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Agilent X-Series signal and spectrum analyzers are built based on the Microsoft® 

Windows® operating system. Integrating this operating system into Agilent in-

struments enables users to interface these instruments to application software 

using industry-standard connectivity (LAN, USB, and GPIB), and develop and 

execute their own applications for the Agilent X-Series signal and spectrum ana-

lyzers using MATLAB software.   

In the following application note, we discuss and demonstrate basic instrument 

communication using MATLAB code. We progress to more application-specifi c 

MATLAB code examples and then describe how you can start developing your

own MATLAB-based applications integrated into the X-series signal and spec-

trum analyzers by referencing existing examples that you can download and 

modify.

This application note explains how to use MATLAB software to confi gure, con-

trol, and acquire data from X-Series signal and spectrum analyzers. The docu-

ment then describes how you can use scripts developed in MATLAB to create, 

modifi y, and execute your own applications for X-Series signal and spectrum 

analyzers. You can also use many of the MATLAB examples in this application 

note with PSA high performance analyzers.

Finally, this application note provides references to on-line resources where you 

can download previously-developed MATLAB applications, which can be execut-

ed on your instrument directly or modifi ed to suite your specifi c testing needs.    

This application note aims to enhance your knowledge of using MATLAB with 

Agilent signal and spectrum analyzers. To learn more about getting started with 

MATLAB, users may also wish to refer to MATLAB’s on-line documentation.

1.1  Overview of Agilent signal and spectrum analyzers

From DC to 325 GHz, Agilent Technologies offers X-Series and PSA signal and 

spectrum analyzers that enable you to analyze distortion, spurious, phase noise, 

and make 2G to 4G wireless communication measurements.

• The low-cost CXA is a versatile tool for essential signal characterization.

• The economy-class EXA is the fastest way to maximize throughput on the 

production line.

• The mid-performance MXA is the ultimate accelerator as your products move 

from design to manufacturing to the marketplace.

• The high-performance PXA is the evolutionary replacement for your current 

performance signal analyzer.

1.0  Introduction
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1.2  Agilent offers MATLAB software for 

 Agilent instruments

MATLAB is used to create, develop, and execute X-Series applications. MATLAB 

is also used with Agilent instruments, including signal and spectrum analyzers 

to make measurements, analyze and visualize data, generate arbitrary wave-

forms, control instruments, execute modulation schemes, and build test sys-

tems. MATLAB provides interactive tools and command-line functions for data 

analysis tasks such as signal processing, signal modulation, digital filtering, and 

curve fitting.  

MATLAB excels at math and matrix processing, can be used for communications 

DSP, and offers outstanding plotting and graphics functions. MATLAB makes an 

excellent companion program to the X-Series or PSA, whether running remotely 

on an external PC, or running directly inside the instrument. Under the control 

of MATLAB, the signal analyzer can acquire RF or microwave signals. These 

acquisitions can be scalar (magnitude-only versus frequency or time) or complex 

(magnitude and phase.) After transferring the data into MATLAB, a user-defined 

program can be used for fuctions such as further analysis, testing, and auto-

matic test equipment (ATE) control.

In order to provide complete test and measurement solutions, Agilent now 

sells three different MATLAB software packages, which are available with the 

purchase of X-Series and PSA signal and spectrum analyzers. Each package 

contains MATLAB and various libraries called “toolboxes” to add functionality 

for specific fields. The MATLAB - Basic Signal Analysis Package (N6171A-M01) 

provides MATLAB and the Instrument Control Toolbox, which are required for in-

strument interaction in MATLAB. The MATLAB - Standard Signal Analysis Pack-

age (N6171A-M02) includes the products in the MATLAB - Basic Signal Analysis 

Package plus the Communications Toolbox and Signal Processing Toolbox. The 

MATLAB - Advanced Signal Analysis Package (N6171A-M03) includes the prod-

ucts in the MATLAB - Standard Signal Analysis Package plus the Filter Design 

Toolbox and RF Toolbox. To learn more about the typical uses of each package 

visit www.agilent.com/find/n6171a. 

Please note that the examples provided in this application note require the prod-

ucts in the MATLAB - Standard Signal Analysis Package to run. (Inform your 

Agilent account manager if you need a trial of MATLAB software.) However, 

other toolboxes can be very useful for data analysis and signal processing, such 

as the Communications Toolbox and RF Toolbox. 
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MATLAB’s Instrument Control Toolbox provides two different types of functions 

for interfacing with Agilent’s signal and spectrum analyzers. I/O communication 

is made simple with the use of MATLAB’s interface objects and device objects. 

