

Agilent Method of Implementation (MOI) for DisplayPort Sink Compliance Test Application Note

Overview

This method of implementation (MOI) document explains how to perform the sink compliance tests as described in the VESA DisplayPort Compliance Test Specification (CTS) version 1.1 draft 12.

This group of tests verifies receiver functionality under stressed-signal conditions, for the purposes of performing DisplayPort Interoperability Testing. This test is limited to functionalities which are covered by the CTS, and do not provide comprehensive coverage of all receiver tolerance requirements defined by the DisplayPort Standard v1.1 specification. However the same or similar procedures may be the basis for more rigorous testing and product characterization.

This document will first explain the test requirements and procedures in a generic way. Subsequent chapters will add instrument specific operation procedures when using J-BERT N4903A high-performance serial BERT to implement the test.

Table of Contents

Overview	1
Table of Contents	2
Introduction	3
Basic Requirements	7
Calibration Procedure	7
Test Procedure	8
J-BERT N4903A Stressed Signal Generator	11
Signal Calibration with J-BERT Error Detector	17
Appendices	23
Appendix A - Setup with J-BERT Pattern Generator N4903A	
and Infiniium Oscilloscope	23
Appendix B - J-BERT N4903A Setup	24
Appendix C - Setup with ParBERT 81250 Pattern Generator	
and Infiniium Oscillocope	25
Appendix D - ParBERT 81250 Setup	27
Related Literature	28

Introduction

DisplayPort sink devices have one, two or four high speed serial data lanes. During sink compliance test all lanes will be tested sequentially. The test pattern for the stress test is a PRBS 2⁷-1 pattern. Additionally the CTS details specific amounts of random jitter, sinusoidal jitter and inter symbol interference for each test case. Therefore the definitions in the CTS involve two major steps in the sink compliance test procedure: a calibration of the impaired signal and the actual receiver stress test. For both steps different setups will be needed and operation procedures will be given.

The setup calibration is typically done once prior to test execution. Calibration data will be recorded and used when running the actual compliance test. During the test phase each lane will be tested individually while the remaining lanes basically stay idle. Nevertheless the compliance test comprises cross talk effects by sending a clock pattern to the lanes that are adjacent to the lane under test.

Table 1 summarized the compliance test requirements as given in the CTS document.

	f(Sj)	Data rate (GB/s)	Tj (mUI)	ISI (mUI)	Rj (RMS) (mUI)	Rj (p-p) (mUI)	Sj (mUI)	Signal voltage (eye opening at 50%) (mV)	Signal edge rate (ps) (20/80)	Aggressor voltage (eye opening at 50%) (mV)	Attenua- tor with J-BERT (dB)	Aggres- sor edge rate [ps] (20/80)	Aggressor frequency (MHz)	Max no. of allowable bit errors (1)	Observa- tion time (s)
TP2	2	1,620000	1178	100	7,9	97,17	981	400	50-130	1200	2	130	405,00000	1000	620
RBR	10	1,620567	308	100	7,9	97,17	111	400	50-130	1200	2	130	405,14175	100	62
	20	1,620000	277	100	7,9	97,17	80	400	50-130	1200	2	130	405,00000	100	62
TP2	2	2,700000	1062	144	13,2	162,4	756	350	50-130	1050	2	130	675,00000	1000	370
HBR	10	2,700945	492	144	13,2	162,4	186	350	50-130	1050	2	130	675,23625	100	37
	20	2,700000	472	144	13,2	162,4	166	350	50-130	1050	2	130	675,00000	100	37
	100	2,700000	467	144	13,2	162,4	161	350	50-130	1050	2	130	675,00000	100	37
TP3	2	1,620000	1648	570	7,9	97,17	981	46	50-130	138	15	130	405,00000	1000	620
RBR	10	1,620567	778	570	7,9	97,17	111	46	50-130	138	15	130	405,14175	100	62
	20	1,620000	747	570	7,9	97,17	80	46	50-130	138	15	130	405,00000	100	62
TP3	2	2,700000	1079	161	13,2	162,4	756	150	50-130	450	4	130	675,00000	1000	370
HBR	10	2,700945	509	161	13,2	162,4	186	150	50-130	450	4	130	675,23625	100	37
	20	2,700000	489	161	13,2	162,4	166	150	50-130	450	4	130	675,00000	100	37
	100	2,700000	484	161	13,2	162,4	161	150	50-130	450	4	130	675,00000	100	37

Table 1. Compliance test requirements

Test setup calibration

The CTS defines the signal impairment for the sink compliance test at specific test points (TP). Depending on whether a sink with a receptacle connector is tested or a sink with a tethered cable different test points apply. According to the DisplayPort standard these test points are either TP2 or TP3. The calibration setup and procedures ensure the correct amounts of jitter and the minimum eye opening at the given test point.

TP2 and TP3 are usually part of the sink device and not accessible for calibration. Therefore the calibration setup uses two test fixtures to measure the required signals. Figure 1 shows a generic setup for calibrating at TP3.

A plug test fixture drives the stress pattern (in the given example on lane 0) into a receptacle test fixture for measurements. A stressed signal generator sends the stress pattern that will be measured and calibrated at TP3 with a jitter measurement device. A clean i.e. jitter free clock signal is the basis for the calibrations. The aggressor signals are just driven into 50 Ohm termination resistors.

Figure 2 illustrates the calibration setup for TP2. Generally it is the same but uses a receptacle test fixture to connect the sink device later.

Figure 2. Generic calibration setup for TP2

Basic compliance test setup

Once the setup is completely calibrated the calibration test fixture with the jitter measurement device is disconnected and the remaining test fixture with the stressed signal generator connected will be connected to the device under test.

