
Programming USB Instruments 

Application Note

Most users of test and measurement 
(T&M) equipment are familiar with 
programming an instrument over 
GPIB/IEEE-488. However, now that 
USB instruments from companies 
like Agilent Technologies are begin-
ning to appear with USB interfaces, 
many users may want to try USB 
instead of GPIB. This is because of 
the ease-of-use and performance 
advantages of USB when compared 
with GPIB and other I/O interfaces 
used in T&M. This article will provide 
information on how to set up a test 
system that includes USB instruments  
and how to program the USB instru-
ments using Virtual Instrument 
Software Architecture (VISA) I/O 
library software. Information is  
also presented about the T&M USB 
protocol specifications, and how 
these protocol specifications make 
use of USB endpoints. Two program-
ming examples are available. One 
example shows how to use VISA to 
download an arbitrary waveform to 
the Agilent 33220A. Another example 
shows how to use Visual Basic to 
program the Agilent 33220A to 
execute a frequency sweep. Both of 
these Programming USB Instruments 
examples are available from www.
agilent.com/find/33220a in the 
Drivers and Software section of 
Technical Support.

products. With the high-speed 480 
Megabits/second defined in the USB 
2.0 specification, it became clear that 
USB would provide both ease-of-use 
and real performance benefits to 
T&M equipment users. 

To illustrate the ease-of-use of USB, 
Figure 1 shows a simple desktop test 
system, similar to what might be set 
up on an R&D engineer’s workbench. 
To create this test system, a USB 
cable simply had to be connected 
from the PC to the instrument. 

USB has truly become a computer 
standard I/O. Every new PC is 
shipped with the hardware and 
software drivers necessary to 
support USB, and many consumer 
electronic USB peripherals are 
available today—mice, printers, 
scanners, disk drives, cameras, etc. 
Users of T&M equipment have seen 
how easy it is to use these types of 
USB consumer electronic peripherals 
and have been asking T&M manufac-
turers to provide USB I/O on their 

Figure 1: Connecting a USB instrument to a PC is quick and easy
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Figure 2 shows a slightly more 
complex test system in which a USB 
hub is used. A USB hub must be used 
if there are no more available USB 
ports on the PC. A hub typically  
adds 4-7 additional ports and is used 
to create the USB “tiered” topology. 
USB hubs are low-cost and are readily  
available at any consumer electronics 
store. Figure 2 shows two USB 
instruments connected to a USB hub. 
Hubs introduce very little delay in 
USB transactions. 

To illustrate the performance advan-
tage of USB, Figure 3 shows the 
performance of an instrument using 
USB high-speed, USB full-speed, 
and GPIB. As can be seen from the 
graph, high-speed USB transfers 
data at 20 Mbytes/second, up to 
40 times the performance of GPIB. 
Even full-speed USB provides about 
twice the performance of GPIB. The 
performance curves for writing to an 
instrument are similar. 

A group of T&M equipment manu-
facturers recognized the potential 
for USB’s use in T&M and began 
an effort in April 2001 to address 
the problem of how to use USB to 
communicate with T&M instruments. 
A protocol standard was necessary 
so that users could construct test 
systems using equipment from all 
T&M manufacturers. Any proprietary 
USB protocol solution would have 
allowed quicker time-to-market, but 
proprietary protocols would inevi-
tably become obsolete and fail.

Figure 2. Using a USB hub with 2 USB instruments
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Figure 3. This graph shows that USB is up to 40 times the performance of GPIB
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This group of T&M manufacturers  
worked within the USB Implementers  
Forum Device Working Group (USB-
IF DWG) and started by agreeing on 
goals. One goal was to make it easy 
to modify an existing application to 
use USB instead of GPIB. Achieving 
this goal requires a mapping of GPIB 
“out-of-band” communications to 
USB. The term “out-of-band” simply 
refers to a communication path 
outside of the normal “in-band” 
communication path. Examples of 
GPIB out-of-band communications 
include device clear, service request, 
trigger, and Remote/Local. Examples 
of GPIB in-band communications 
includes program messages, which 
are used to set up an instrument 
state and to query for measurement 
results. In-band communication also 
includes the measurement results 
returned by instruments in response 
messages.

