
Programming USB Instruments

Application Note

Most users of test and measurement
(T&M) equipment are familiar with
programming an instrument over
GPIB/IEEE-488. However, now that
USB instruments from companies
like Agilent Technologies are begin-
ning to appear with USB interfaces,
many users may want to try USB
instead of GPIB. This is because of
the ease-of-use and performance
advantages of USB when compared
with GPIB and other I/O interfaces
used in T&M. This article will provide
information on how to set up a test
system that includes USB instruments
and how to program the USB instru-
ments using Virtual Instrument
Software Architecture (VISA) I/O
library software. Information is
also presented about the T&M USB
protocol specifications, and how
these protocol specifications make
use of USB endpoints. Two program-
ming examples are available. One
example shows how to use VISA to
download an arbitrary waveform to
the Agilent 33220A. Another example
shows how to use Visual Basic to
program the Agilent 33220A to
execute a frequency sweep. Both of
these Programming USB Instruments
examples are available from www.
agilent.com/find/33220a in the
Drivers and Software section of
Technical Support.

products. With the high-speed 480
Megabits/second defined in the USB
2.0 specification, it became clear that
USB would provide both ease-of-use
and real performance benefits to
T&M equipment users.

To illustrate the ease-of-use of USB,
Figure 1 shows a simple desktop test
system, similar to what might be set
up on an R&D engineer’s workbench.
To create this test system, a USB
cable simply had to be connected
from the PC to the instrument.

USB has truly become a computer
standard I/O. Every new PC is
shipped with the hardware and
software drivers necessary to
support USB, and many consumer
electronic USB peripherals are
available today—mice, printers,
scanners, disk drives, cameras, etc.
Users of T&M equipment have seen
how easy it is to use these types of
USB consumer electronic peripherals
and have been asking T&M manufac-
turers to provide USB I/O on their

Figure 1: Connecting a USB instrument to a PC is quick and easy

�

Figure 2 shows a slightly more
complex test system in which a USB
hub is used. A USB hub must be used
if there are no more available USB
ports on the PC. A hub typically
adds 4-7 additional ports and is used
to create the USB “tiered” topology.
USB hubs are low-cost and are readily
available at any consumer electronics
store. Figure 2 shows two USB
instruments connected to a USB hub.
Hubs introduce very little delay in
USB transactions.

To illustrate the performance advan-
tage of USB, Figure 3 shows the
performance of an instrument using
USB high-speed, USB full-speed,
and GPIB. As can be seen from the
graph, high-speed USB transfers
data at 20 Mbytes/second, up to
40 times the performance of GPIB.
Even full-speed USB provides about
twice the performance of GPIB. The
performance curves for writing to an
instrument are similar.

A group of T&M equipment manu-
facturers recognized the potential
for USB’s use in T&M and began
an effort in April 2001 to address
the problem of how to use USB to
communicate with T&M instruments.
A protocol standard was necessary
so that users could construct test
systems using equipment from all
T&M manufacturers. Any proprietary
USB protocol solution would have
allowed quicker time-to-market, but
proprietary protocols would inevi-
tably become obsolete and fail.

Figure 2. Using a USB hub with 2 USB instruments

20 —

18 —

16 —

14 —

12 —

10 —

8 —

6 —

4 —

2 —

0 —

0
—

10
,00

0
—

20
,00

0
—

30
,00

0
—

40
,00

0
—

50
,00

0
—

60
,00

0
—

70
,00

0
—

80
,00

0
—

90
,00

0
—

10
0,0

00
 —

11
0,0

00
 —

12
0,0

00
 —

13
0,0

00
 —

USB vs. GPIB performance
Direction = Instrument-to-PC (read)
(transfer rate vs. transfer rate)

USB high-speed

USB full-speed

GPIB

Tr
an

sf
er

 ra
te

 (M
By

te
s/

se
c)

Transfer size (bytes)
Figure 3. This graph shows that USB is up to 40 times the performance of GPIB

�

This group of T&M manufacturers
worked within the USB Implementers
Forum Device Working Group (USB-
IF DWG) and started by agreeing on
goals. One goal was to make it easy
to modify an existing application to
use USB instead of GPIB. Achieving
this goal requires a mapping of GPIB
“out-of-band” communications to
USB. The term “out-of-band” simply
refers to a communication path
outside of the normal “in-band”
communication path. Examples of
GPIB out-of-band communications
include device clear, service request,
trigger, and Remote/Local. Examples
of GPIB in-band communications
includes program messages, which
are used to set up an instrument
state and to query for measurement
results. In-band communication also
includes the measurement results
returned by instruments in response
messages.

