
RS-232 Troubleshooting

Application Note

In the course of dealing with
personal computers, you may use
the RS-232 serial interface. This
application note will describe
RS-232 at a basic level, with an
orientation towards Windows®-
based instrument programming.

Contents
1. An Overview of RS-232 1

2. RS-232—Real-World Issues 4

3. Troubleshooting RS-232 Problems 5

1. An Overview of RS-232
The fi rst question that needs to be
addressed is: what precisely is a
“serial” interface?

Consider a computer connected to
an instrument or other “remote”
device. One of the simplest possible
communications schemes is shown in
Figure 1.

Each device sends data bits coded as
electrical pulses, with a “0” corre-
sponding to a low voltage and a “1”
a high voltage, to the other over a
dedicated line, using a shared ground
line. Using separate lines to transmit
and receive data allows both devices
to send data simultaneously without
interference, at least in principle.

For example, to send a byte to the
remote device, the computer would
have to send as shown in Figure 2.

There are a wide variety of serial
communications schemes. The most
popular is RS-232, which is in fact
so universal that it is often simply

referred to as “serial.” RS-232 defi nes
various mechanical and electrical
specs for serial communications.

RS-232 defi nes legal voltage levels as
follows:

 Output Input
0 (mark) +5 to +3 to
 +15 volts DC +15 volts DC
1 (space) –5 to –3 to
 –15 volts DC –15 volts DC

The terms “mark” and “space” are
ancient nomenclature for a “0” and
“1” that are still in occasional use.

RS-232 also defi nes a transmission
format for sending data over a serial
link. Suppose you want to send a
byte (or, more generally, a “word”)
of data over a serial connection from
your computer to a remote device.

Now further suppose that several
bits —or all of them, for that matter,
have the same value. How can the
remote device tell which bit is which?
Where does one bit start and the
other end?

Computer
Receive
Transmit
Ground

Remote device
Transmit
Receive
Ground

Figure 1 Figure 2

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

2

* Note that a serial connection can be
“half-duplex”—meaning that the computer
can talk to the remote, or the remote can
talk to the controller, but they can’t both
talk to each other at the same time—as
opposed to “full-duplex,” in which they
both can talk at the same time.

The only way possible way under this
scheme is for both the computer and
the remote device to agree on how
long each bit remains on the line. For
example, let’s say each bit stays on
the line for 1/9600 of a second. Then
the remote device can count from the
middle of each bit time to the middle
of the next bit time and be reason-
ably sure that it had obtained a valid
value of each bit.

Of course, the timing on the
computer may not be perfectly
matched to the timing on the remote
device, but since there’s only 8 bits
being sent at a time, there won’t be
time to get out of step.

In serial communications, the
inverse bit time is called the “baud
rate”. Baud rates can be any value
in principle, but in practice and by
custom the baud rate is usually set
to certain values: 19,200, 9600, 4800,
2400, 1200, 600, 300, or 110 baud.

Baud rate is sometimes thought of as
being the same as the bit transmis-
sion rate of the serial link, but that’s
not precisely true, since there is no
guarantee that words will be sent in a
continuous stream.

Furthermore, in practice there’s
some additional overhead. Just
sending 8 bits in this fashion works
fi ne, until you ask the question: what
happens if the fi rst bits are 0, not 1?
How can the remote fi gure out where
the byte starts?

The answer is that it can’t, so to
prevent this problem, an extra bit
that is always set to 1 is tacked on
in front of the other serial bits. This
initial bit is called a “start bit.”

The simplest conversation protocol
possible is for the remote device to
act as a slave to the computer*: the
computer sends a command; the
remote device makes a response.
The advantage of this is that the
computer is completely in control
of the communications. The remote
device cannot send anything when
the computer is not ready for it,
and communications will not be
confused.

The subtle question here is: how does
the remote device know when it has
received a command and not merely
part of one?

Remote commands could be defi ned
either as binary codes or as ASCII
strings, but binary codes tend to
be inconvenient, so ASCII strings
are more common. These ASCII-
based commands ideally should
have natural-language syntax—like
“MEASURE,” “STATUS,” and so on.