Out-of-band
Some T&M out-of-band communi-
cation, such as device clear and 
Remote/Local, map well to the USB 
control endpoint. This is because the 
USB specification requires a control 
endpoint on every device for enumer-
ation, and it turns out that many USB 
Device Class specifications (Printer, 
Mass Storage, Still Image, etc.) also 
use the USB control endpoint to reset 
devices, which is an example of out-
of-band communication.

For USB, think of an endpoint 
as a FIFO memory. A device can 
have multiple endpoints, and each 
endpoint has an associated address. 
The control endpoint address is 0.  
To begin a control endpoint transfer, 
the PC (USB Host) sends an 8-byte  
SETUP packet to the control endpoint. 
The SETUP packet contains the 
request and some other parameters 
associated with the request. The 
8-byte SETUP packet may be followed 
by either a DATA IN phase or a DATA 
OUT phase. (In USB, the endpoint 
direction is always relative to the PC.) 

Service-request out-of-band T&M 
communication maps well to a 
USB Interrupt-IN endpoint.  Since 
USB is a master-slave protocol, the 
transfer of Interrupt-IN data does not 
really happen until the PC polls the 
Interrupt-IN endpoint. Fortunately, 
this polling interval is set by the 
device, but must be within the limits 
set by the USB 2.0 specification. 
For high-speed devices, the polling 
interval must be ≥ 1 USB microframe 
(125 microseconds). For full-speed, 
the polling interval must be ≥ 1 USB 
frame (1 millisecond). When polled, 
the device sends a Status Byte, which  
improves the overall efficiency of 
delivering interrupts and the associ-
ated Status Byte. In GPIB, after an 
SRQ, the PC must enter a “serial poll” 
 sequence to find the device that 
pulled the SRQ line. 

In-band
In-band communication of program 
messages sent to an instrument map 
well to a USB Bulk-OUT endpoint 
(Remember, direction is relative to 
the PC). Program messages are used 
to program an instrument state (e.g., 
DC or AC volts, auto-range, etc.) and 
to send queries to an instrument 
(e.g., *IDN?, *OPC?). Typical USB 
device silicon provide high perfor-
mance bulk endpoints with larger 
FIFO’s than the control and interrupt 
endpoint FIFO’s. Also, USB device 
silicon may provide the ability to 
DMA from a bulk-OUT endpoint to 
memory, but does not provide DMA 
capability for control or interrupt 
endpoints. The ability for the PC 
to send a long program message 
quickly is important in the case of 
an arbitrary waveform generator. 
To allow devices to set up DMA, and 
to communicate the GPIB “End-of-
message” and other “meta-data” 
information, each Bulk-OUT transfer 
is prefixed with a 12 byte Bulk-OUT 
Header. 

In-band communication of response 
messages from an instrument map 
well to a USB Bulk-IN endpoint. 
Again, USB device silicon typically 
provides the ability to DMA from 
memory to a Bulk-IN endpoint. The 
ability for the PC to read a long 
response message quickly is impor-
tant in the case of reading buffered 
A/D samples, an oscilloscope trace, 
or a spectrum analyzer trace. As with 
Bulk-OUT transfers, each Bulk-IN 
transfer is prefixed with a 12 byte 
Bulk-IN Header. 
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Trigger
GPIB provides both an in-band 
mechanism to trigger a device 
(“*TRG”) and an out-of-band 
mechanism to trigger a device (GET). 
Because a trigger must be synchro-
nized with other program messages, 
trigger was mapped to the Bulk-OUT 
endpoint.

The table in Figure 4 summarizes the 
mapping of GPIB to USB. Examples 
of control endpoint, Bulk-OUT, and 
Bulk-IN transfers are shown later. 

Figure 4. Mapping of GPIB to USB

GPIB  USB
Device clear Control endpoint request
Remote/local Control endpoint request
SRQ Interrupt-IN transfer
Program message Bulk-OUT transfer
Response message Bulk-IN transfer
Trigger (GET) Bulk-OUT transfer

The USB-IF DWG work concluded in 
December, 2002, with the acceptance 
of the USB Test and Measurement 
Class (USBTMC) base-class speci-
fication and the acceptance of the 
USBTMC-USB488 subclass specifica-
tion. The USBTMC specification 
provides the ability to communicate 
with very simple T&M devices 
(sensors, A/D’s), while the USB488 
specification provides the ability to 
communicate with more complex 
devices. Both of these specifications, 
as well as the USB 2.0 specification, 
can be found at www.usb.org.