An interface object allows the user to communicate with an instrument directly 

using a standard interface such as GPIB, TCP/IP, or VISA. A device object 

allows the user to communicate with an instrument at a higher level through an 

industry-standard instrument driver, such as an IVI-COM, IVI-C, or a self-

developed instrument driver. The driver itself then uses the GPIB, TCP/IP, or 

VISA interface. The Instrument Control Toolbox also provides tools for develop-

ing MATLAB instrument drivers.

2.1 Controlling instruments in MATLAB 
using interface objects

The Instrument Control Toolbox provides several interface objects, but this sec-

tion will focus on the GPIB, TCP/IP, and VISA interfaces. There are three basic 

steps to follow when using an interface object: 

 1) Open an instrument control session.

 2) Connect to the instrument.

 3) When fi nished, disconnect the instrument interface object.

The following is an example of how to communicate with an instrument using a 

General Purpose Interface Bus (GPIB) interface object.

1) Open the instrument control session.

  GPIB_object = gpib(‘vendor’, boardindex, primaryaddress);

If you were to use an Agilent 82357A USB to GPIB connector, then the state-

ment might look like:

  MXA = gpib(‘agilent’, 7, 18);

2) Connect to the instrument.

  fopen(MXA);

3) Communicate with the instrument.

  identity = query(MXA, ‘*IDN?’)

This will return the vendor, model number, serial number, and fi rmware revision 

of the instrument.

4) When fi nished, disconnect the instrument object.

  fclose(MXA);

It is also a good idea to clear the object from the memory by using the delete() 

command.

  delete(MXA);

2.0 Controlling

 Instruments in

 MATLAB using

 Interface Objects,

 Device Objects,

 and Instrument

 Drivers
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The same basic steps are followed when using a Transmission Control Protocol/

Internet Protocol (TCP/IP) interface object.

1) Open the instrument control session.

  TCPIP_object = tcpip(‘rhost’, rport);

If you were to use an IP address of ’10.10.10.10’ and the port 5025, the com-

mand would look like:

  mxa_ip = ‘10.10.10.10’;

  mxa_port = 5025;

  mxa = tcpip(mxa_ip,mxa_port);

2) Connect to the instrument.

  fopen(MXA);

3) Communicate with the instrument.

  identity = query(MXA, ‘*IDN?’)

This will return the vendor, model number, serial number, and fi rmware revision 

of the instrument.

4) When fi nished, disconnect the instrument object and delete it from memory.

  fclose(MXA);

  delete(MXA);

Again, the same steps are followed to create a virtual instrument standard archi-

tecture (VISA) interface object.

1) Open the instrument control session.

  VISA_object = visa(‘vendor’,’rsrcname’);

If we are using the Agilent N9020A X-Series signal and spectrum analyzer, then 

we could use the following command:

  vendor = ‘agilent’;

  rsrcname = ‘TCPIP0::10.10.10.10::inst0::INSTR’;

  MXA = visa(vendor,rsrcname);

There are two ways to fi nd out the resource name, if it is unknown. The fi rst way 

is to use the Agilent Connection Expert (ACE). This program is included in ver-

sion 15.0 or later of Agilent’s IO Library Suite (available at www.agilent.com/

fi nd/iolib). To fi nd the name in the ACE look at the address in the ( ) next to the 

model number. This is the resource name, which is also called the VISA address. 

The other way to fi nd out the VISA address is to use the instrhwinfo() command 

provided by the Instrument Control Toolbox. In this case, you would type info = 

instrhwinfo(‘visa’,’agilent’) in the MATLAB command window. This command 

will return a structure with a fi eld named ObjectConstructorName. 

info = 
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  AdaptorDllName: [1x92 char]

  AdaptorDllVersion: ‘Version 2.6.0’

  AdaptorName: ‘AGILENT’

  AvailableChassis: []

  AvailableSerialPorts: ‘’

  InstalledBoardIds: 0

  ObjectConstructorName: {3x1 cell}

  SerialPorts: ‘’

  VendorDllName: ‘agvisa32.dll’

  VendorDriverDescription: ‘Agilent Technologies VISA Driver’

  VendorDriverVersion: 1

To look at the contents of this fi eld, you would type info.ObjectConstructorName

in the MATLAB command window. This will return a list of VISA addresses that 

are recognized by MATLAB. This list is directly connected to the instruments 

that are found in the ACE.

info.ObjectConstructorName

ans = 

     ‘visa(‘agilent’, ‘TCPIP0::141.121.94.85::inst0::INSTR’);’

  ‘visa(‘agilent’, ‘GPIB0::12::INSTR’);’

  ‘visa(‘agilent’, ‘GPIB0::18::INSTR’);’

2) Connect to the instrument.

  fopen(MXA);

3) Communicate with the instrument.

  identity = query(MXA, ‘*IDN?’)