Since these commands may have
various options or defaults, their
length may be ambiguous, so to allow
the remote device to determine
where the command ends, “end-of-
line terminator,” or simply “termi-
nator,” characters are tacked on to
the end.

The most common terminator is line-
feed (LF—ASCII code 10), or carriage-
return line-feed (CR-LF—ASCII code
13 and 10)—though some devices use
just a CR or even a NULL (ASCII 0)
character:

MEASURE:VOLTS<LF>

The data bits are also, by convention,
followed by “stop bits” that are set to
1, and indicate the end of the word.
There can be 1, 1.5, or 2 stop bits.
The computer and the remote device
have to agree on how many stop bits
are sent. Using more stop bits gives
a device a little more time to process
words as they are sent in. The
number of stop bits can vary, but the
number of start bits is always 1.

So under RS-232 words of data are
sent with 1 start bit, and 1 or more
stop bits. The data words don’t have
to be 8 bits; they can be 5, 6, 7, or 8
bits, though these days really only 7
or 8 bits are used.

Words can also be sent with an
optional “parity” bit. This is an extra
bit that can be tacked on behind the
data bits as an error check—either
to make the total number of “1” bits
even or to make the number of “1”
bits odd.

Parity is not a very useful form of
error checking, and while it can be
used in nearly all serial communica-
tions systems, it usually isn’t. You
can also specify that the parity bit
always be set to 1 or 0.

Okay, that nails down the funda-
mental RS-232 parameters—baud
rate, stop bits, word size, and
parity. You’ll need to specify these
parameters to confi gure your serial
communications.

Now that we understand how to
speak, the next step is to consider
what to say—that is, how conversa-
tions are conducted over serial.

There really aren’t any fi xed rules,
but some general ideas can be
presented. Let’s go back to our
simple serial system and consider
how such a conversation might take
place. See Figure 1.

3

The remote device could send back
a response either in a fi xed-length
binary format (which is fast, but
hard to read and interpret)—or
encoded as ASCII. If more than
one data item is returned as ASCII,
the items could be separated with
commas, and the full string termi-
nated with a LF:

32,45,1,128,512,64<LF>

Once you understand how a conver-
sation is performed over RS-232,
the next problem is to make sure it
is reliable—that is, that one side is
listening attentively while the other
is talking, and that no information is
lost. It is easy to lose data in RS-232
communications because, as defi ned
so far, one side can talk away and
never realize that everything it
is sending is being lost because
the other side can’t keep up, or is
otherwise distracted.

For example, suppose the computer
sends a command to the remote
device, but the remote device
responds so fast the computer
isn’t ready to read the response. If
the RS-232 implementation on the
computer has “buffering”—that is,
it can store up a block of data even
when the computer isn’t ready to
read it—this isn’t such a problem, but
a buffer can overfl ow if the computer
never attends to it, and not all
computer RS-232 implementations
have buffering.

In the absence of buffering, the
simplest way to avoid an “input
overfl ow” is for the remote device to
wait a short period of time before
responding. Some remote devices
have a DIP switch or jumper settings
to allow you to specify a particular
delay time. Similarly, if the remote
device responds with multiple lines
of response data, you may be able to
select a similar delay between each
line to give the computer a chance to
receive them all.

A related scheme to allow reliable
transfer of multiple lines of ASCII is
known as “prompting.” Every time
the computer receives a line of ASCII
from the remote device, the computer
sends a “prompt” string (say, a CR)
back to the remote device to tell it to
send another line.

More generally, the computer should
have some means of telling the remote
device to be quiet for a while until
the computer has received the data
and is ready for more.

In RS-232, this capability is known
as “handshaking” or “fl ow control.”
Given a three-wire serial system as
we have defi ned it so far, there is a
scheme known as “XON-XOFF” fl ow
control that is often used in RS-232
communications.

