
RS-232 Troubleshooting 

Application Note

In the course of dealing with 
personal computers, you may use 
the RS-232 serial interface. This 
application note will describe 
RS-232 at a basic level, with an 
orientation towards Windows®-
based instrument programming. 
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1. An Overview of RS-232
The fi rst question that needs to be 
addressed is: what precisely is a 
“serial” interface? 

Consider a computer connected to 
an instrument or other “remote” 
device. One of the simplest possible 
communications schemes is shown in 
Figure 1. 

Each device sends data bits coded as 
electrical pulses, with a “0” corre-
sponding to a low voltage and a “1” 
a high voltage, to the other over a 
dedicated line, using a shared ground 
line. Using separate lines to transmit 
and receive data allows both devices 
to send data simultaneously without 
interference, at least in principle. 

For example, to send a byte to the 
remote device, the computer would 
have to send as shown in Figure 2.

There are a wide variety of serial 
communications schemes. The most 
popular is RS-232, which is in fact 
so universal that it is often simply 

referred to as “serial.” RS-232 defi nes 
various mechanical and electrical 
specs for serial communications. 

RS-232 defi nes legal voltage levels as 
follows:

 Output Input
0 (mark) +5 to  +3 to 
 +15 volts DC +15 volts DC
1 (space) –5 to  –3 to 
 –15 volts DC –15 volts DC

The terms “mark” and “space” are 
ancient nomenclature for a “0” and 
“1” that are still in occasional use. 

RS-232 also defi nes a transmission 
format for sending data over a serial 
link. Suppose you want to send a 
byte (or, more generally, a “word”) 
of data over a serial connection from 
your computer to a remote device.

Now further suppose that several 
bits —or all of them, for that matter, 
have the same value. How can the 
remote device tell which bit is which? 
Where does one bit start and the 
other end? 

Computer
Receive
Transmit
Ground

Remote device
Transmit
Receive
Ground

Figure 1 Figure 2
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* Note that a serial connection can be 
“half-duplex”—meaning that the computer 
can talk to the remote, or the remote can 
talk to the controller, but they can’t both 
talk to each other at the same time—as 
opposed to “full-duplex,” in which they 
both can talk at the same time. 

The only way possible way under this 
scheme is for both the computer and 
the remote device to agree on how 
long each bit remains on the line. For 
example, let’s say each bit stays on 
the line for 1/9600 of a second. Then 
the remote device can count from the 
middle of each bit time to the middle 
of the next bit time and be reason-
ably sure that it had obtained a valid 
value of each bit. 

Of course, the timing on the 
computer may not be perfectly 
matched to the timing on the remote 
device, but since there’s only 8 bits 
being sent at a time, there won’t be 
time to get out of step. 

In serial communications, the 
inverse bit time is called the “baud 
rate”. Baud rates can be any value 
in principle, but in practice and by 
custom the baud rate is usually set 
to certain values: 19,200, 9600, 4800, 
2400, 1200, 600, 300, or 110 baud. 

Baud rate is sometimes thought of as 
being the same as the bit transmis-
sion rate of the serial link, but that’s 
not precisely true, since there is no 
guarantee that words will be sent in a 
continuous stream. 

Furthermore, in practice there’s 
some additional overhead. Just 
sending 8 bits in this fashion works 
fi ne, until you ask the question: what 
happens if the fi rst bits are 0, not 1? 
How can the remote fi gure out where 
the byte starts? 

The answer is that it can’t, so to 
prevent this problem, an extra bit 
that is always set to 1 is tacked on 
in front of the other serial bits. This 
initial bit is called a “start bit.” 

The simplest conversation protocol 
possible is for the remote device to 
act as a slave to the computer*: the 
computer sends a command; the 
remote device makes a response. 
The advantage of this is that the 
computer is completely in control 
of the communications. The remote 
device cannot send anything when 
the computer is not ready for it, 
and communications will not be 
confused. 

The subtle question here is: how does 
the remote device know when it has 
received a command and not merely 
part of one? 