According to the DisplayPort standard all sink devices integrate a PRBS7 error counter. This counter is used during the compliance test to capture bit errors. The counter can be read and controller in using the auxiliary channel. Therefore the recommended procedure is to utilize an auxiliary channel controller for reading the counter. This controller may also serve to execute the test itself as it involves some reading and writing of DisplayPort control registers.

If such a controller isn't available or a sink device doesn't support the auxiliary channel some other proprietary means may be used to control the sink device and read the PRBS7 counter.

Figure 3 shows a typical setup for testing a sink device with a receptacle connector. The auxiliary channel controller is connected to the test fixture. Even if not shown above the auxiliary channel controller may remain connected during setup calibration too.

Figure 3. Generic test setup for TP3

Figure 4. Generic test setup for TP2

Figure 4 shows testing of a sink device with tethered cable.

Supported test equipment

This application note supports a variety of test equipment for stressed signal generator and for the jitter measurement device. This includes the Agilent J-BERT N4903A, the ParBERT 81250A, and Infiniium oscilloscopes. No specific auxiliary channel controller will be mentioned here. The appendices at the end of the document detail possible combinations of test equipment and list all required accessories.

Test automation

All procedures of the compliance test as well as additional product characterization can be performed automatically with the N5990A test automation software. Agilent offers a DisplayPort option that supports the equipment listed above. The test automation software is not required and it is shown as optional equipment in the appendices.

Basic Requirements

To follow the procedures laid out here it is required to be familiar with the compliance test specification (CTS) and the DisplayPort Standard as well as with the used equipment. Make sure that you have the user's manuals and the standards documents available.

Auto calibration of instruments

Before starting with any of the procedures in this document perform an auto calibration of the used instruments. With J-BERT open the self-test dialog from the utility menu and perform a PG and if applicable an ED auto calibration. With ParBERT for each clock group use the user software and execute a delay auto calibration from the system menu. If an oscilloscope is used for setup calibration, follow the instrument calibration description in the user's manual.

Always terminate generator outputs

Regardless whether J-BERT or ParBERT is used as stressed signal generator ensure that the high speed outputs (i.e. clock and data) are always terminated with 50 Ohms. This can be done with 50 Ohm termination resistors or by connecting the outputs to either the device under test or to a measurement device. Refer to the user's manuals for further details.

De-skew the setup

When using non-matched pair cables considerable skew may be introduced to the setup. Either individually measure and match the cables before setup or check the complete setup for differential skew later. Make sure that minimum skew is introduced at the test point.

This chapter generically explains how to calibrate the setup without addressing instrument specific details. Refer to Table 1 for the target values for calibration.

- 1. Setup the stressed signal generator and the jitter measurement device for calibration
- 2. Set the desired data rate and start with a high signal amplitude
- 3. Turn off or disconnect the aggressor signals
- 4. Configure the stressed signal generator to send a half rate clock pattern ("11001100...")
- 5. Calibrate Rj with Sj turned off
- 6. Turn on or connect the aggressor signals
- 7. Configure the stressed signal generator to send a PRBS 2^7-1 pattern
- 8. Measure Tj
- 9. Calculate Sj for all frequencies as Sj(f) = Target Tj(f) measured Tj
- 10. Set Sj(20 MHz)
- 11. Measure the eye opening and adjust the generator output amplitude to achieve the required minimum eye opening

Calibration Procedure

Test Procedure

The test procedure requires the operation of the device under test and refers to the auxiliary channel and internal DPCD registers. In order to execute the test procedure either an auxiliary channel controller or some proprietary test tool is required.

Figure 5 shows a GUI example of an auxiliary channel test tool. The left area shows the DPTC register map and the controls on the right side allow reading and writing individual registers.

0 10 10 10 10 10 10 10 10 10 10 10 10 10	1 0A	2 3	4	D	PCD	dat	a (2	048	but							
0 10 10 10 00 00 00 00 00 00 00 00 00 00	1 0A	2 3	4	1					Dyt	es)						
00 10 10 00	0A	3 N 1	100	5	6	7	8	9	A	в	С	D	E	F		
10 00		04 0	0 00	00	01	00	00	00	00	00	00	00	00	00	-0 Receiver Capability	DPCD IO
20,00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00		
20 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	- 1 Link	Address 0x0100
30 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	Comgaradori	
40 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	- 2 Link / Sink	Length 2
50 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	Status	
60 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	- 3 Source	8-bit bytes
70 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	Device	Data 0x/0A04
80 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	a cal	
90 00	00	00 0	00 00	00	00	00	00	00	00	00	00	00	00	00	Device	Read
A0 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00		
B0 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	- 5 Branch Device	Write
C0 00	00	00 0	00 00	00	00	00	00	00	00	00	00	00	00	00		
D0 00	00	00 0	0 00	00	00	00	00	00	00	00	00	00	00	00	-6 Sink	itatus = aux channel timed out
E0 00	00	00 0	00 00	00	00	00	00	00	00	00	00	00	00	00	Control	
F0 00	00	00 0	00 00	00	00	00	00	00	00	00	00	00	00	00	-7 Reserved	

Figure 5. GUI of an auxiliary channel test tool example

The following procedure has to be followed for each lane, all supported data rates and all sinusoidal jitter frequencies that have to be tested for each supported data rate.