In this scheme, the remote device
sends data until the computer starts
to get too full. The computer then
sends a character to tell the remote
to be quiet—an XOFF (“transmit off”)
character, usually defi ned as DC3
(ASCII code 19)‚ and the remote
device stops sending. When the
computer wants more data, it sends
a character to tell the remote device
to start sending again—an XON
(“transmit on”) character, usually
defi ned as DC1 (ASCII code 17)—and
the remote device starts sending
again.

The problem with XON-XOFF fl ow
control is that its resolution is
“grainy.” It can’t be used to control
the data fl ow on a word-by-word
basis, it can only control data fl ow in
terms of blocks of data, and generally
implies some level of buffering (as
well as full-duplex communications).

There is an alternative. As defi ned
so far, our serial link only uses three
wires: transmit, receive and ground.
However, RS-232 defi nes a large
number of “control lines” beyond
those three lines that can be used for
fl ow control.

These control lines were originally
defi ned for interfacing to an external
modem, which is of no concern in
this document, and so a detailed
discussion of the actual meanings of
these lines is not particularly useful.
They can simply be seen as a set of
output control lines and input status
lines.

See Figure 3 for the PC’s 9-pin
RS-232 pinout.

These control lines can be used to
implement fl ow control schemes.
For example, the RTS line on the
computer could be wired to the
CTS on the remote device (and the
reverse). When the computer wants
to receive data, it sets RTS, and when
it wants to stop receiving data, it
clears RTS; the remote device checks
the status of its CTS input on a word-
by-word basis to see if it should send
or not.

This is known as “RTS-CTS fl ow
control.” The DTR and DSR lines are
also used for the same purpose. The
other control lines may be used as
auxiliary controls.

The 9-pin connector used on a
PC is only one of a number of
connector formats. There is also a
25-pin format, and in principle the
connector could be of either gender—
the PC connector is a male—with a
wide variety of wiring schemes.

RxD 2

TxD 3

DTR 4

RTS 7

DSR 6

CTS 8

DCD/RLSD 1

Ground 5

Receive data

Transmit data

Data terminal ready

Request to send

Data set ready

Clear to send

Data carrier detect/
released line signal detect
Ground

Figure 3

4

A further confusing factor is that
a connector may be a DTE (“data
terminal equipment”) or DCE
(“data communications equip-
ment”) connection, a holdover
from RS-232’s defi nitions for use
with modems. On a DTE device,
connections mean what they seem to
mean: “transmit data” is an output,
while “receive data” is an input—the
PC connector is a DTE. On a DCE
device, all the meanings of the
connections are reversed!—“transmit
data” is an input and “receive data”
is an output.

The variation in connector and cable
wiring was a particular problem
in the past, and made fi guring out
what cable to use extremely diffi cult,
leading to a description of RS-232
as the “bunch of wires” interface.
However, the predominance of
the PC has made its 9-pin format
something of a standard, and most
modern RS-232 equipment is easy
to cable up. Trying to fi gure out the
cabling can be a nasty problem with
older equipment, however.

2. RS-232—
Real-World Issues
You should now have a grasp of the
basic concepts of RS-232 operation:

• Baud rate, word size, start bits,
stop bits, and parity.

• Command and data formats.

• Half- and full- duplex, buffering,
fl ow control, control lines, DCE
and DTE.

• Connection schemes.

Given this knowledge, the ideal
RS-232 instrument should have the
following characteristics:

• The ability to select from a reason-
able set of baud rates, word sizes,
stop bits, and parity options via a
DIP switch, jumper, or front-panel
options.

• English-like commands in ASCII
format, using a CR-LF or LF
terminator.

• ASCII data formats using comma
separators, using a CR-LF or LF
terminator.

• Buffering.

• The capability to select turnaround
delays, or XON-OFF, RTS-CTS,
DTR-DSR, or no fl ow control via a
DIP switch, jumper, or front-panel
options.

• A PC-compatible pinout for
predictability.

RS-232 has become easier to deal
with in recent years, due to the infl u-
ence of the personal computer. Most
devices will use a PC-compatible
connection and will default to 9600
baud, 1 stop, no parity.