Remote commands could be defi ned 
either as binary codes or as ASCII 
strings, but binary codes tend to 
be inconvenient, so ASCII strings 
are more common. These ASCII-
based commands ideally should 
have natural-language syntax—like 
“MEASURE,” “STATUS,” and so on. 

Since these commands may have 
various options or defaults, their 
length may be ambiguous, so to allow 
the remote device to determine 
where the command ends, “end-of-
line terminator,” or simply “termi-
nator,” characters are tacked on to 
the end. 

The most common terminator is line-
feed (LF—ASCII code 10), or carriage-
return line-feed (CR-LF—ASCII code 
13 and 10)—though some devices use 
just a CR or even a NULL (ASCII 0) 
character: 

MEASURE:VOLTS<LF> 

The data bits are also, by convention, 
followed by “stop bits” that are set to 
1, and indicate the end of the word. 
There can be 1, 1.5, or 2 stop bits. 
The computer and the remote device 
have to agree on how many stop bits 
are sent. Using more stop bits gives 
a device a little more time to process 
words as they are sent in. The 
number of stop bits can vary, but the 
number of start bits is always 1. 

So under RS-232 words of data are 
sent with 1 start bit, and 1 or more 
stop bits. The data words don’t have 
to be 8 bits; they can be 5, 6, 7, or 8 
bits, though these days really only 7 
or 8 bits are used. 

Words can also be sent with an 
optional “parity” bit. This is an extra 
bit that can be tacked on behind the 
data bits as an error check—either 
to make the total number of “1” bits 
even or to make the number of “1” 
bits odd. 

Parity is not a very useful form of 
error checking, and while it can be 
used in nearly all serial communica-
tions systems, it usually isn’t. You 
can also specify that the parity bit 
always be set to 1 or 0. 

Okay, that nails down the funda-
mental RS-232 parameters—baud 
rate, stop bits, word size, and 
parity. You’ll need to specify these 
parameters to confi gure your serial 
communications. 

Now that we understand how to 
speak, the next step is to consider 
what to say—that is, how conversa-
tions are conducted over serial. 

There really aren’t any fi xed rules, 
but some general ideas can be 
presented. Let’s go back to our 
simple serial system and consider 
how such a conversation might take 
place. See Figure 1.
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The remote device could send back 
a response either in a fi xed-length 
binary format (which is fast, but 
hard to read and interpret)—or 
encoded as ASCII. If more than 
one data item is returned as ASCII, 
the items could be separated with 
commas, and the full string termi-
nated with a LF: 

32,45,1,128,512,64<LF> 

Once you understand how a conver-
sation is performed over RS-232, 
the next problem is to make sure it 
is reliable—that is, that one side is 
listening attentively while the other 
is talking, and that no information is 
lost. It is easy to lose data in RS-232 
communications because, as defi ned 
so far, one side can talk away and 
never realize that everything it 
is sending is being lost because 
the other side can’t keep up, or is 
otherwise distracted. 

For example, suppose the computer 
sends a command to the remote 
device, but the remote device 
responds so fast the computer 
isn’t ready to read the response. If 
the RS-232 implementation on the 
computer has “buffering”—that is, 
it can store up a block of data even 
when the computer isn’t ready to 
read it—this isn’t such a problem, but 
a buffer can overfl ow if the computer 
never attends to it, and not all 
computer RS-232 implementations 
have buffering. 

In the absence of buffering, the 
simplest way to avoid an “input 
overfl ow” is for the remote device to 
wait a short period of time before 
responding. Some remote devices 
have a DIP switch or jumper settings 
to allow you to specify a particular 
delay time. Similarly, if the remote 
device responds with multiple lines 
of response data, you may be able to 
select a similar delay between each 
line to give the computer a chance to 
receive them all. 

A related scheme to allow reliable 
transfer of multiple lines of ASCII is 
known as “prompting.” Every time 
the computer receives a line of ASCII 
from the remote device, the computer 
sends a “prompt” string (say, a CR) 
back to the remote device to tell it to 
send another line. 