This will return the vendor, model number, serial number, and fi rmware revision 

of the instrument.

4) When fi nished, disconnect the instrument object and delete it from memory.

  fclose(MXA);

  delete(MXA);
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2.1.1 An example MATLAB program 

using interface objects 

The following example shows the basic MXA communication procedure using

functions of the Instrument Control Toolbox. This program Basic_SCPI_

Control.m uses TCP/IP (LAN) connectivity to the instrument as it is one of the 

most widely used interfaces, and TCP/IP included in the MXA as a standard 

interface.

 % TCPIP parameters of the Spectrum Analyzer

 mxa_ip = ‘10.10.10.10’;

 mxa_port = 5025;

 % MXA Interface creation and connection opening

 fprintf(‘\nConnecting to Instrument ...\n’);

 mxa = tcpip(mxa_ip,mxa_port);

 fopen(mxa);

 % Intrument identifi cation

 idn = query(mxa,’*IDN?’);

 fprintf(‘Hello from %s’, idn);

 % Set the center frequency to 1 GHz using a SCPI command

 fprintf(mxa,’:FREQ:CENT 1 GHz’);

 % Set the span to 20 MHz

 fprintf(mxa,’:FREQ:SPAN 20 MHz’);

 % Set the reference level to +10 dBm

 fprintf(mxa,’:DISP:WIND:TRAC:Y:RLEV 10’);

 % Query the resolution bandwidth using fprinf()/fgets()

 fprintf(mxa,’:BAND:RES?’);

 rbw = str2double(fgets(mxa));

 fprintf(‘Resolution bandwidth: %d kHz\n’, rbw/1e3);

 % Query the sweep time using query()

 swp = str2double(query(mxa,’:SWE:TIME?’));

 fprintf(‘Sweep time: %d ms\n’, round(swp*1000));

 % Close the XA connection and clean up

 fprintf(‘Disconnecting from Instrument ...\n’);

 fclose(mxa);

 delete(mxa); % delete the interface object

 clear mxa; % clear from the workspace

This program begins by defi ning the IP address and I/O port of the instrument, 

creating a TCP/IP interface and opening the interface for instrument communi-

cation. To fi nd the IP address of a particular MXA, press the following keys [Sys-

tem] {Show} {System}. In this example, the TCP/IP interface is the variable mxa.
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As shown in the previous section, the fopen(mxa) statement is used to open 

communication to the instrument. The fprintf() function is used to send SCPI 

commands to the instrument via the TCP/IP interface. This example sends the 

SCPI commands to set the center frequency, span, and reference level of the 

instrument. 

Instrument parameters and data can be queried from the instrument using many 

different MATLAB functions. This example uses two different methods. The 

method used to query the resolution bandwidth of the instrument is a combina-

tion of the fprintf() and fgets() commands. The fprintf(mxa,’:BAND:RES?’); 

command uses an SCPI command to place the value of resolution bandwidth in 

the output buffer and the fgets(mxa) command to read the data from the out-

put buffer. The second method this example uses is the query() function. The 

query() function is essentially a combination of the fprintf() and fgets() func-

tions. This example uses the query(mxa,’*IDN?’); function to retrieve informa-

tion about the instrument’s serial number, model number, and fi rmware revision. 

This program concludes by closing the TCP/IP interface using the fclose(mxa); 

command and deleting the mxa variable from the workspace memory using the 

delete(mxa); and clear mxa; commands.

The instrhelp command provides help on all the Instrument Control Toolbox 

functions and object properties. For example, typing instrhelp tcpip in the MAT-

LAB command window displays the help text of the tcpip() function and lists all 

the properties of TCP/IP objects. Please refer to Product Help in MATLAB for a 

more detailed description of the Instrument Control Toolbox and its features.
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2.1.2 A second example MATLAB program using 

interface objects

Acquiring trace data in spectrum analysis mode is one of the most common use 

cases when interacting with the instrument. The MATLAB script Acquire Trace 

Single.m demonstrates how a single trace can be acquired and plotted on a 

fi gure.

