Agilent Replace 8508A Vector Voltmeter with ENA-L RF Network Analyzers

Application Note

ENA-L

- Broader dynamic range for S₁₁ and S₂₁ measurements
- No external Signal Generator needed for stimulating DUT
- Emulate VVM operation with ENA-L built-in Visual Basic for Applications

The 8508A Vector Voltmeter (VVM) has been used for various kinds of applications. Most of these can be covered by network analyzers. This document introduces some VVM application examples that can be covered by the E5061A/62A ENA-L RF network analyzer (1.5 GHz/3 GHz).

S_{11} and S_{21} measurements

The VVM has been widely used for simple CW transmission (S_{21}) and reflection (S_{11}) measurements in combination with an external signal generator (SG) that stimulates the DUT (See Figure 1a). Typical application examples are:

• Equalizing a RF cable's electrical length to a reference "golden" RF cable by measuring its relative S₁₁ phase value in the open-ended condition and physically trimming the cable length;

- Testing a phased array antenna by measuring each of its elements' relative S₂₁ phase to a reference element; and so on. A vector network analyzer is designed for making these kinds of measurements (See Figure 1b). By replacing your old VVM-based test system with the ENA-L RF network analyzer, you will have the following advantages:
- The ENA-L features an internal source for stimulating DUTs. No external SG is needed.
- The ENA-L provides a much broader dynamic range (max. 120 dB).
- It is possible to make not only CW measurements but also swept measurements very easily.
- The ENA-L's built-in vector error correction functions can improve measurement accuracy.

In addition, the ENA-L's built-in VBA programming capability enables you to emulate the VVM user interface by making a customized control panel on the ENA-L (Figure 2a). This allows you to minimize switching barriers for test operators who are familiar with the traditional VVM operations (Figure 2b).

a) Setup menu for internal source and test parameter

40.0 M	lagnitude	Phase	Measureme 511
30.05	-0.031	-66.498 dag	Format Log Mag
20.05		e e e e e e e e e e e e e e e e e e e	Scale
a.a	Setup		Display
0.000	Hold Single Cont	t Zero Clr Zero	Average
10.02			Calibration
20.05	Freq (MHz) : 100		Stmulus
30.00	Parameter : 511	Quit	Sweep Set
40.00			Televise

b) VVM emulation control panel

Figure 2. Example of VVM emulation VBA program (for S₁₁ and S₂₁ measurements).

a) Traditional test config. with VVM & SG

Figure 1. S_{11} measurement simplification with ENA-L.

b) New test config. with ENA-L

Measuring phase difference of external source devices

Measuring phase difference between two CW signals coming from external source devices is also a typical VVM application (Figure 3). The ENA-L can perform this phase difference measurement as follows:

- Set the ENA-L's center frequency to the DUT's frequency, and set the ENA-L's span to zero. These operations are for setting the ENA-L's receiver frequency to the DUT's frequency.
- Set the ENA-L to RF Out OFF mode to turn off its internal source output.
- Measure $S_{11} = T1/R1$ and $S_{21} = T2/R1$.

Figure 3. Measure phase difference with ENA-L.

Perform a complex calculation to derive the phase angle of $S_{21}/S_{11} = T2/T1$. (See Figure 4)

For GPIB controlled automated system environments, the above operation sequence and complex calculation should be performed on an external PC. For manual test applications, the sequence and calculation can be automated with the ENA-L's built-in VBA programming function.

Customized larger display provides good visibility even under sunlight and at long distances.

Figure 4. Example of VVM emulation VBA program (for external source measurement).

Notes

- The ENA-L has no capability to phase-lock the measured CW signal. It is recommended that you lock the 10 MHz reference signal between the ENA-L and the DUT. If the 10 MHz reference lock is not possible, carefully adjust the ENA-L's center frequency to the DUT. If necessary, adjust the receiver IFBW to a broader value.
- To precisely measure the ratio T2/T1 with 50 ohm input ports, it is important to minimize impedance mismatches between the analyzer and the DUT. Ensure that a good impedance match is maintained in each of the ratio measurement paths. If possible, it is also recommended that you perform the Zero compensation by inputting equal-phase CW signals, prior to conducting the measurements.
- The ENA-L has no built-in highimpedance input function. If highimpedance input is needed, use external high-impedance probes and external probe powers.
- It is recommended that you add Option 016 Touchscreen for easy operation of the VBA panel in environments where the mouse can not be used.

Web Resources

Visit our Web sites for additional product information and literature.

ENA RF network analyzers: www.agilent.com/find/ena

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Agilent Open

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI www.lxistandard.org

LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444

Asia Pacific

Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	81 426 56 7832
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008

Europe

Austria	0820 87 44 11		
Belgium	32 (0)2 404 93 40		
Denmark	45 70 13 15 15		
Finland	358 (0)10 855 2100		
France	0825 010 700		
Germany	01805 24 6333*		
	*0.14€/minute		
Ireland	1890 924 204		
Italy	39 02 92 60 8484		
Netherlands	31 (0)20 547 2111		
Spain	34 (91)631 3300		
Sweden	0200-88 22 55		
Svvitzerland (French)	41 (21)8113811(Opt 2)		
Switzerland (German)	0800 80 53 53 (Opt 1)		
United Kingdom	44 (0)118 9276201		
Other European Countries:			
www.agilent.com/find/contactus			
Revised: May 7, 2007			

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2005, 2007 Printed in USA, June 5, 2007 5989-3987EN