The aggressor signals have to be connected in the following order:

- Device under test has one lane: No aggressor signal connected. Turn off or disconnect the aggressor signals
- Device under test has two lanes: Test lane 0: connect aggressor to lane 1 Terminate the other aggressor signal with 50 Ohm Test lane 1: connect aggressor to lane 0 Terminate the other aggressor signal with 50 Ohm
 - **Device under test has four lanes:** Test lane 0: connect aggressor to lane 1 and 3, lane 2 is not connected Test lane 1: connect aggressor to lane 0 and 2, lane 3 is not connected Test lane 2: connect aggressor to lane 1 and 3, lane 0 is not connected Test lane 3: connect aggressor to lane 0 and 2, lane 1 is not connected

•

Set up your test equipment for sink testing. Load the required pattern files to the BERT sequencer. Have the previously measured calibration data ready.

- 1. Write LINK_BW_SET (address 0x100) and LANE_COUNT_SET (address 0x101)
- Connect the stressed signal generator to the lane under test and the aggressor signals to the adjacent lanes. Adjust data rates for Reduced Bit Rate or High Bit Rate. All jitter sources and minimum eye were calibrated previously and are turned on

Frequency lock phase

- 3. The stressed signal generator outputs a D10.2 clock pattern to the lane under test (includes injected ISI, Rj and Sj jitter).
- The auxiliary channel controller initiates the frequency lock phase and disables scrambling by writing TRAINING_PATTERN_SET (address 0x102 bits 5, 1:0)
- 5. After >100µs the auxiliary channel controller verifies whether the DUT achieved frequency lock. If not go to the previous step. If frequency lock cannot be achieved within 5 retries (with maximum consecutive AUX Defers allowable = 8) the test result shall be a failure. Lock is verified by polling CR LOCK status for the data lane under test:

If LANE0_CR_DONE (Address202h bit 0) = 1 If LANE1_CR_DONE (Address202h bit 4) = 1 If LANE2_CR_DONE (Address203h bit 0) = 1 If LANE3_CR_DONE (Address203h bit 4) = 1

Symbol Lock Phase

- 6. The stressed signal generator outputs symbol lock pattern as defined in specification with ISI, Rj and SJ jitter injected
- The auxiliary channel controller Control initiates the symbol lock phase and disables scrambling by writing TRAINING_PATTERN_SET (address 0x102 bits 5, 1:0)
- 8. After >100µs AUX Control verifies whether DUT achieved symbol lock. If not go to the previous step. If symbol lock cannot be achieved within 5 retries (with maximum consecutive AUX Defers allowable = 8) the test result will be a failure. Lock is verified by polling CR_LOCK status for the data lane under test:

If LANE0_CHANNEL_E0_DONE (Address202h bit 1) If LANE0_SYMBOL_LOCKED (Address202h bit 2) If LANE1_CHANNEL_E0_DONE (Address202h bit 5) If LANE1_SYMBOL_LOCKED (Address202h bit 6) If LANE2_CHANNEL_E0_DONE (Address203h bit 1) If LANE2_SYMBOL_LOCKED (Address203h bit 2) If LANE3_CHANNEL_E0_DONE (Address203h bit 5) If LANE3_SYMBOL_LOCKED (Address203h bit 5)

PRBS7 counter test phase

- 9. The stressed signal generator outputs a PRBS 2^7-1 pattern as defined in specification with ISI, Rj and SJ jitter injected
- 10. The auxiliary channel controller initiates and clears the PRBS7 error counter by the following procedure:
 - (a) set TRAINING_PATTERN_SET (address 0x102, bits 1:0) to training not in progress
 - (b) set TRAINING_PATTERN_SET (address 0x102, bits 3:2) to PRBS7 transmitted
 - (c) clear the error counter by reading SYMBOL_ERROR_COUNT_LANEx for lane x under test (address 0x210, 0x211 for lane 0, address 0x212, 0x213 for lane 1, address 0x214, 0x215 for lane 2, address 0x216, 0x217 for lane 3)

- 11. The stressed signal generator injects a random number of errors (for example number of errors, n, be a number from 1 to 10) while looping the PRBS pattern. (I.e. for first n repetitions of the PRBS7 pattern one error is injected and subsequent PRBS patterns no errors are injected)
- 12. AUX Control verifies that the PRBS7 error counter shows n or more errors. If not the test result will be a failure. (Note: due to the impaired signal conditions during link training the receiver may see more bit errors)

BER test phase

- 13. The stressed signal generator outputs a PRBS 2[^]7-1 pattern as defined in specification with Rj, Sj, and ISI jitter injected
- 14. The auxiliary channel controller clears the PRBS7 error counter by reading SYMBOL_ERROR_COUNT_LANEx for lane x under test (address 0x210, 0x211 for lane 0, address 0x212, 0x213 for lane 1, address 0x214, 0x215 for lane 2, address 0x216, 0x217 for lane 3)
- 15. Run test for specified time
- 16. The PRBS7 error counter is read through the auxiliary channel controller by reading SYMBOL_ERROR_COUNT_LANEx for lane x under test (address 0x210, 0x211 for lane 0, address 0x212, 0x213 for lane 1, address 0x214, 0x215 for lane 2, address 0x216, 0x217 for lane 3)

Prepare next test

17. Turn off test pattern by set TRAINING_PATTERN_SET (address 0x102, bits 3:2) to link quality test pattern not transmitted

Pass/fail criteria

For each lane and all supported data rates:

- The device under test is required to achieve frequency lock and symbol lock within 5 retries
- The PRBS7 counter has to be operational and must count no fewer than injected number of errors during the counter test
- The number of bit errors during the BER test doesn't exceed the given limit in Table 1 for stressed signal testing

J-BERT N4903A Stressed Signal Generator

This chapter provides the details that are needed to perform the setup calibration and test execution as described before when using J-BERT as the stressed signal generator.