More generally, the computer should 
have some means of telling the remote 
device to be quiet for a while until 
the computer has received the data 
and is ready for more. 

In RS-232, this capability is known 
as “handshaking” or “fl ow control.” 
Given a three-wire serial system as 
we have defi ned it so far, there is a 
scheme known as “XON-XOFF” fl ow 
control that is often used in RS-232 
communications. 

In this scheme, the remote device 
sends data until the computer starts 
to get too full. The computer then 
sends a character to tell the remote 
to be quiet—an XOFF (“transmit off”) 
character, usually defi ned as DC3 
(ASCII code 19)‚ and the remote 
device stops sending. When the 
computer wants more data, it sends 
a character to tell the remote device 
to start sending again—an XON 
(“transmit on”) character, usually 
defi ned as DC1 (ASCII code 17)—and 
the remote device starts sending 
again. 

The problem with XON-XOFF fl ow 
control is that its resolution is 
“grainy.” It can’t be used to control 
the data fl ow on a word-by-word 
basis, it can only control data fl ow in 
terms of blocks of data, and generally 
implies some level of buffering (as 
well as full-duplex communications). 

There is an alternative. As defi ned 
so far, our serial link only uses three 
wires: transmit, receive and ground. 
However, RS-232 defi nes a large 
number of “control lines” beyond 
those three lines that can be used for 
fl ow control. 

These control lines were originally 
defi ned for interfacing to an external 
modem, which is of no concern in 
this document, and so a detailed 
discussion of the actual meanings of 
these lines is not particularly useful. 
They can simply be seen as a set of 
output control lines and input status 
lines. 

See Figure 3 for the PC’s 9-pin 
RS-232 pinout. 

These control lines can be used to 
implement fl ow control schemes. 
For example, the RTS line on the 
computer could be wired to the 
CTS on the remote device (and the 
reverse). When the computer wants 
to receive data, it sets RTS, and when 
it wants to stop receiving data, it 
clears RTS; the remote device checks 
the status of its CTS input on a word-
by-word basis to see if it should send 
or not. 

This is known as “RTS-CTS fl ow 
control.” The DTR and DSR lines are 
also used for the same purpose. The 
other control lines may be used as 
auxiliary controls. 

The 9-pin connector used on a 
PC is only one of a number of 
connector formats. There is also a 
25-pin format, and in principle the 
connector could be of either gender—
the PC connector is a male—with a 
wide variety of wiring schemes. 

RxD 2

TxD 3

DTR 4

RTS 7

DSR 6

CTS 8

DCD/RLSD 1

Ground 5

Receive data

Transmit data

Data terminal ready

Request to send

Data set ready

Clear to send

Data carrier detect/
released line signal detect
Ground

Figure 3
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A further confusing factor is that 
a connector may be a DTE (“data 
terminal equipment”) or DCE 
(“data communications equip-
ment”) connection, a holdover 
from RS-232’s defi nitions for use 
with modems. On a DTE device, 
connections mean what they seem to 
mean: “transmit data” is an output, 
while “receive data” is an input—the 
PC connector is a DTE. On a DCE 
device, all the meanings of the 
connections are reversed!—“transmit 
data” is an input and “receive data” 
is an output. 

The variation in connector and cable 
wiring was a particular problem 
in the past, and made fi guring out 
what cable to use extremely diffi cult, 
leading to a description of RS-232 
as the “bunch of wires” interface. 
However, the predominance of 
the PC has made its 9-pin format 
something of a standard, and most 
modern RS-232 equipment is easy 
to cable up. Trying to fi gure out the 
cabling can be a nasty problem with 
older equipment, however. 

2. RS-232—
Real-World Issues
You should now have a grasp of the 
basic concepts of RS-232 operation: 

• Baud rate, word size, start bits, 
stop bits, and parity. 

• Command and data formats. 

• Half- and full- duplex, buffering, 
fl ow control, control lines, DCE 
and DTE. 