% Getting and plotting trace data

% Single trace acquisition

% Initial setup

mxa_ip = ‘10.10.10.10’;

mxa_port = 5025;

mxa=tcpip(mxa_ip, 5025);

% input buffer size to receive trace data

% should be at least 4 times the number of trace

% points for 32-bit real format

set(mxa,’InputBufferSize’,100000);

fopen(mxa);

% Set the data trace format to REAL, 32 bits

fprintf(mxa,’:FORM:DATA REAL,32’);

% Get the nr of trace points

nr_points = str2double(query(mxa,’:SWE:POIN?’));

% Get the reference level

ref_lev = str2num(query(mxa,’DISP:WIND:TRAC:Y:RLEV?’));

% Get the trace data

fprintf(mxa,’:TRAC? TRACE1’);

data = binblockread(mxa,’fl oat32’);

fscanf(mxa); %removes the terminator character

% create and bring to front fi gure number 1

fi gure(1)

% Plot trace data vs sweep point index

plot(1:nr_points,data)

% Adjust the x limits to the nr of points

% and the y limits for 100 dB of dynamic range

xlim([1 nr_points])

ylim([ref_lev-100 ref_lev])

% activate the grid lines

grid on

title(‘Swept SA trace’)

xlabel(‘Point index’)

ylabel(‘Amplitude (dBm)’)

% Disconnect an clean up

fclose(mxa);

delete(mxa);

clear mxa;
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The input buffer size property of the TCP/IP interface object is changed from its 

default value (512) in order to accommodate longer trace records. The number of 

points should be at least the number of sweep points times the number of bytes 

required per data point (four in the case of real 32 data format) plus one for the 

terminator character. An input buffer size of 105 points is enough for this trace 

acquisition in Spectrum Analysis mode (SA) and for most processing in IQ Ana-

lyzer mode (Basic.) 

Before the trace transfer, two instrument settings are read: the number of 

trace points and the reference level. The queried values are returned in a string 

format. The MATLAB functions str2double() and str2num() convert the string 

values into a numeric format. These values will be used to adjust the axis of the 

MATLAB plot. The trace data is obtained by sending the ‘:TRAC? TRACE1’ SCPI 

command. The trace data is then placed in the output buffer of the instrument 

and the data is retrieved in MATLAB via the binblockread(object, precision) 

function. This function interprets the binary data sent from the analyzer as an 

array of data (in this case an array of trace amplitudes) with the precision that is 

specifi ed. 

In this example the SCPI command ‘:FORM:DATA REAL,32’ is sent 

to set the format for the output data. The number format specifi ed in 

binblockread(mxa,’fl oat32’) must be compatible with the data format that the 

instrument uses. The resulting plot is shown in Figure1.
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Figure 1. Plot of trace data obtained using MATLAB
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If the frequency span is greater than zero hertz (also called zero span), the trace 

represents power versus frequency and the index point number can be convert-

ed into frequency using the following relationship: 

freq = freq_center + freq_span * [point_index/(N-1) – 0.5] 

For zero span, the trace is a representation of power versus time and the conver-

sion from point index to time can be done using: 

time = sweep_time * point_index/(N-1) 

The point_index variable ranges from 0 to N-1, where N is the number of trace 

points. For consecutive trace acquisitions there are three methods available:

 1) asynchronous

 2) synchronous

 3) timed trace  

Asynchronous trace acquisition

This method simply transfers the trace contained in the instrument’s memory, 

disregarding the sweep state. It provides the fastest possible trace update and 

requires only one SCPI command. The method is used in Acquire Trace Cont 

Async.m as shown in the Appendix.

Synchronous trace acquisition

In this method, a trace is transferred only after the instrument trace sweep is 

completed. It uses ‘:INIT:IMM;*OPC?’ and the program fl ow stops until the 

trace sweep operation completes. This method must be used if synchronization 

between the instrument trace sweep and the MATLAB trace processing is a 

requirement. Acquire Trace Cont Timer.m demonstrates this trace acquisition 

method.

Timed trace acquisition

The most versatile method, especially for graphical user interface (GUI) applica-

tions, is the timer method of trace acquisition. It relies on the timer() function, 

which defi nes the function to be called each time the timer expires and the 

timer repetition period. That function, update_plot(), is where the trace data is 

acquired and the plot updated. This method is covered in Acquire Trace Timer.m 

in the Appendix.
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2.2 Creating a MATLAB instrument driver

The Instrument Control Toolbox provides a graphical instrument driver editor that 

allows you to develop drivers for Agilent’s X-Series signal and spectrum analyz-

ers. By creating a MATLAB instrument driver, you can create programs that use 

both the built-in functionality of the instrument and MATLAB. One of the major 

benefits to developing and using a driver in MATLAB is that it eliminates the 

need to look up the SCPI syntax for each of the intended instrument commands 

because these commands are now embedded inside the driver. Also, executing 

multiple commands or complex commands, such as obtaining trace data or raw 

IQ data, can be easily incorporated in the driver as the examples show in this 

section.