Clock settings

Set the clock rate of the J-BERT patter generator to the desired data rate. For testing at RBR the data rate is 1.62Gb/s and 2.7Gb/s for testing at HBR. Please keep in mind that some of the compliance tests add an offset to the data rate. Refer to the requirements given in Table 1.

BER: 0.00	D Error SYNC DATA ED.C.K. PS.C.K. RMT Error Add Insert B J
Pattern	Bit Rate Setup
PG Setup	Clock Source: Internal
PG Output Setup	Sub Rate Clock Divider: 4 675.000 MHz Clock Rate Value and Unit 2.700000 Gb/s
Bit Rate Setup	Preset
Trigger Output	622.0800 Mb/s OC-12 / STM-4
JI	1.25 Gb/s GD Enternet 2.48832 Gb/s OC-48 / STM-16 3.125 Gb/s 10GbE(XAUI)
Error Add Setting	Spread Spectrum Clock
Analysis Jitter	Enable Deviation: 0.500 % Frequency: 30.0000 kHz
Results	Status Messages Elapsed 00:00:00
PG Ptrn: from Edi	tor ED Ptm: from Editor PG Clk Rate: 2,70000 GHz ED Clk Rate: 2,70000 GHz

Figure 6. J-BERT pattern generator bit rate setup menu

BERT's trigger and sub rate clock outputs are used to generate the aggressor signal that will be sent to the lanes which are adjacent to the lane under test. In order to generate a half rate clock signal set sub rate clock divider to 4 (as shown in Figure 6) and the trigger output to clock divided by 4 as shown in Figure 7.

PG Trigger Output 🛛 🔹 👔 🔀											
Clock <u>Divided by</u> 4											
C Alternate Pattern Trigger Level											
C Alternate Pattern Trigger Pulse											
C Sequence Trigger											
C Pattern Trigger Position											
Bit Position (For user and 2^n Pattern)											
0											
N-bit Trigger Pattern (For 2^n-1 PRBS) (binary)											
0000000											
Shift Trigger Position											
<u>O</u> K <u>C</u> ancel <u>A</u> pply <u>H</u> elp											

Initial output amplitude

For initial jitter calibration, a high generator amplitude is recommended. Set the pattern generator output to 1V. Later this setting will be calibrated to the desired eye opening.

Figure 8. J-BERT pattern generator output levels setup menu

Output amplitude modification

Either use the pattern generator output setup menu or the front panel knob as shown in Figure 9.

Figure 9. J-BERT pattern generator front panel with output level knob highlighted

Jitter settings

In the jitter setup, enable the jitter generation and random jitter as well as periodic jitter. Switch the upper delay line (500 ps or 600 ps depending on J-BERT configuration) to periodic jitter. Further select the sinusoidal modulation for periodic jitter. Enter the frequency of the periodic jitter and the amplitude of random as well as periodic jitter in the jitter submenus. Initially set the amplitude for periodic jitter to zero.

Figure 10. J-BERT pattern generator jitter setup menu

External wiring for aggressor signal

With the J-BERT pattern generator three different setup configurations will be used for the aggressor signals.

When calibrating the random jitter the aggressor signals are generally disconnected. The figure below further uses the test fixtures in a configuration to calibrate to TP3. If a device with tethered cable (i.e. calibration to TP2) shall be tested only the order of the plug fixture and the receptacle fixture has to be changed.

Figure 11. Setup For Rj calibration with J-BERT pattern generator

In order to calibrate the total jitter for TP3 (see section on setup calibration) the aggressor signals must be connected (Figure 11). Use attenuators to adjust the amplitude. When testing at RBR 15dB will be needed. When testing at HBR 4dB will be needed.

Figure 12. Setup for Tj and amplitude calibration at TP3 with J-BERT pattern generator

Testing a sink device with tethered cable requires calibration of TP2 (Figure 13). In order to achieve the amplitude requirements for the aggressor signal no power dividers can be used. The trigger and the sub-rate clock outputs will generate the same half rate clock signal. Using both as shown below with 2 dB attenuators will result in the required amplitude.

Figure 13. Setup for Tj and amplitude calibration at TP2 with J-BERT pattern generator

Setup for receiver stress test

Figure 14 shows the principle setup for stress testing lane 0 of a sink device. The aggressor signals are connected like for total jitter calibration. The figure shows the setup for testing at TP3. When testing at TP2 the aggressor signal and the test fixture setup change analogously to the calibration setup. Before starting the actual receiver stress test the jitter measurement device is disconnected.

Test operation and reading of the PRBS7 counter can be done with proprietary debug tools. However the usage of a standards compliant auxiliary channel controller as indicated in the setup below is recommended.

Figure 14. Compliance test setup with Agilent J-BERT pattern generator

Pattern setup for receiver stress test

Open the sequence editor in J-BERT's pattern menu. Define a sequence of three blocks with the DisplayPort training sequence 1, DisplayPort training sequence 2 and PRBS 2^7-1. The pattern files are given in J-BERT's demo folder for DisplayPort. Configure block one and two to be looped until manual break and block three to be looped indefinitely. Figure 15 illustrates the required configuration.

Figure 15. J-BERT pattern generator sequence editor controls

Operating the sequence editor during receiver stress test

The sequence editor indicates the active block in the lower left corner with B1, B2, or B3. The following features will be used to control J-BERT during test execution:

- Reset resets the sequence to block 1.
- **Break** switches from one block to the next, i.e. from block 1 to 2 or from block 2 to 3. Use reset to go back to block 1.
- Error Add inserts a single bit error to the pattern that is sent out by the J-BERT pattern generator.