• Connection schemes. 

Given this knowledge, the ideal 
RS-232 instrument should have the 
following characteristics: 

• The ability to select from a reason-
able set of baud rates, word sizes, 
stop bits, and parity options via a 
DIP switch, jumper, or front-panel 
options. 

• English-like commands in ASCII 
format, using a CR-LF or LF 
terminator. 

• ASCII data formats using comma 
separators, using a CR-LF or LF 
terminator. 

• Buffering. 

• The capability to select turnaround 
delays, or XON-OFF, RTS-CTS, 
DTR-DSR, or no fl ow control via a 
DIP switch, jumper, or front-panel 
options. 

• A PC-compatible pinout for 
predictability. 

RS-232 has become easier to deal 
with in recent years, due to the infl u-
ence of the personal computer. Most 
devices will use a PC-compatible 
connection and will default to 9600 
baud, 1 stop, no parity. 

This makes life much simpler, but the 
other items remain unpredictable, 
and for older RS-232 instruments 
all bets are off. The problem is that 
a serial interface is very cheap and 
easy to implement. The result is that 
a serial instrument can operate in 
any way the designers like. A serial 
instrument may have: 

• A fi xed baud rate. 

• A binary command set and data 
formats. 

• Any sort of terminator character. 

• No, or very limited, provisions for 
fl ow control. 

• A 9- or 25-pin connector in either 
gender, using a virtually arbitrary 
wiring scheme, and defi ned as DTE 
or DCE (though as mentioned this 
isn’t such a problem any more). 

• Peculiar dependencies on the logic 
state of RS-232 control pins you 
may not have control over in your 
programming language. 

Confronted with such diffi culties, 
you may need to be resourceful to get 
the remote device to work. You can 
compare it to opening a combination 
lock: if you don’t know all the right 
ways to turn the knob, you won’t 
get in. 

A few fi nal comments: 

• A PC normally has two 9-pin 
RS-232 ports, designated as COM1 
and COM2. Under normal circum-
stances, two more RS-232 ports 
can be added into a PC as COM3 
and COM4. 

Serial “multiplexer” cards are also 
available that offer a large number 
of serial ports—with the catch that 
the computer can only use one at a 
time. In reality, this isn’t much of a 
catch, since a single-CPU machine 
can only do one thing at a time, and 
some of the serial multiplexer cards 
have buffer RAM that allows them to 
accumulate inputs while the CPU is 
off doing other things, so nothing is 
lost. 

• If you wish to link two PCs 
together over serial you will need 
what is called a “null modem” cable 
—basically a DTE-DTE connection 
with wiring that reverses the 
connections. 

• When you are playing with RS-232, 
you will sometimes hear about 
a BREAK. Executing a BREAK 
puts the RS-232 line in a “space” 
(zero) mode for “longer than a 
single RS-232 data frame,” possibly 
something like ten serial frames. It 
clears the line so the remote device 
can sync up again. 
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• Some RS-232 instruments assume 
they are connected to a computer 
terminal, and have protocols that 
are very diffi cult to handle. For 
example, they may send a response 
string, followed by a terminator, 
followed by a prompt (like “≥”), or 
even send complete display screens 
that assume a particular type of 
computer terminal, such as DEC 
VT100. 

Even worse is an RS-232 instrument 
that performs “remote echo”—that 
is, every time the instrument gets a 
character, it echoes it back. 

• Most of the low-level RS-232 
protocols—setting up start and stop 
bits, handling fl ow control, and so 
on—are handled by a chip known as 
a “UART,” for “universal asynchro-
nous receive transmit.” You’ll see 
this term mentioned occasionally 
in serial documentation. 

• There are variations on RS-232, 
such as RS-423, RS-485, and 
particularly RS-422. There is also 
an antique scheme known as 
“current loop” that dates from the 
era of teletype terminals. 

From the user’s point of view they 
are similar to RS-232, except they 
use different output devices. In some 
cases they allow longer and (in prin-
ciple) faster connections. RS-485 also 
allows communication with multiple 
devices on the same bidirectional 
connection. 