Out-of-band
Some T&M out-of-band communi-
cation, such as device clear and
Remote/Local, map well to the USB
control endpoint. This is because the
USB specification requires a control
endpoint on every device for enumer-
ation, and it turns out that many USB
Device Class specifications (Printer,
Mass Storage, Still Image, etc.) also
use the USB control endpoint to reset
devices, which is an example of out-
of-band communication.

For USB, think of an endpoint
as a FIFO memory. A device can
have multiple endpoints, and each
endpoint has an associated address.
The control endpoint address is 0.
To begin a control endpoint transfer,
the PC (USB Host) sends an 8-byte
SETUP packet to the control endpoint.
The SETUP packet contains the
request and some other parameters
associated with the request. The
8-byte SETUP packet may be followed
by either a DATA IN phase or a DATA
OUT phase. (In USB, the endpoint
direction is always relative to the PC.)

Service-request out-of-band T&M
communication maps well to a
USB Interrupt-IN endpoint. Since
USB is a master-slave protocol, the
transfer of Interrupt-IN data does not
really happen until the PC polls the
Interrupt-IN endpoint. Fortunately,
this polling interval is set by the
device, but must be within the limits
set by the USB 2.0 specification.
For high-speed devices, the polling
interval must be ≥ 1 USB microframe
(125 microseconds). For full-speed,
the polling interval must be ≥ 1 USB
frame (1 millisecond). When polled,
the device sends a Status Byte, which
improves the overall efficiency of
delivering interrupts and the associ-
ated Status Byte. In GPIB, after an
SRQ, the PC must enter a “serial poll”
 sequence to find the device that
pulled the SRQ line.

In-band
In-band communication of program
messages sent to an instrument map
well to a USB Bulk-OUT endpoint
(Remember, direction is relative to
the PC). Program messages are used
to program an instrument state (e.g.,
DC or AC volts, auto-range, etc.) and
to send queries to an instrument
(e.g., *IDN?, *OPC?). Typical USB
device silicon provide high perfor-
mance bulk endpoints with larger
FIFO’s than the control and interrupt
endpoint FIFO’s. Also, USB device
silicon may provide the ability to
DMA from a bulk-OUT endpoint to
memory, but does not provide DMA
capability for control or interrupt
endpoints. The ability for the PC
to send a long program message
quickly is important in the case of
an arbitrary waveform generator.
To allow devices to set up DMA, and
to communicate the GPIB “End-of-
message” and other “meta-data”
information, each Bulk-OUT transfer
is prefixed with a 12 byte Bulk-OUT
Header.

In-band communication of response
messages from an instrument map
well to a USB Bulk-IN endpoint.
Again, USB device silicon typically
provides the ability to DMA from
memory to a Bulk-IN endpoint. The
ability for the PC to read a long
response message quickly is impor-
tant in the case of reading buffered
A/D samples, an oscilloscope trace,
or a spectrum analyzer trace. As with
Bulk-OUT transfers, each Bulk-IN
transfer is prefixed with a 12 byte
Bulk-IN Header.

�

Trigger
GPIB provides both an in-band
mechanism to trigger a device
(“*TRG”) and an out-of-band
mechanism to trigger a device (GET).
Because a trigger must be synchro-
nized with other program messages,
trigger was mapped to the Bulk-OUT
endpoint.

The table in Figure 4 summarizes the
mapping of GPIB to USB. Examples
of control endpoint, Bulk-OUT, and
Bulk-IN transfers are shown later.

Figure 4. Mapping of GPIB to USB

GPIB USB
Device clear Control endpoint request
Remote/local Control endpoint request
SRQ Interrupt-IN transfer
Program message Bulk-OUT transfer
Response message Bulk-IN transfer
Trigger (GET) Bulk-OUT transfer

The USB-IF DWG work concluded in
December, 2002, with the acceptance
of the USB Test and Measurement
Class (USBTMC) base-class speci-
fication and the acceptance of the
USBTMC-USB488 subclass specifica-
tion. The USBTMC specification
provides the ability to communicate
with very simple T&M devices
(sensors, A/D’s), while the USB488
specification provides the ability to
communicate with more complex
devices. Both of these specifications,
as well as the USB 2.0 specification,
can be found at www.usb.org.