VISA and USBTMC
Now that the T&M USB specifica-
tions exist, USB software can be 
written to match the specification. 
Most T&M applications make use of 
software that abstracts and hides all 
of the bus-specific protocol details 
for GPIB, TCP/IP, VXI, and other 
I/O’s so applications do not have to 
worry about them. This software is 
called Virtual Instrument Software 
Architecture (VISA). Agilent and 
other companies that make VISA 
implementations have made changes 
to the VISA specification to support 
the USB T&M protocol specifications. 
This means that an application does 
not have to concern itself with USB 
endpoints, headers, FIFO lengths, 
etc. The only code change to make 
any application run over USB 
involves a change to the viOpen() 
rsrcName parameter.

viOpen() 
VISA specifies that the 
viOpen(...,rsrcName,...) rsrcName 
parameter for a USB T&M device is a 
string consisting of the unique attri-
butes of the device—the idVendor, 
idProduct, and serial number. An 
example is USB0::0x0957::0x0123::
SN_001001. This is rather unwieldy 
to type and would be prone to errors. 
Fortunately, the VISA specification 
allows an alternative rsrcName—a 
human readable alias. When a device 
is first plugged in, a VISA implemen-
tation will typically provide a dialog 
box that allows a user to assign this 
human readable alias. See Figure 5.  
This alias is then used instead of 
the idVendor, idProduct, and serial 
number. 

Figure 5. Assigning a USB device alias
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Another significant benefit of using 
an alias is that the same compiled 
application code can run unchanged 
on a similar test system. This is 
important on the production floor, 
where they may be multiple identical 
test systems. All that must be done 
is to re-use the same alias names for 
each instrument.

viClear()
After calling viOpen(), an applica-
tion might do a device clear using 
the viClear() API to make sure the 
instrument I/O is in a known state. 
The VISA I/O library software imple-
ments a viClear() to a USB device by 
sending an 8-byte control endpoint 
SETUP request to initiate the clear 
operation. This is followed by a DATA 
IN and finally by a 0-length DATA OUT. 
The complete transfer sequence to 
initiate a clear is shown in Figure 6. 

The ‘05’ in the ‘A1 05 ... 00’ sequence 
in the SETUP DATA0 packet identi-
fies the request as an INITIATE_
CLEAR. The ‘01’ in the following 
DATA1 packet identifies the request 
was accepted by the device and the 
device has begun a clear. The 0-length 
DATA1 packet is required by USB 
and terminates the control endpoint 
transaction. 

After the device clear is initiated, the 
PC must later send another control 
endpoint request to check the status 
of the clear operation. A device clear 
is split into an INITIATE_CLEAR and 
a CHECK_CLEAR_STATUS because 
USB requires a single control 
endpoint transaction to complete in 
500 milliseconds, and the time for 
an instrument to perform a clear is 
potentially much longer.  

viWrite()
After calling viOpen(), an application 
will typically send program messages 
to a device by calling viWrite().The 
VISA I/O library software imple-
ments a viWrite() to a USB device 
by prefixing the application buffer 
with a 12 byte Bulk-OUT Header and 
then calling a USB kernel routine to 
perform the write operation. 

The 12-byte Bulk-OUT Header 
contains a message type (MsgID), a 
tag value (bTag), a transfer length, 
and an indication of whether or not 
the last byte in the transfer is the last 
byte of the message (EOM).

An example “*IDN?” query program 
message is shown in Figure 7.  