Note: If you are using an Agilent X-Series or PSA signal or spectrum analyzer, 

you typically will not have to create your own MATLAB instrument driver. A 

MATLAB instrument driver has already been created by Agilent and is available 

for download through www.agilent.com/find/n6171a or 

www.mathworks.com/agilent.  

The tool used to develop drivers in MATLAB is called the MATLAB Instrument 

Driver Editor and it can be started through the MATLAB Start menu or by simply 

typing midedit in the MATLAB command window. This command will start the 

tool (see Figure 2) where you can begin to create your unique instrument driver.

As you can see in Figure 2, the MATLAB Instrument Driver Editor can be com-

prised of five main components. We will talk about four of these components: 

summary, initialization and cleanup, functions, and properties.

Figure 2. MATLAB Instrument Driver Editor
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The fi rst step to creating a driver is to enter in the basic information about the 

driver in the summary section such as the instrument models the driver will sup-

port and the driver version.

The next step in creating the driver is to enter any initialization and cleanup code 

that is needed. For example, here is a portion of the Create code used in the 

driver that is used in the following examples:

 function init(obj)

 % This function is called after the object is created.

 % OBJ is the device object.

 interface=get(obj,’interface’);

 set(interface,’InputBufferSize’,2e6);

 set(interface,’Timeout’,10);

 fclose(interface);

 % OBJ is the device object.

 % End of function defi nition - DO NOT EDIT

As you can see, this code sets up some interface properties (buffer size and tim-

eout.) In this portion of the code, you can also add functions or send SCPI com-

mands (such as *RST or *IDN?) for initial instrument setup.

Figure 3. Enter driver summary information



15

Figure 4. Creating desired properties or functions for MATLAB instrument driver

The “endianness” of your computer and instrument is an important consider-

ation for your initialization code. Endianness is used to distinguish the byte order 

used to represent data. The little-endian requires that the data is sent with the 

least signifi cant bit (LSB) fi rst, whereas big-endian requires that the data is sent 

with the most signifi cant bit (MSB) fi rst. 

The SCPI standard dictates that instruments send the data in the big-endian 

format. The MATLAB command [str,maxsize,endian] = computer will deter-

mine the computer type, maximum array size, and endianness of your computer. 

If your PC is little-endian, then you can include the ‘FORM:BORD SWAP’ SCPI 

command to change the byte order transmitted by the instrument. To set your 

analyzer back to big-endian, send the ‘FORM:BORD NORM’ SCPI command. 

Please note that these commands are only necessary for querying binary data.

The next step to creating a MATLAB instrument driver is to create any desired 

properties or functions. The properties portion of the driver allows you to use the 

set and get functions of the Instrument Control Toolbox. The set function allows 

you to send SCPI commands to the instrument. The get function allows you to 

query the instrument also via SCPI commands. 

To add a property, right click on the Properties icon and select Add Property or 

highlight the Properties icon and enter the property name in the Add Property 

fi eld. Once the property name has been entered, you can enter in the desired 

SCPI commands in the get or set fi elds under the Code tab. You will notice 

in this window a drop down menu for Property style. This drop down menu 

provides the option of using m-code or instrument commands (in this case SCPI 

commands) to create instrument properties. Under the Properties Values tab, 

you can set the data type for the property such as Double or String. Under the 

General tab, you can place any help documentation about the property.
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The Functions tab can be used to combine SCPI commands and MATLAB tools 

to perform complicated functions. You add a function in the same way as you 

add a property. Figure 5 shows a driver function called “WavReadIQData” that 

will read IQ data from the instrument and use MATLAB’s matrix processing tools 

to create the I +jQ complex vector data.

The ‘:READ:WAV0?’ is sent to the analyzer to obtain the unprocessed I/Q trace 

data as a series of trace point values in volts. The data is read back from the 

analyzer in binary form using the binblockread() function (line 14). 

It is very important to note that the binblockread() function in MATLAB does 

not read the terminating character from the output buffer of the instrument. 

Hence, any subsequent data read from the instrument will appear incorrectly as 

the terminating character will try to be interpreted as data. The fread() function 

(line 15) solves this issue by reading the terminating character from the buffer. 

Please see the MATLAB help documentation for more details about the bin-

blockread() or fread() function. 

As in the Properties section, you can also create any help documentation under 

the Help tab. For more help with creating MATLAB drivers, please see the Prod-

uct Help under the Help menu in MATLAB.

