.ConfigureAutoZeroMode(NIDMM_VAL_AUTO_ZERO_ONCE)

PXIDMM.ConfigureMeasurement(NIDMM_VAL_DC_VOLTS, 10.0, 0.001)

PXIDMM.ConfigureMeasCompleteDest(NIDMM_VAL_LBR_TRIG_0)

PXIDMM.ConfigureMultiPoint(1, numChannels, NIDMM_VAL_INTERVAL, SampInt)

myniSwitch.ConfigureScanList("sc1!md3!ch0:19->com0;", _

IviCWrappers.NiSwitch.ScanModeEnum.BreakBeforeMake)

myniSwitch.ConfigureScanTrigger(0.0, _

IviCWrappers.NiSwitch.TriggerInputEnum.Ttl0, _

IviCWrappers.NiSwitch.ScanAdvancedOutputEnum.None)

myniSwitch.InitiateScan()

PXIDMM.Initiate()

PXIDMM.FetchMultiPoint(5000, numChannels, readings, numRdgs)

22

Agilent 34980A example using SCPI

Dim index As Integer

Dim readings As String

my34980.WriteLine("Rout:Scan (@)")

my34980.WriteLine("CONF:VOLT:DC 10,.001")

my34980.WriteLine("ZERO:AUTO ONCE;:DISP OFF;:TRIG:DELAY 0;:TRIG:SOUR IMM;:TRIG:COUN 1;:SAMP:COUN 1")

EFT Mode (Close/Measure/Open):

For index = 1 To numChannels

my34980.WriteLine("ROUT:CLOS (@6001)")

my34980.WriteLine("INIT;FETC?")

readings = my34980.Read()

my34980.WriteLine("ROUT:OPEN (@6001)")

Next

DAQ Mode (Scanned):

my34980.WriteLine("Rout:Scan (@6001:6020)")

my34980.WriteLine("Conf:volt:dc 10,.001,(@6001:6020)")

my34980.WriteLine("ZERO:AUTO ONCE;:DISP OFF;:TRIG:DELAY 0;:TRIG:SOUR IMM;:TRIG:COUN 1;:SAMP:COUN 1")

my34980.WriteLine("INIT;FETC?")

readings = my34980.Read()

23

Agilent 34970A example using SCPI

Dim index As Integer

Dim Readings As String

Dim Points As Integer

Dim replyString As String

my34970.WriteLine("DISP OFF;: TRIG:COUN 1;SOUR IMM")

EFT Mode (Close/Measure/Open):

my34970.WriteLine("Conf:volt:dc 10,.001,(@101:101)")

For index = 1 To numChannels

my34970.WriteLine("INIT;FETC?")

Readings = my34970.Read()

Next

DAQ Mode (Scanned):

my34970.WriteLine("Conf:volt:dc 10,.001,(@101:120)")

my34970.WriteLine("INIT;FETC?")

Readings = my34970.Read()

24

Agilent 3499A/34401A example using SCPI

Dim index As Integer

Dim Readings As String

Dim dummy As String

my34401.WriteLine("DISP OFF; :ZERO:AUTO ONCE;:CONF:VOLT:DC 10,.001")

EFT Mode (Close/Measure/Open):

my34401.WriteLine("TRIG:SOUR IMM;COUN 1;:SAMP:COUN 1")

For index = 1 To numChannels

my3499.WriteLine("ROUT:CLOS (@200)")

my34401.WriteLine("INIT;FETC?")

Readings = my34401.Read()

my3499.WriteLine("ROUT:OPEN (@200)")

Next

DAQ Mode (Scanned):

my3499.WriteLine("CONF:EXT:SOUR 0;OUTP 1")

my3499.WriteLine("ARM:SOUR IMM;COUN 1")

my3499.WriteLine("TRIG:SOUR MIX")

my3499.WriteLine("FUNC 2,2") ' 2-wire mode

my3499.WriteLine("SCAN (@200:219)")

my34401.WriteLine("TRIG:SOUR EXT;COUN " & Str(numChannels))

my34401.WriteLine("*OPC?")

dummy = my34401.Read

my34401.WriteLine("INIT")

my3499.WriteLine("INIT")

my3499.WriteLine("*TRG")

my3499.WriteLine("*OPC?")

dummy = my3499.Read

my34401.WriteLine("FETC?")

Readings = my34401.Read

25

Agilent VXI E1411B/E1476A example using D-SCPI

Dim index As Integer

Dim Readings As String

myDSCPI.WriteLine("ZERO:AUTO ONCE;: TRIG:SOUR IMM;DELAY 0")

EFT Mode (Close/Measure/Open):

myDSCPI.WriteLine("CONF:VOLT:DC 10,.001 (@100)")

myDSCPI.WriteLine("TRIG:COUN 1")

myDSCPI.WriteLine("SAMP:COUN 1")

For index = 1 To numChannels

myDSCPI.WriteLine("INIT; FETC?")

Readings = myDSCPI.Read()

Next

DAQ Mode (Scanned):

myDSCPI.WriteLine("CONF:VOLT:DC 10,.001 (@100:119)")

myDSCPI.WriteLine("INIT;FETC?")

Readings = myDSCPI.Read()

By internet, phone, or fax, get assistance with

all your test & measurement needs.

Online assistance:

www.agilent.com/find/assist

Phone or Fax

United States:

(tel) 800 829 4444
(fax) 800 829 4433

Canada:

(tel) 877 894 4414
(fax) 800 746 4866

China:

(tel) 800 810 0189
(fax) 800 820 2816

Europe:

(tel) (31 20) 547 2111
(fax) (31 20) 547 2390

Japan:

(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:

(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:

(tel) (650) 752 5000

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100
(fax) (65) 6836 0252
Email: tm_ap@agilent.com

Product specifications and descriptions in this document
subject to change without notice.

© Agilent Technologies, Inc. 2005
Printed in USA June 14, 2005
5989-1929EN

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the products and
applications you select.

Agilent Open simplifies the process of connecting
and programming test systems to help engineers
design, validate and manufacture electronic
products. Agilent offers open connectivity for a
broad range of system-ready instruments, open
industry software, PC-standard I/O and global
support, which are combined to more easily
integrate test system development.
More information is available at

www.agilent.com/find/open

www.agilent.com