The DATA0 ‘01 8B 74 ... 01 00 00 
00’ is the 12-byte Bulk-OUT Header 
and contains the meta-data for 
the transfer. In C-style code, this 
Bulk-OUT Header has the following 
information:

UINT8 MessageID; 
// identifies this as a program 
message

UINT8 bTag; 
// a tag identifying this transfer

UINT8 bTagInverse; 
// the inverse of bTag 

UINT8 reserved1;  
// reserved

Figure 6. Initiating a device clear

Figure 7. Sending a *IDN? program message to a USB instrument
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UINT32 transferLength;  
// number of message data bytes 
(little-endian)

UINT8 eom;  
// bit 0=1 if last message data byte 
in payload

 // is the end of the message

UINT8 reserved2;      
// reserved

UINT8 reserved3;       
// reserved

UINT8 reserved4;      
 // reserved

Following the Bulk-OUT Header is 
the hex representation of “*IDN?” 
followed by 2 alignment bytes. 
Alignment bytes to make the overall 
transfer a multiple of 4 bytes are 
required by the USBTMC specifica-
tion and allow devices to DMA 
multiple-bytes at a time to improve 
performance.

viRead()
After sending program messages 
to set the state of an instrument, 
an application will typically query 
the instrument for a measurement 
result. To read the response message 
from a device, the application 
calls viRead().The VISA I/O library 
software implements a viRead() to a 
USB device by first sending a 12-byte 
Bulk-OUT Header that indicates how 
many bytes the device can send. This 
simplifies I/O library software since 
response message data bytes never 
have to be cached on the PC. After 
sending the Bulk-OUT Header, the 
VISA I/O library calls a USB kernel 
routine to perform the read opera-
tion. This will cause Bulk-IN requests 
to the device.

An example viRead() showing both 
the Bulk-OUT Header and the Bulk-IN 
transfer is shown in Figure 8. This 
example shows the identification 
string response to the viWrite() of  
the  “*IDN?” query shown earlier.

The DATA1 ‘02 91 6E ... 00’ is 
the Bulk-OUT Header. Note that 
MessageID = 0x02. This MessageID 
means that bytes at offset 4 to 7 
represent the number of bytes (512 = 
0x200, least significant byte 1st) the 
device may now send to the PC.

The DATA0 ‘02 91 6E 00 ... 01 00 00 
00’ is the required 12-byte Bulk-IN 
Header, and is followed by the ‘41 
67 69 ... 30 0A’ is the identification 
string, shown in hex.

viTrigger()
To cause an instrument to trigger, an 
application uses the VISA viTrigger() 
API. The VISA I/O library software 
implements a viTrigger() to a USB 
device by sending a Bulk-OUT 
transfer as shown in Figure 9.

The 80 in the DATA0 ‘80 A2 5D 00 ... 
00’ identifies the Bulk-OUT transfer 
as a trigger request. The device must 
execute this request in time-order 
with other Bulk-OUT transfers.

Figure 9. Triggering a USB instrument 

Figure 8. Reading a response message from a USB instrument
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Status Byte and VISA Events
Some applications are written to 
poll (busy-wait), reading the device 
Status Byte periodically, to detect 
when the device has a message 
available or some other status condi-
tion. Other applications may install 
an “event handler” using the VISA 
viInstallHandler() API. The specified 
event handler will be called by VISA 
when a specified event occurs.

For those applications that poll, 
the application can use the VISA 
viReadSTB() API to read a Status 
Byte from an instrument. The VISA 
I/O library software can read the 
Status Byte by executing a control 
endpoint request or use a cached 
Status Byte value.

For those applications that install 
an event handler and specify 
VI_EVENT_SERVICE_REQ, VISA 
must cause the kernel USB driver to 
execute IN requests to the Interrupt-
IN endpoint on the device. When 
an SRQ condition exists, the device 
sends a data packet as shown in 
Figure 10.

The 81 in the DATA1 ‘81 50’ sequence 
identifies the packet as an SRQ and 
VISA interprets the 2nd byte as the 
GPIB defined Status Byte.

Conclusions
The ease-of-use and performance 
benefits of using USB in T&M appli-
cations will undoubtedly lead many 
test application developers to try 
USB. For those that do, they will find 
it easy to physically construct their 
test system and once in operation, 
they will see decreased test times.

The details given concerning the 
USB-IF DWG specification for T&M 
devices has hopefully shown how 
GPIB semantics have been mapped 
onto USB. The information about 
VISA has shown that using USB in a 
T&M application is similar to using 
VISA for any other interface.

Figure 10. A USB instrument sending an SRQ 
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