Differences in Application Between Power Dividers and Power Splitters

Application Note

Agilent Technologies

Introduction

Power dividers are an RF microwave accessory constructed with equivalent 50Ω resistance at each port. These accessories divide power of a uniform transmission line equally between ports to enable comparison measurements. Power dividers provide a good impedance match at both the output ports when the input is terminated in the system characteristic

impedance (50Ω). Once a good source match has been achieved, a power divider is used to divide the output into equal signals for comparison measurements. The power divider also can be used in test systems to measure two different characteristics of a signal, such as frequency and power, for broadband independent signal sampling. Besides dividing power it also can act as power combiners because they are bi-directional.

Power splitters are constructed of two resistors. They are used for leveling and ratio measurement applications to improve the effective output match of microwave sources. The two-resistor configuration also provides 50Ω output impedance to minimize measurement uncertainty in source leveling or ratio measurement applications.

Characteristics of power dividers and power splitters

Power dividers	Power splitters
 Divide a signal equally for comparison measurements All ports have equivalent 16 ²/₃ resistance Can be used as power combiners SWR 3:1 	 Used in ratio measurements and leveling loop applications Only the input port has a 50Ω resistance, the other two ports have 83.33Ω impedance SWR 1:1
l n n n n n n n n n n n n n n n n n n n	INPUT Agilan ILGG7C OWER SPLITTER D. 50 GHz O.8W MAX

Key specifications of Agilent 11636C power dividers and 11667C power splitter

1636C power dividers	11667C power splitters
Operating frequency: DC to 50 GHz	• Operating frequency: DC to 50 GHz
±0.3 dB amplitude tracking	 <0.4dB tracking between output ports
± 2° phase tracking	 Excellent output: 1.10 SWR at the

• Low SWR 1.67

1

auxiliary port

Power Divider and Power Splitter Applications

Power divider applications

Figure 1. Simple test setup for power dividing application

Low power signal distribution to two antennas

In this application, a power divider divides the power into two antennas at the same time. Figure 1 shows how to make a simple connection to a power divider which distributes the low power signal equally into two antennas at one time.

Intermodulation distortion (IMD) measurements

Power dividers can be used as power combiners for IMD measurements. IMD measurements require a signal with the appropriate phase relationships among the carriers to simulate real life conditions and provide repeatable results. A power divider accurately combines two signals from the two difference signal sources into one signal for the device under test (DUT). A spectrum analyzer is used to examine the output of DUT while it is being stimulated with multi-tone test signal.

Figure 2 shows the traditional measurement setup used to measure the IMD product with a two-tone test stimulus.

Diversity gain measurements

The electromagnetic field in multipath environments is very strong in some positions and very weak in others. A power divider can be used to measure the diversity gain of the handset.

Figure 3 shows how to connect a power divider

This measurement setup is used to measure the diversity gain of digitallyenhanced cordless telecommunication (DECT) devices. The base station sends a slot through a power divider to a wall antenna selected by the switch. The handset then radiates the signal back to the base station. The handset is placed in a reverberation chamber so that a spectrum analyzer can receive and measure the radiated power of the signal.

Power splitter applications

Gain, compression and isolation measurements

Power splitters can be use for gain, gain compression and power testing. Figure 4 shows the basic test setup for amplifier gain, compression and power testing. The power splitter provides signal rationing that improves the source match and removes re-reflected signals so gain measurements can be taken at different RF power levels without re-calibrating.

Figure 4. Simple test setup for power dividing application

Rationing or leveling

The effective source match can be improved by rationing or leveling the source externally. These two methods also provide similar source match improvement. Figure 5 shows the source leveling technique that uses an external crystal detector. Figure 6 shows the source leveling technique using a power meter.

Figure 5. Power splitter test setup for leveling with a crystal detector

Figure 6. Power splitter test setup for leveling with a power meter

Conclusion

Power dividers and power splitters perform different functions in test systems and, as seen in the applications above, are not interchangeable. For simple power dividing and combining, the three-resistor power divider should be used. For ratio measurement and leveling, the two-resistor power splitter is the right choice.

For more information on test accessories go to: www.agilent.com/find/mta.

🔀 Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilenttrained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to

www.agilent.com/find/removealldoubt

www.agilent.com

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at: www.agilent.com/find/contactus

Americas

Canada	877 894 4414
Latin America	305 269 7500
United States	800 829 4444
Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	81 426 56 7832
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008
Europe	
Austria	0820 87 44 11
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
Finland	358 (0) 10 855 2100
France	0825 010 700
Germany	01805 24 6333*
	*0.14€/minute
Ireland	1890 924 204
Italy	39 02 92 60 8484
Netherlands	31 (0) 20 547 2111
Spain	34 (91) 631 3300
Sweden	0200-88 22 55
Switzerland (French)	41 (21) 8113811 (Opt 2)
Switzerland (German)	0800 80 53 53 (Opt 1)
United Kingdom	44 (0) 118 9276201
Other European Countri	es:
www.agilent.com/find/	'contactus
Revised: May 7, 2007	

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2007 Printed in USA, August 24, 2007 5989-6699EN