Signal Calibration With J-BERT N4903A Error Detector

Figure 16 shows the required cabling when using the J-BERT error detector as a jitter measurement device. It includes the cabling for stressed signal generation by J-BERT.

Note: it isn't a requirement to generate the stressed signal by J-BERT when using J-BERT's error detector as a jitter measurement device.

Connect the clean clock signal provided by the stressed signal generator to the clock input of the error detector. Connect the stress pattern from the desired test point to the error detector's data input.

Figure 16. Calibration setup when using J-BERT for jitter and amplitude calibration

Note: the figure above illustrates the use of J-BERT's error detector when calibrating at TP3. Analogously the error detector can be used to calibrate at TP2.

Figure 17 shows the equipment to calibrate the J-BERT stressed signal generator with the J-BERT error detector.

Figure 17. Sample calibration setup

Clock input setting

Make sure that the error detector clock is connected to the pattern generator clock output and the pattern generator clock amplitude is sufficient (Figure 18). In the error detector user interface select external clock source.

Data input setting

In the error detector's sampling point setup menu choose edit to open the input setup dialog. Select differential signaling (Figure 19).

Random jitter calibration

The random jitter calibration has to be performed without the cross talk effects from the aggressor signals. Refer to the stressed signal generator chapter for setup configuration and generator settings.

Configure the stressed signal generator to send a half rate clock pattern (i.e. 11001100...). Make sure that the same pattern is programmed to the error detectors expected pattern memory.

For example use the J-BERT's pattern editor (as shown in Figure 20) to create the desired 4 bit pattern and use the "To PGED" button to send it to the pattern generator and the error detector.

BER: 0.00	0 -6 -5	-4 -3 -2 -1	Error	SYNC DATA ED CLK PG CLK LOSS LOSS LOSS LOSS	RMT Er	ror Add	Insert B						
Pattern	Cloc	k Setup											
PG Setup	C Ex	ternal Clock Sou	irce										
ED Setup	Cock	Clock Data Recovery											
Sampling Point Setup	-CDF Clo Pre	R Setup ock Rate 2.4 esets:	", 18832 Gb/s	description									
Clock Setup Trigger and Aux Out		1.06250 1.25 1.5	Gb/s Gb/s Gb/s	FC1063 Gb Ethernet SATA Gen1		Add F	Preset						
Analysis Jitter			Auto Three	shold	0 mV	Mea	sure						
Results	Status	Messages		Mo	re Ela	apsed 00:00:	00						
PG Ptrn: from Edit	tor	ED Ptrn: from	Editor	PG Clk Rate: 2.70000 0	GHz ED C	Ik Rate: 2.	70000 GHz						

ED Input Setup Dialog	
Input: Differential	Input Range -1.000 ∨ − 1.000 ∨
☐ Data Inverted	Threshold Termination □ Averaging □ DC coupled 4 mV 0 mV
Ok Car	ncel Apply Help

Figure 19. J-BERT error detector input setup dialog settings

BER: 0.000) -6 -5 -4	-3 -2 -1 0	5YNC DATA ED CLK PG 0 .OSS LOSS LOSS LO	ss RMT Error Add Insert B
Pattern	Untitled	I		
111111	Toolbar Ctrl	D D Den SaveAs	To PGED To ED Ca	pture Cut Copy Paste Delete
Pattern Select	🔹 🔝 Undo Goto	INS/OVR Bin/Hex Pr	pperties Find Insert	Select All Alt pat view Pat Sel
	Address		Data	
File	0	1100		
T IIC	20			
1001	40			
1010	60			
Sequence Editor	80	_		
	100			
	120			
	160			
PG Setup	180			
ED Setup	200			
<u>Analysis</u>	220			
littor	Offline Posi	ition: 4 Overw	rite Bin MD: 0.500	Length: 4
Results	80107 The al	ignment operation was ab	orted.	More Elapsed 00:00:00
PG Ptrn: from Edit	or ED F	Ptrn: from Editor	PG Clk Rate: 2,7000	00 GHz ED Clk Rate: 2.70000 GHz

Figure 20. J-BERT pattern editor with half rate clock pattern

Make sure that all jitter sources except random jitter are set to zero. The ISI generator remains connected but no ISI effects will be measured when using a clock pattern.

In order to measure and adjust random jitter, perform a total jitter measurement. Refer to next paragraph for details on the total jitter measurement. With J-BERT pattern generator use the random jitter tab in the jitter setup menu and iterate between random jitter settings and total jitter measurement until the desired level of random jitter is achieved (Figure 21).

Figure 21. J-BERT pattern generator jitter setup with random jitter dialog

Total jitter measurement

Before a total jitter measurement always auto align the error detector. Press the front panel auto align button as highlighted in Figure 22 or use the auto align button in the sampling point setup menu.

Open the properties tab (Figure 23) in the output timing menu which is part of the analysis functions. In the parameters tab set the resolution to 1mUI and select the fast total jitter measurement at a BER level of 1E-9.

Press the start button to execute the measurement and read the total jitter peak to peak value (Figure 24).