This makes life much simpler, but the
other items remain unpredictable,
and for older RS-232 instruments
all bets are off. The problem is that
a serial interface is very cheap and
easy to implement. The result is that
a serial instrument can operate in
any way the designers like. A serial
instrument may have:

• A fi xed baud rate.

• A binary command set and data
formats.

• Any sort of terminator character.

• No, or very limited, provisions for
fl ow control.

• A 9- or 25-pin connector in either
gender, using a virtually arbitrary
wiring scheme, and defi ned as DTE
or DCE (though as mentioned this
isn’t such a problem any more).

• Peculiar dependencies on the logic
state of RS-232 control pins you
may not have control over in your
programming language.

Confronted with such diffi culties,
you may need to be resourceful to get
the remote device to work. You can
compare it to opening a combination
lock: if you don’t know all the right
ways to turn the knob, you won’t
get in.

A few fi nal comments:

• A PC normally has two 9-pin
RS-232 ports, designated as COM1
and COM2. Under normal circum-
stances, two more RS-232 ports
can be added into a PC as COM3
and COM4.

Serial “multiplexer” cards are also
available that offer a large number
of serial ports—with the catch that
the computer can only use one at a
time. In reality, this isn’t much of a
catch, since a single-CPU machine
can only do one thing at a time, and
some of the serial multiplexer cards
have buffer RAM that allows them to
accumulate inputs while the CPU is
off doing other things, so nothing is
lost.

• If you wish to link two PCs
together over serial you will need
what is called a “null modem” cable
—basically a DTE-DTE connection
with wiring that reverses the
connections.

• When you are playing with RS-232,
you will sometimes hear about
a BREAK. Executing a BREAK
puts the RS-232 line in a “space”
(zero) mode for “longer than a
single RS-232 data frame,” possibly
something like ten serial frames. It
clears the line so the remote device
can sync up again.

5

• Some RS-232 instruments assume
they are connected to a computer
terminal, and have protocols that
are very diffi cult to handle. For
example, they may send a response
string, followed by a terminator,
followed by a prompt (like “≥”), or
even send complete display screens
that assume a particular type of
computer terminal, such as DEC
VT100.

Even worse is an RS-232 instrument
that performs “remote echo”—that
is, every time the instrument gets a
character, it echoes it back.

• Most of the low-level RS-232
protocols—setting up start and stop
bits, handling fl ow control, and so
on—are handled by a chip known as
a “UART,” for “universal asynchro-
nous receive transmit.” You’ll see
this term mentioned occasionally
in serial documentation.

• There are variations on RS-232,
such as RS-423, RS-485, and
particularly RS-422. There is also
an antique scheme known as
“current loop” that dates from the
era of teletype terminals.

From the user’s point of view they
are similar to RS-232, except they
use different output devices. In some
cases they allow longer and (in prin-
ciple) faster connections. RS-485 also
allows communication with multiple
devices on the same bidirectional
connection.

• There are lots of higher-level
communications protocols that
can be used on serial—Kermit,
XMODEM, UMODEM, and others—
that provide for data integrity and
reliable communications; discus-
sion of these protocols is beyond
the scope of this document, but
they are mentioned here for the
sake of completeness.

• If you are trying to interface an
RS-232 instrument to a PC, the
best thing to start with is Agilent
Connection Expert and it’s
Interactive IO utility to see if you
can establish communications at all.

The fi rst thing you need to do after
that is ensure that your cable is
actually the right one. Vendors can
often recommend a cable, but in the
worst case you may have to actually
do some wiring on your own.

Then you can start tinkering with
communications parameters to see
what you can get to work. Note that
you should turn off all handshaking
at fi rst. You’ll probably get errors, but
at least you can determine if you are
talking to the device.

• People who spend time working
with a variety of RS-232 devices
usually acquire a set of tools to
make the task easier. Any RS-232
troubleshooter will usually have a
set of “sex-changers” (or “gender-
benders”) to allow connection of
two male or two female connectors,
and 9-to-25-pin connectors.