• There are lots of higher-level 
communications protocols that 
can be used on serial—Kermit, 
XMODEM, UMODEM, and others—
that provide for data integrity and 
reliable communications; discus-
sion of these protocols is beyond 
the scope of this document, but 
they are mentioned here for the 
sake of completeness. 

• If you are trying to interface an 
RS-232 instrument to a PC, the 
best thing to start with is Agilent 
Connection Expert and it’s 
Interactive IO utility to see if you 
can establish communications at all. 

The fi rst thing you need to do after 
that is ensure that your cable is 
actually the right one. Vendors can 
often recommend a cable, but in the 
worst case you may have to actually 
do some wiring on your own. 

Then you can start tinkering with 
communications parameters to see 
what you can get to work. Note that 
you should turn off all handshaking 
at fi rst. You’ll probably get errors, but 
at least you can determine if you are 
talking to the device. 

• People who spend time working 
with a variety of RS-232 devices 
usually acquire a set of tools to 
make the task easier. Any RS-232 
troubleshooter will usually have a 
set of “sex-changers” (or “gender-
benders”) to allow connection of 
two male or two female connectors, 
and 9-to-25-pin connectors. 

• Some devices that have multiple 
interfaces have to be confi gured 
to communicate over RS-232. For 
instance, the Agilent 34401 DMM 
can be set from the front panel 
to work as RS-232 or GPIB; if you 
have it set to GPIB, it doesn’t work 
very well with RS-232. (The 34401 
is kind enough to announce on its 
display on power up whether it is 
set to RS-232 or GPIB.) 

Please do not underestimate RS-232 
programming problems. For some 
reason the topic seems to give 
newcomers to the issue a false 
impression of simplicity. It can be 
quite simple in some cases—when the 
remote device is well-behaved and 
well-documented and you are using 
reasonable controlling software—
but if you are performing serial 
interfacing, you best be prepared 
for a struggle. 

3. Troubleshooting RS-232 
Problems
If you’re having trouble getting an 
RS-232 connection to an instrument 
to work, you will need to work 
through methodical troubleshooting 
steps: 

• First, make sure you have the right 
RS-232 cable with the right wiring 
connected to your device. 

• Second, make sure that nothing 
else , like a printer, mouse, or other 
applications program, is using the 
RS-232 port. Try selecting the port 
with a terminal emulator if you are 
having troubles. 

• Third, ensure that both the instru-
ment and your program have the 
same serial settings—baud rate, 
word size, stop bits, parity, hand-
shaking, and so on. Conventional 
settings are 9600 baud, 8 bits, 1 
stop, no parity Handshaking mode 
varies, but buffering is common 
these days, so “no handshaking” 
is a good place to start. 

• Fourth, make sure that you 
understand the command set of 
the device and its data formats. 
You will not in general be able 
to communicate with an RS-232 
device by guesswork. Unfortunately, 
some RS-232 manuals are extremely 
cryptic and obscure. 

If the device is compatible with 
the 488.2 common-command 
subset (this is often the case if the 
device has both RS-232 and GPIB 
interfaces), then you can assume 
that it does support a small set of 
standard commands. Try sending 
a “*RST;*CLS” to see if it clears the 
device, and try to query it for its ID 
string with an “*IDN?” query. 
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If this doesn’t get you anywhere, 
some troubleshooting steps are in 
order. 

Try using a terminal emulator to see 
if you can send simple commands 
or otherwise communicate with the 
instrument. This is a very useful and 
highly recommended step if you are 
having problems. 

If it seems that you can communicate 
between the terminal emulator and 
the instrument then it is likely that 
there is some misunderstanding of 
command and data formats. If the 
manuals seem ambiguous on the 
command and data formats, then 
you may have to do some probing. 

If you don’t seem to be able to read 
back data, you might try reading 
back data one byte at a time, and 
display both its ASCII code value 
and the corresponding character. 