Antimize Out And 125000 and out of the CP March Out And 20000 CF Propring 24 Field Table 24 Field Prod 14 And 20000 CF Table 24 Field Table 24 Field Propring 24 Field Table 24 Field Prod 14 And 20000 CF Table 24 Field Table 24 F	All

Properties	
Parameters Pass/Fail View Graph Color	
Criteria for moving to next measurement point:	
Number of Compared Bits: 1000000000	
Vumber of Errors: 1000	
Sample Delay:	
Resolution: 0.001 UI	
Optimization:	
C None	
Edge Resolution Fast Total Jitter at BER: 1E-009	
,	
OK Cancel Apply	Help

Figure 23. J-BERT error detector output timing measurement properties dialog

BER: 0.000)	-2		Error	SYNC D		K PS QK	RMT	Erro	r Add	Ine	ILB
Pattern	Output 7	Timin	g						Prop	erties	St	art
PG Setup	> TJ-BER	1 Trac	ce: 668 P	oints	,	UI = 3	70.370 ps	,	,	<u> </u>	All Er	rors
Analysis								_			_	1
Eye Diagram	close to TJ-BE	R		ļ								
Output Timing	< TJ-BER Absolute	-	i 0.27 ui ⁰	0.14 UI	0.00 UI ^{0.}	1412	u	0.54	u 0.681	J ^U 0.81 UI ⁰	.95 U	_
Output Levels	Terminal	Show	Color	BRM	Cor ed	Total J Peak t	litter o Peak	To Une	I Jitter rtainty	Total Jitt BER Thre	er s	Pha ^ Mai
Q	SerialBERT						0.162 UI	7	0.0141 U	16	-009	0.
Error Location												2
Jitter	<)				0	<	- 15					>
Results	80908 Wrong	value (RM	(S) 12.3		for Ran	dom and	Mor	e	_ Outpo	# 1 ming		
PG Ptrn: from Edit	or ED P	trn: from	Editor	r:	PG CI	Rate: 2	70000 0	Hz	ED Clk	Rate: 2.7	0000	GHz

Figure 24. J-BERT error detector output timing measurement with measured total jitter value highlighted

Output level measurement

Before an output level measurement always auto align the error detector as described before (Figure 24).

Open the properties tab in the output level menu which is part of the analysis functions. In the parameters tab make the following settings (Figure 25).

Properties			. 🔀
Parameters Pass/Fail View	Graph Color	1	
Criteria for moving to next mea	surement point:		
Number of Compared Bits:	10000000		
Number of Errors:	1000		
Sample Threshold:			
Resolution: 500 uV			
Low Level: 500 mV			
High Level: 500 mV			
🔽 Edge Resolution Optimiz	ation		
OK	Cancel	Apply	Help

Figure 25. J-BERT error detector output level measurement parameter properties dialog Switch to the view tab and set the BER threshold to 1E-9 (Figure 26).

Press the start button to execute the measurement and read threshold margin value (Figure 27).

Parameters Pass/Fail View Graph Color	
Show: © BER versus Threshold © dB Histogram versus Threshold © Q from BER versus Threshold	
Calculate Measurement Parameters for:	
BER Threshold: 1E-009	
Min BER for Q 0	
Table Number Format:	
Decimal Places: 3	

Figure 26. J-BERT error detector output level measurement view options dialog

BER: 0.000) ** *\$ *4 *3	-2	-1 0	Error	SYNC DA	1A 80 0. 55 1.055	K PG CLX LOSS RMT	E	rror Add	nsert B
Pattern	Output L	eve	ls					P	roperties	Start
PG Setup	500.0 mV 1 Tr	ace: 313	3 Points				_	_		_
ED Setup	400.0 mV									
Analysis	300.0 mV									
	200.0 mV									1
	100.0 mV								Contract of the local division of the local	
Eye Diagram	0.0 V									-
	-100.0 mV	Ť		•			*****	**	a di ta sa di ta d	
2	-200.0 mV									1
Output Timing	-300.0 mV									
	-500.0 mV	B	ER Thres	hold = j	1.000e-9					1
	Logarithmic	1.00e-1	9 1.00e-	8 1.00	e-7 1.00e	1.006	-5 1.00e-4 1.0	00e-	3 1.00e-2	1.00e+
Output Levels	Terminal Electrical	Show	Color	8RM	Copied	vel	Amplitude		Threshold Margin	Hh, h Stort
2	SerialBERT					436 mV	298.04	v	148.02 m	V /
Error Location										
Capture 💾	100					-	0			×
Jitter	(5)	_	_	_	12	1	U		lutrut Levels	>
Results							More	1	and the second second	
PG Ptrn: DP_prbs/	7 ED P	Im: DP	_prbs7		PG Clk	Rate: 2.	70000 GHz	ED	Clk Rate: 2.70	0000 GHz

Figure 27. J-BERT error detector output level measurement with eye opening measurement highlighted

Appendices	Appendixes A to D describe different combinations of test equipment that sup- port DisplayPort sink compliance testing. The appendices explain the specifics of the setups and provide detailed part lists. These part lists are the equipment requirements for the setup covered. Some listed accessories are bundled with the test equipment and thus do not need to be ordered separately when buying a new setup.
Appendix A – Setup with J-BERT Pattern	The combination of J-BERT and Infiniium oscilloscope is supported by the N5990A test automation software. As test automation is generally optional all necessary items are shown in a separate section of the table.
Generator N4903A and Infiniium Oscilloscope	Testing of sink devices with tethered cable may not always be a requirement. As this requires additional accessories when using J-BERT they are summarized in a separate section of the table too.

The Infiniium oscilloscope has further capabilities to test source devices. For completeness the table lists the source test software as an optional item. This software is not used for sink testing.