• Some devices that have multiple
interfaces have to be confi gured
to communicate over RS-232. For
instance, the Agilent 34401 DMM
can be set from the front panel
to work as RS-232 or GPIB; if you
have it set to GPIB, it doesn’t work
very well with RS-232. (The 34401
is kind enough to announce on its
display on power up whether it is
set to RS-232 or GPIB.)

Please do not underestimate RS-232
programming problems. For some
reason the topic seems to give
newcomers to the issue a false
impression of simplicity. It can be
quite simple in some cases—when the
remote device is well-behaved and
well-documented and you are using
reasonable controlling software—
but if you are performing serial
interfacing, you best be prepared
for a struggle.

3. Troubleshooting RS-232
Problems
If you’re having trouble getting an
RS-232 connection to an instrument
to work, you will need to work
through methodical troubleshooting
steps:

• First, make sure you have the right
RS-232 cable with the right wiring
connected to your device.

• Second, make sure that nothing
else , like a printer, mouse, or other
applications program, is using the
RS-232 port. Try selecting the port
with a terminal emulator if you are
having troubles.

• Third, ensure that both the instru-
ment and your program have the
same serial settings—baud rate,
word size, stop bits, parity, hand-
shaking, and so on. Conventional
settings are 9600 baud, 8 bits, 1
stop, no parity Handshaking mode
varies, but buffering is common
these days, so “no handshaking”
is a good place to start.

• Fourth, make sure that you
understand the command set of
the device and its data formats.
You will not in general be able
to communicate with an RS-232
device by guesswork. Unfortunately,
some RS-232 manuals are extremely
cryptic and obscure.

If the device is compatible with
the 488.2 common-command
subset (this is often the case if the
device has both RS-232 and GPIB
interfaces), then you can assume
that it does support a small set of
standard commands. Try sending
a “*RST;*CLS” to see if it clears the
device, and try to query it for its ID
string with an “*IDN?” query.

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime. Your
equipment will be serviced by Agilent-
trained technicians using the latest
factory calibration procedures, auto-
mated repair diagnostics and genuine
parts. You will always have the utmost
confi dence in your measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/fi nd/removealldoubt

Agilent Email Updates

www.agilent.com/fi nd/emailupdates
Get the latest information on the products
and applications you select.

 Agilent Direct
www.agilent.com/fi nd/agilentdirect
Quickly choose and use your test
equipment solutions with confi dence.

Agilent
Open

www.agilent.com/fi nd/open
Agilent Open simplifies the process
of connecting and programming test
systems to help engineers design,
validate and manufacture electronic
products. Agilent offers open connectivity
for a broad range of system-ready instru-
ments, open industry software, PC-stan-
dard I/O and global support, which are
combined to more easily integrate test
system development.

www.lxistandard.org
LXI is the LAN-based successor to
GPIB, providing faster, more effi cient
connectivity. Agilent is a founding
member of the LXI consortium.

www.agilent.com
For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
offi ce. The complete list is available at:
www.agilent.com/fi nd/contactus

Phone or Fax

Americas
Canada 877 894 4414
Latin America 305 269 7500
United States 800 829 4444

Asia Pacifi c
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 81 426 56 7832
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700
Germany 01805 24 6333*
 *0.14€/minute
Ireland 1890 924 204
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 44 (21) 8113811 (Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0) 7004 666666
Other European Countries:
www.agilent.com/fi nd/contactus
Revised: March 23, 2007

Windows is a U.S. registered trademark
of Microsoft Corporation.

Product specifi cations and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2007
Printed in USA, April 18, 2007
5989-6580EN

If this doesn’t get you anywhere,
some troubleshooting steps are in
order.

Try using a terminal emulator to see
if you can send simple commands
or otherwise communicate with the
instrument. This is a very useful and
highly recommended step if you are
having problems.

If it seems that you can communicate
between the terminal emulator and
the instrument then it is likely that
there is some misunderstanding of
command and data formats. If the
manuals seem ambiguous on the
command and data formats, then
you may have to do some probing.

If you don’t seem to be able to read
back data, you might try reading
back data one byte at a time, and
display both its ASCII code value
and the corresponding character.