VISA and USBTMC
Now that the T&M USB specifica-
tions exist, USB software can be
written to match the specification.
Most T&M applications make use of
software that abstracts and hides all
of the bus-specific protocol details
for GPIB, TCP/IP, VXI, and other
I/O’s so applications do not have to
worry about them. This software is
called Virtual Instrument Software
Architecture (VISA). Agilent and
other companies that make VISA
implementations have made changes
to the VISA specification to support
the USB T&M protocol specifications.
This means that an application does
not have to concern itself with USB
endpoints, headers, FIFO lengths,
etc. The only code change to make
any application run over USB
involves a change to the viOpen()
rsrcName parameter.

viOpen()
VISA specifies that the
viOpen(...,rsrcName,...) rsrcName
parameter for a USB T&M device is a
string consisting of the unique attri-
butes of the device—the idVendor,
idProduct, and serial number. An
example is USB0::0x0957::0x0123::
SN_001001. This is rather unwieldy
to type and would be prone to errors.
Fortunately, the VISA specification
allows an alternative rsrcName—a
human readable alias. When a device
is first plugged in, a VISA implemen-
tation will typically provide a dialog
box that allows a user to assign this
human readable alias. See Figure 5.
This alias is then used instead of
the idVendor, idProduct, and serial
number.

Figure 5. Assigning a USB device alias

�

Another significant benefit of using
an alias is that the same compiled
application code can run unchanged
on a similar test system. This is
important on the production floor,
where they may be multiple identical
test systems. All that must be done
is to re-use the same alias names for
each instrument.

viClear()
After calling viOpen(), an applica-
tion might do a device clear using
the viClear() API to make sure the
instrument I/O is in a known state.
The VISA I/O library software imple-
ments a viClear() to a USB device by
sending an 8-byte control endpoint
SETUP request to initiate the clear
operation. This is followed by a DATA
IN and finally by a 0-length DATA OUT.
The complete transfer sequence to
initiate a clear is shown in Figure 6.

The ‘05’ in the ‘A1 05 ... 00’ sequence
in the SETUP DATA0 packet identi-
fies the request as an INITIATE_
CLEAR. The ‘01’ in the following
DATA1 packet identifies the request
was accepted by the device and the
device has begun a clear. The 0-length
DATA1 packet is required by USB
and terminates the control endpoint
transaction.

After the device clear is initiated, the
PC must later send another control
endpoint request to check the status
of the clear operation. A device clear
is split into an INITIATE_CLEAR and
a CHECK_CLEAR_STATUS because
USB requires a single control
endpoint transaction to complete in
500 milliseconds, and the time for
an instrument to perform a clear is
potentially much longer.

viWrite()
After calling viOpen(), an application
will typically send program messages
to a device by calling viWrite().The
VISA I/O library software imple-
ments a viWrite() to a USB device
by prefixing the application buffer
with a 12 byte Bulk-OUT Header and
then calling a USB kernel routine to
perform the write operation.

The 12-byte Bulk-OUT Header
contains a message type (MsgID), a
tag value (bTag), a transfer length,
and an indication of whether or not
the last byte in the transfer is the last
byte of the message (EOM).

An example “*IDN?” query program
message is shown in Figure 7.

The DATA0 ‘01 8B 74 ... 01 00 00
00’ is the 12-byte Bulk-OUT Header
and contains the meta-data for
the transfer. In C-style code, this
Bulk-OUT Header has the following
information:

UINT8 MessageID;
// identifies this as a program
message

UINT8 bTag;
// a tag identifying this transfer

UINT8 bTagInverse;
// the inverse of bTag

UINT8 reserved1;
// reserved

Figure 6. Initiating a device clear

Figure 7. Sending a *IDN? program message to a USB instrument

�

UINT32 transferLength;
// number of message data bytes
(little-endian)

UINT8 eom;
// bit 0=1 if last message data byte
in payload

 // is the end of the message

UINT8 reserved2;
// reserved

UINT8 reserved3;
// reserved

UINT8 reserved4;
 // reserved

Following the Bulk-OUT Header is
the hex representation of “*IDN?”
followed by 2 alignment bytes.
Alignment bytes to make the overall
transfer a multiple of 4 bytes are
required by the USBTMC specifica-
tion and allow devices to DMA
multiple-bytes at a time to improve
performance.

viRead()
After sending program messages
to set the state of an instrument,
an application will typically query
the instrument for a measurement
result. To read the response message
from a device, the application
calls viRead().The VISA I/O library
software implements a viRead() to a
USB device by first sending a 12-byte
Bulk-OUT Header that indicates how
many bytes the device can send. This
simplifies I/O library software since
response message data bytes never
have to be cached on the PC. After
sending the Bulk-OUT Header, the
VISA I/O library calls a USB kernel
routine to perform the read opera-
tion. This will cause Bulk-IN requests
to the device.

An example viRead() showing both
the Bulk-OUT Header and the Bulk-IN
transfer is shown in Figure 8. This
example shows the identification
string response to the viWrite() of
the “*IDN?” query shown earlier.

The DATA1 ‘02 91 6E ... 00’ is
the Bulk-OUT Header. Note that
MessageID = 0x02. This MessageID
means that bytes at offset 4 to 7
represent the number of bytes (512 =
0x200, least significant byte 1st) the
device may now send to the PC.