Signal generation and calibration	Model number	No. of units	Comments
7G J-BERT pattern generator	N4903A-G07, J10	1	
Infiniium oscilloscope with 8GHz or higher bandwidth	DSA80000 or DSA90000	1	DSA90000 recommended
Differential probe	1169A	1	
Differential probe head	5380A	1	
DisplayPort source test application software for scope	U7232A	1 (optional)	Optional transmitter test suite
Test automation software (optional)	Model number	No. of units	Comments
Test automation software platform core product	N5990A-010	1	
DisplayPort receiver test	N5990A-155	1	
DisplayPort interface to scope transmitter test software	N5990A-255	1 (optional)	Optional support for transmitter measurements with scope only
Laptop including PCMCIA IEEE 1394 card	81250A-015	1	Only needed with N5990A test automation
LAN hub (includes five LAN cables)	Bitifeye BIT-GEN-NCK-001	1	3rd party product. Only needed with N5990A test automation software
Test fixtures and cables			
Plug test fixture	W2641A	1	Includes 4 pairs of straight SMP to SMA cables
90° SMP to SMA cables (recommended only)	E4809-61603	8	N5460A matched pair alternative, 4 pairs needed
Receptacle test fixture for setup calibration	Bitifeye BIT-DP-RTF-0001	1	3rd party product
SMA cable kit (includes 4 cables)	15442A	2	
Accessories			
Display port ISI generator	N4915A-006	1	
150 ps transition time converter	15435A	4	
DC blocking capacitor	N9398C	4	
Power divider	11636B	2	
50 Ohm termination resistors	1250-2206	4	
4 dB attenuator for aggressor signal at HBR, TP3	Mini Circuits BW-S4W2+	2	3rd party product
5 dB attenuator for aggressor signal at RBR, TP3	Mini Circuits BW-S5W2+	2	3rd party product
10 dB attenuator for aggressor signal at RBR, TP3	Mini Circuits BW-S10W2+	2	3rd party product
Additional accessories for TP2			
150 ps transition time converter	15435A	2	
DC blocking capacitor	N9398C	2	
2 dB attenuator for aggressor signal at RBR/HBR, TP2	Mini Circuits BW-S2W2+	4	3rd party product
SMA (f) to SMA (f)	1250-1158	4	
SMA cable kit (includes 4 cables)	15442A	1	
SMA cable kit (includes 4 cables)	15442A	1	15443A matched pair alternative, replace one set of 15442A by two

Table A-1.

Appendix B. J-BERT N4903A Setup

Testing of sink devices with tethered cable may not always be a requirement. As this requires additional accessories when using J-BERT they are summarized in a separate section of the table.

Signal generation and calibration	Model number	No. of units	Comments
7G J-BERT	N4903A-C07, J10	1	
Test fixtures & cables	Model number	No. of units	Comments
Plug test fixture	W2641A	1	Includes 4 pairs of straight SMP to SMA cables
90° SMP to SMA cables (recommended only)	E4809-61603	8	N5460A matched pair alternative, 4 pairs needed
Receptacle test fixture for setup calibration	BitifEye BIT-DP-RTF-0001, 3rd party product	1	3rd party product
SMA cable kit (includes 4 cables)	15442A	2	
Accessories			
Display port ISI generator	N4915A-006	1	
150 ps transition time converter	15435A	4	
DC blocking capacitor	N9398C	4	
Power divider	11636B	2	
50 Ohm termination resistors	1250-2206	4	
4 dB attenuator for aggressor signal at HBR, TP3	Mini Circuits BW-S4W2+	2	3rd party product
5 dB attenuator for aggressor signal at RBR, TP3	Mini Circuits BW-S5W2+	2	3rd party product
10 dB attenuator for aggressor signal at RBR, TP3	Mini Circuits BW- S10W2+	2	3rd party product
Additional accessories for TP2			
150 ps transition time converter	15435A	2	
DC blocking capacitor	N9398C	2	
2 dB attenuator for aggressor signal at RBR/HBR, TP2	Mini Circuits BW-S2W2+	4	3rd party product
SMA (f) to SMA (f)	1250-1158	4	
SMA cable kit (includes 4 cables)	15442A	1	15443A matched pair alternative, replace one set of 15442A by two sets of 15443A

Table B-1.

Appendix C.	The combination of J-BERT and Infinitum oscilloscope is supported by the			
Setup with	necessary items are shown in a separate section of the table.			
ParBERT 81250A	The Infinitum oscilloscope has further canabilities to test source devices. For			
Pattern Generator and	completeness the table lists the source test software as an optional item. This software is not used for sink testing.			
Infiniium Oscillocope	The ParBERT setup may be used for DisplayPort and for HDMI. As testing for			

The ParBERT setup may be used for DisplayPort and for HDMI. As testing for HDMI requires more ParBERT generators as DisplayPort these generators would simplify cabling and eliminate some accessories for the DisplayPort setup. The comment section of Table C-1 (see next page) highlights the differences.