Figure 5. “WavReadIQData” driver function
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2.3 Controlling instruments in MATLAB 

using device objects

As mentioned earlier, a device object allows MATLAB to communicate with an 

instrument via an industry-standard instrument driver, such as an IVI-COM, IVI-C, 

or a self-developed instrument driver. This section explores the use of the MAT-

LAB instrument driver developed for the Agilent X-Series signal and spectrum 

analyzers. The instrument driver provides much easier access to I/O communi-

cation with the instrument. 

The MATLAB instrument driver file (called Agilent_SA_Driver.mdd in this ex-

ample) can be downloaded from one of the following Web sites: 

www.agilent.com/find/n6171a_sa or www.mathworks.com/agilent.  

Note: This driver is a native MATLAB instrument driver and does not require an 

IVI-C or IVI-COM instrument driver to operate. You may choose to download or 

automatically create a MATLAB instrument driver wrapper that uses an IVI-COM 

or IVI-C driver, if the driver used in this example does not provide the functional-

ity you need. Using MATLAB with an IVI-COM or IVI-C instrument driver is not 

described in this application note. More information on using MATLAB with IVI 

instrument drivers can be found at www.mathworks.com/ivi.

The driver file must be copied to the current working directory or to any other 

directory in the MATLAB path. To add a file or folder to the MATLAB search 

path, click on the File menu in MATLAB and select Set Path. A directory already 

exists where example drivers (shipped with the Instrument Control Toolbox) are 

already located. This directory is:

  <matlabroot>\toolbox\instrument\instrument\drivers

There are four basic steps to follow when using a device object: 

 1) Create an interface object.

 2) Use the obj = icdevice(‘driver’, hwobj) constructor function to 

  create a device object, where hwobj is the interface object you created 

  in step one.

 3) Use the connect(obj) command to connect the device object to the  

  instrument (similar to the fopen(mxa) command for the interface objects.)

 4) When finished, use the disconnect(obj) command to disconnect the 

  device object from the instrument (similar to fclose(mxa).)
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The following illustrates how to create a device object 

using a TCP/IP interface object.

1) Create the interface object.

  mxa_ip = ‘10.10.10.10’;

  mxa_port = 5025;

  mxa_if = tcpip(mxa_ip,mxa_port);

2) Create the device object.

  mxa = icdevice(‘Agilent_SA_Driver.mdd’, mxa_if);

3) Connect the device object to the instrument.

  connect(mxa);

4) When fi nished disconnect the device object.

  disconnect(mxa);

It is also a good idea to delete the interface object and clear the device object 

from the memory by using the delete() and clear() command.

  delete(mxa_if);

  clear(mxa);

2.3.1 An example MATLAB program using device objects
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The following code has the same functionality as the fi rst MATLAB example 

program, but this program now uses the MATLAB instrument driver.

 % Using the SA Instrument Driver

 % Initial setup

   mxa_ip = ‘10.10.10.10’;

   mxa_port = 5025;

   fprintf(‘\nConnecting to Instrument ...\n’);

 % MXA Interface creation and connection opening

   mxa_if = tcpip(mxa_ip,mxa_port);

   mxa = icdevice(Agilent_SA_Driver.mdd’, mxa_if);

   connect(mxa,’object’)

 % Instrument identifi cation

   idn = get(mxa,’Identify’);

   fprintf(‘Hello from %s\n’, idn);

 % Set instrument mode to SA

   set(mxa, ‘Mode’, ‘Spectrum Analysis’);

 % Set the center frequency to 1 GHz

   mxa.SAFreqCenter = 1e9;

 % optionally, the center frequency parameter can be

 % changed using set(): set(mxa, ‘SAFreqCenter’, 1e9);

 % Set the span to 20 MHz

   mxa.SASpan = 20e6;

 % Set the reference level to +10 dBm using set()

   set(mxa, ‘SARefLevel’, 10);

 % Query the resolution bandwidth

   rbw = mxa.SARBW;

   fprintf(‘Resolution bandwidth: %d kHz\n’, rbw/1e3);

 % Query the sweep time using get()

   swp = get(mxa, ‘SASweepTime’);

   fprintf(‘Sweep time: %d ms\n’, round(swp*1000));

 % Close the XA connection and clean up

   fprintf(‘Disconnecting from Instrument ...\n’);

   disconnect(mxa);

   clear mxa;
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This program begins by defi ning the TCP/IP interface object and creating the de-

vice object (mxa) using the icdevice() constructor function. The connect(mxa) 

command is needed for I/O communication between the instrument driver and 

instrument. The get() function is used to query the instrument’s identity. The 

driver sets or queries the instrument properties in two different ways: 1) using 

the mxa.PropertyName notation and 2) using the set() or get() command. The 

span of the instrument is set using the fi rst method, and the reference level is 

set using the second method. With the set() command it is possible to change 

one or more parameters in a single code line as shown in the next command:

 set(mxa, ‘SARefLevel’, -10, ‘SAFreqCenter’, 2e9);

In the end, the object should be disconnected from the instrument using

disconnect(), before the fi nal clean up procedure.