The DATA0 ‘02 91 6E 00 ... 01 00 00
00’ is the required 12-byte Bulk-IN
Header, and is followed by the ‘41
67 69 ... 30 0A’ is the identification
string, shown in hex.

viTrigger()
To cause an instrument to trigger, an
application uses the VISA viTrigger()
API. The VISA I/O library software
implements a viTrigger() to a USB
device by sending a Bulk-OUT
transfer as shown in Figure 9.

The 80 in the DATA0 ‘80 A2 5D 00 ...
00’ identifies the Bulk-OUT transfer
as a trigger request. The device must
execute this request in time-order
with other Bulk-OUT transfers.

Figure 9. Triggering a USB instrument

Figure 8. Reading a response message from a USB instrument

�

Status Byte and VISA Events
Some applications are written to
poll (busy-wait), reading the device
Status Byte periodically, to detect
when the device has a message
available or some other status condi-
tion. Other applications may install
an “event handler” using the VISA
viInstallHandler() API. The specified
event handler will be called by VISA
when a specified event occurs.

For those applications that poll,
the application can use the VISA
viReadSTB() API to read a Status
Byte from an instrument. The VISA
I/O library software can read the
Status Byte by executing a control
endpoint request or use a cached
Status Byte value.

For those applications that install
an event handler and specify
VI_EVENT_SERVICE_REQ, VISA
must cause the kernel USB driver to
execute IN requests to the Interrupt-
IN endpoint on the device. When
an SRQ condition exists, the device
sends a data packet as shown in
Figure 10.

The 81 in the DATA1 ‘81 50’ sequence
identifies the packet as an SRQ and
VISA interprets the 2nd byte as the
GPIB defined Status Byte.

Conclusions
The ease-of-use and performance
benefits of using USB in T&M appli-
cations will undoubtedly lead many
test application developers to try
USB. For those that do, they will find
it easy to physically construct their
test system and once in operation,
they will see decreased test times.

The details given concerning the
USB-IF DWG specification for T&M
devices has hopefully shown how
GPIB semantics have been mapped
onto USB. The information about
VISA has shown that using USB in a
T&M application is similar to using
VISA for any other interface.

Figure 10. A USB instrument sending an SRQ

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime. Your
equipment will be serviced by Agilent-
trained technicians using the latest
factory calibration procedures, auto-
mated repair diagnostics and genuine
parts. You will always have the utmost
confidence in your measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/find/removealldoubt

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the products
and applications you select.

 Agilent Direct
www.agilent.com/find/agilentdirect
Quickly choose and use your test
equipment solutions with confidence.

Agilent
Open

www.agilent.com/find/open
Agilent Open simplifies the process
of connecting and programming test
systems to help engineers design,
validate and manufacture electronic
products. Agilent offers open connectivity
for a broad range of system-ready instru-
ments, open industry software, PC-stan-
dard I/O and global support, which are
combined to more easily integrate test
system development.

www.lxistandard.org
LXI is the LAN-based successor to
GPIB, providing faster, more efficient
connectivity. Agilent is a founding
member of the LXI consortium.

www.agilent.com
For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
office. The complete list is available at:
www.agilent.com/find/contactus

Phone or Fax

Americas
Canada 8�� 89� ��1�
Latin America �0� ��9 ��00
United States 800 8�9 ����

Asia Pacific
Australia 1 800 ��9 �8�
China 800 810 0189
Hong Kong 800 9�8 �9�
India 1 800 11� 9�9
Japan 81 ��� �� �8��
Korea 080 ��9 0800
Malaysia 1 800 888 8�8
Singapore 1 800 ��� 8100
Taiwan 0800 0�� 8��
Thailand 1 800 ��� 008

Europe
Austria 08�0 8� �� 11
Belgium �� (0) � �0� 9� �0
Denmark �� �0 1� 1� 1�
Finland ��8 (0) 10 8�� �100
France 08�� 010 �00
Germany 0180� �� ����*
 *0.1�€/minute
Ireland 1890 9�� �0�
Italy �9 0� 9� �0 8�8�
Netherlands �1 (0) �0 ��� �111
Spain �� (91) ��1 ��00
Sweden 0�00-88 �� ��
Switzerland (French) �� (�1) 811�811 (Opt �)
Switzerland (German) 0800 80 �� �� (Opt 1)
United Kingdom �� (0) �00� ������
Other European Countries:
www.agilent.com/find/contactus
Revised: March ��, �00�

Microsoft is a U.S. registered trademark
of Microsoft Corporation.

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. �00�
Printed in USA, March �0, �00�
�989-��8�EN