Signal generation and calibration	Model number	No. of units	Comments
Central clock	E4909A	2	
7G generator	N4874A	2	3 generators also supported by N5990A
ParBERT mainframe	81250A-149	1	
IEEE 1394 PC link to VXI	81250A-013	1	
ParBERT 81250 software license	E4875A	1	
Laptop including PCMCIA IEEE 1394 card	81250A-015	1	
81150A with two channels	81150A-002	1	
Signal generator	E4438C, Options 503, 601 UNJ -or- N5182A-654	1	
Infiniium oscilloscope with 8GHz or higher bandwidth	DSA80000 or DSA90000	1	DSA90000 recommended
Differential probe	1169A	1	
Differential probe head	5380A	1	
DisplayPort source test application software for scope	U7232A	1 (optional)	Optional transmitter test suite
LAN hub (includes five LAN cables)	Bitifeye BIT-GEN-NCK-001	1	3rd party product
Test automation software (optional)	Model number	No. of units	Comments
Test Automation Software Platform Core Product	N5990A option 010	1	
DisplayPort receiver test	N5990A option 155	1	
DisplayPort interface to scope transmitter test software	N5990A option 255	1 (optional)	Optional support for transmitter measurements with scope only
Test fixtures & cables	Model number	No. of units	Comments
Plug test fixture	W2641A	1	Includes 4 pairs of straight SMP to SMA cables
90° SMP to SMA cables (recommended only)	E4809-61603	8	N5460A matched pair alternative, 4 pairs needed
Receptacle test fixture for setup calibration	BitifEye BIT-DP-RTF-0001, 3rd party product	1	3rd party product
SMA cable kit (includes 4 cables)	15442A	3	15443A matched pair alternative, replace one set of 15442A by two sets of 15443A
Accessories			
2.4 mm to 3.5 mm adapters	11901C	8	12 if 3 generators are used
50 Ohm termination resistors	1250-2206	8	10 if 3 generators are used
Power divider	11636B	2	Not needed if 3 generators are used
Adapter n to 3.5 mm (f)	1250-1744	1	
DC blocking capacitor	N9398C	4	6 if 3 generators are used
150 ps transition time converter	15435A	4	6 if 3 generators are used
Display port ISI generator	N4915A-006	1	
BNC to SMA adapter	1250-2015	1	
SMA (f) to SMA (f)	1250-1158	4	

Table C-1.

Appendix D. ParBERT 81250 Setup

The ParBERT setup may be used for DisplayPort and for HDMI. As testing for HDMI requires more ParBERT generators as DisplayPort these generators would simplify cabling and eliminate some accessories for the DisplayPort setup. The comment section of the table highlights the differences.

Signal generation and calibration	Model number	No. of units	Comments
Central clock	E4909A	2	
7G generator	N4874A	2	If 3 generators are available some accessories may be saved.
7G analyzer	N4875A	1	
ParBERT mainframe	81250A-149	1	
IEEE 1394 PC link to VXI	81250A-013	1	
ParBERT 81250 software license	E4875A	1	
Laptop including PCMCIA IEEE 1394 card	81250A-015	1	
81150A with two channels	81150A-002	1	
Signal generator	E4438C, Options 503, 601 UNJ -or- N5182A-654	2	
LAN hub (includes 5 LAN cables)	BitifEye BIT-GEN-NCK- 0001, 3rd party product	1	
Test fixtures & cables	Model number	No. of units	Comments
Plug test fixture	W2641A	1	Includes 4 pairs of straight SMP to SMA cables
90° SMP to SMA cables (recommended only)	E4809-61603	8	N5460A matched pair alternative, 4 pairs needed
Receptacle test fixture for setup calibration	BitifEye BIT-DP-RTF-0001, 3rd party product	1	3rd party product
SMA cable kit (includes 4 cables)	15442A	3	15443A matched pair alternative, replace one set of 15442A by two sets of 15443A
Accessories	Model number	No. of units	Comments
2.4 mm to 3.5 mm adapters	11901C	10	14 if 3 generators are used
50 Ohm termination resistors	1250-2206	8	10 if 3 generators are used
Power divider	11636B	2	Not needed if 3 generators are used
Adapter n to 3.5 mm (f)	1250-1744	2	
DC blocking capacitor	N9398C	4	6 if 3 generators are used
150 ps transition time converter	15435A	4	6 if 3 generators are used
Display port ISI generator	N4915A-006	1	
BNC to SMA adapter	1250-2015	1	
BNC to BNC cable	8120-1839	1	

Table D-1.

Related Literature

Title	Pub number or web address
VESA DisplayPort Standard, Version 1.1	www.vesa.org
VESA DisplayPort PHY Compliance Test Standard, Version 1.1, Draft 12	www.vesa.org
Agilent ParBERT 81250 Parallel Bit Error Ratio Tester - Product Overview V 5.66	5968-9188E
Agilent J-BERT N4903A High-Performance Serial BERT	5989-2899EN
Agilent Technologies Infiniium DSO/DSA 90000A Series Real-Time Oscilloscope	5989-7819EN
Agilent N4915A-006 DisplayPort ISI Generator	5989-8688EN
Agilent W2641A DisplayPort Test Point Access Adapter	5989-7274EN
RF & Microwave Test Accessories Catalog 2006/07	5968-4314EN
Test Automation Software Platform N5990A	5989-5483EN
BitifEye Test Fixture	www.bitifeye.com
Mini Circuits Attenuators	www.minicircuits.com

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:

www.agilent.com/find/removealldoubt

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

www.agilent.com www.agilent.com/find/dp rx test

For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:

www.agilent.com/find/contactus

Americas	
Canada	(877) 894-4414
Latin America	305 269 7500
United States	(800) 829-4444
Asia Pacific	
Australia	1 800 629 485
China	800 810 0189
Hong Kong	800 938 693
India	1 800 112 929
Japan	0120 (421) 345
Korea	080 769 0800
Malaysia	1 800 888 848
Singapore	1 800 375 8100
Taiwan	0800 047 866
Thailand	1 800 226 008
Europe & Middle E	ast
Austria	0820 87 44 11
Belgium	32 (0) 2 404 93 40
Denmark	45 70 13 15 15
	050 (0) 40 055 0400

32 (0) 2 404 93 40
45 70 13 15 15
358 (0) 10 855 2100
0825 010 700*
*0.125 €/minute
01805 24 6333**
**0.14 €/minute
1890 924 204
972-3-9288-504/544
39 02 92 60 8484
31 (0) 20 547 2111
34 (91) 631 3300
0200-88 22 55
0800 80 53 53
44 (0) 118 9276201

Other European Countries: www.agilent.com/find/contactus Revised: March 27, 2008

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008 Published in USA, August 18, 2008 5989-9147EN