The basic fprintf() and query() functions can still be used to send the instru-

ment commands if some required functionality in not included in the driver. For 

example, the reference level property of the instrument could have been set 

using the following SCPI command: 

 fprintf(mxa_if,’:DISP:WIND:TRAC:Y:RLEV -10); 

The available properties and corresponding values of the object driver can be 

known using the get(mxa) command. For the current status of the driver this 

command returns:

>> get(mxa)

Hello from Agilent Technologies,N9020A,US46220185,A.01.50

 Confi rmationFcn = 

 DriverName = Agilent_SA_Driver.mdd

 DriverType = MATLAB interface object

 InstrumentModel = Agilent Technologies,N9020A,

 US46220185,A.01.50

 Interface = [1x1 tcpip]

 LogicalName = TCPIP-141.121.90.55

 Name = Signal and Spectrum Analyzer-Agilent_SA_Driver

 ObjectVisibility = on

 RsrcName = 

 Status = open

 Tag = 

 Timeout = 10

 Type = Signal and Spectrum Analyzer

 UserData = []



21

 SIGNAL AND SPECTRUM ANALYZER specifi c properties:

 ByteOrder = Swapped

 Identify = Agilent Technologies,N9020A,US46220185,A.01.50

 Mode = Spectrum Analysis

 ModeOpts = “NFIG 219, PNOISE 14, SA 1, EDGEGSM 13, 

 WCDMA 9, VSA89601   101, CDMA2K 10, VSA 100, BASIC 8,   

 ADEMOD 234, WIMAXOFDMA 75, TDSCDMA 211”

 OperationComplete = 1

 SAAtten = 10

 SAAttnAuto = on

 SAAve = off

 SAAveCoun = 100

 SABlank = 1

 SADate = May 12, 2008

 SADet = Normal

 SADetAuto = on

 SAFreqCenter = 1.3255e+010

 SAInput = RFport

 SAPeakExc = 6

 SAPeakThresh = -90

 SAPreamp = off

 SAPresetType = mode

 SARBW = 3e+006

 SARBWAuto = on

 SARefLevel = 0

 SARFCoup = ac

 SAScaleDiv = 10

 SAScaleType = log

 SASpan = 2.649e+010

 SAStartFreq = 1e+007

 SAStopFreq = 2.65e+010

 SASweepPoints = 1001

 SASweepSingle = 1
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 SASweepTime = 0.0662667

 SATime = 17h 18m 54s

 SATitle = “Swept SA”

 SATrigger = freerun

 SAVBW = 3e+006

 SAVBWAuto = on

 SAYunits = dbm

 WavAcquisitionTime = 

 WAVAver = 

 WavCurrentCapture = 

 WavFirstCapture = 

 WavHardAvg = 

 WavIFWidth = 

 WavLastCapture = 

 WavNextCapture = 

 WavQueryData = 

 WavRBW = 

 WavSampleRate = 

 WavTimeCapture = 

 WavTraceDisplay = 

 WavTriggerSource =

Changeable properties are initialized with default values upon the driver 

object creation with icdevice(). These default values can be displayed using 

set(mxa):

>> set(mxa)

 Confi rmationFcn: string -or- function handle -or- cell array

 Name: 

 ObjectVisibility: [ {on} | off ]

 Tag: 

 Timeout: 

 UserDatca: 
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    SIGNAL AND SPECTRUM ANALYZER specifi c properties:

    ByteOrder: [ {Normal} | Swapped ]

    Identify: 

    Mode: [ {Spectrum Analysis} | cdmaOne | NADC | PDC | 

Basic | W-CDMA | cdma2000 | GSM_EDGE | Phase Noise | CDMA_1xEVDO 

| WLAN | Noise Figure | VSA_Link | 

Measuring Reciever | Digital Demod ]

    ModeOpts: 

    OperationComplete: 

    SAAtten: [ 0.0 to 70.0 ]

    SAAttnAuto: [ {on} | off ]

    SAAve: [ on | off ]

    SAAveCoun: [ 1.0 to 8192.0 ]

    SABlank: [ {Off} | On ]

    SADate: 

    SADet: [ Average | Negative | Positive | {Normal} | Sample | RMS | QP ]

    SADetAuto: [ {on} | off ]

    SAFreqCenter: 

    SAInput: [ {AmpRef} | RFport ]

    SAPeakExc: 

    SAPeakThresh: 

    SAPreamp: [ on | {off} ]

    SAPresetType: [ factory | user | {mode} ]

    SARBW: [ 1.0 to 8000000.0 ]

    SARBWAuto: [ {on} | off ]

    SARefLevel: 

    SARFCoup: [ {ac} | dc ]

    SAScaleDiv: [ 0.1 to 20.0 ]

    SAScaleType: [ lin | log ]

    SASpan: 

    SAStartFreq: [ -1.0E8 to 2.7E10 ]

    SAStopFreq: [ -1.0E8 to 2.7E10 ]

    SASweepPoints: 

    SASweepSingle: [ {On} | Off ]

    SASweepTime: 

    SATime: 

    SATitle: 

    SATrigger: [ {freerun} | video | line | external1 | external2
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| RFburst ]

 SAVBW: [ 1.0 to 5.0E7 ]

 SAVBWAuto: [ {on} | off ]

 SAYunits: [ {dbm} | dbmV | dbuV | V | W | dbma | dbua |   

  dbuvm | dbuam | dbpt | dbg ]

 WavAcquisitionTime: 

 WAVAver: [ {On} | Off ]

 WavCurrentCapture: 

 WavFirstCapture:

 WavHardAvg: 

 WavIFWidth: [ {Wide} | Narrow ]

 WavLastCapture: 

 WavNextCapture: 

 WavQueryData: 

 WavRBW:

 WavSampleRate:

 WavTimeCapture: 

 WavTraceDisplay: [ {On} | Off ]

 WavTriggerSource: [ {External_Front} | External_Rear | Frame |

  Video | Free_Run | Line | RF_Burst ]

The {} indicate the default parameter setting and the valid range is also included 

for the numeric ones.

The command propinfo(mxa, ‘PropertyName’) provides more detailed informa-

tion about each property:

>> propinfo(mxa,’SARBW’)

ans = 

           Type: ‘double’

           Constraint: ‘bounded’

           ConstraintValue: [1 8000000]

           DefaultValue: 3000000

           ReadOnly: ‘never’

           InterfaceSpecifi c: 1

The instrhelp() function can also be used with instrument driver objects in order 

to get specifi c help on any property or function of the driver. 

 >> instrhelp(mxa,’SADet’)

 SADET  [ Average | Negative | Positive | {Normal} | Sample | 

 RMS | QP ]

 Sets or queries the detector type
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Besides controlling the instrument settings, the driver also includes more complex 

functions, called methods. The available methods for the driver can be recalled 

using:

>> methods(mxa)

Methods for class icdevice:

Contents display inspect isa 

openvar          

class end instrcallback isequal 

propinfo         

close eq instrfi nd isetfi eld selftest         

connect fi eldnames instrfi ndall isvalid 

set              

ctranspose get instrhelp length 

size             

delete geterror instrhwinfo methods subsasgn         

devicereset horzcat instrnotify ne 

subsref          

disconnect icdevice instrument obj2mfi le 

vertcat          

disp igetfi eld invoke open                              

Driver-specifi c methods for class icdevice:

InitCaptureData SAMeasCHP SAPeakAcqMax WavDeepCapture   

WavMeasIQData    

QuerySCPI SAMeasOBW SATraceAcq WavFetchIQData   

WavReadIQData    

SAInitiate SAPeakAcq SYSPreset WavInitIQData    

WriteSCPI        

Help on any of these methods can be obtained using again instrhelp(), for example:

>> instrhelp(mxa, ‘SATraceAcq’)

  SATraceAcq method gets the swept SA trace data

  Iutput parameters: none

  Output parameters: one column vector with trace data

The MATLAB instrument driver can be modifi ed to include more properties and 

functions using the MATLAB Instrument Driver Editor. For more information on 

using device objects, please refer to the MATLAB product help.
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2.3.2 Getting IQ data

Getting IQ data is one of the most frequently performed operations on this type 

of signal analyzer. Most of the demodulation takes place at the baseband IQ 

level. The procedure is similar to that of getting trace data, but with the instru-

ment in IQ Analyzer (or Basic) mode. Acquire IQ Vector.m demonstrates how IQ 

can be acquired and displayed in a complex vector plot.

% Getting IQ data using the SA driver and plot display

% SOURCE SETUP...QPSK signal, @ 1 GHz carrier, 5 Msps, 

& Gausian % fi lter

% TCPIP parameters

mxa_ip = ‘10.10.10.10’;

mxa_port = 5025;

% MXA Interface creation and connection opening

mxa_if = tcpip(mxa_ip,mxa_port);

mxa = icdevice(‘Agilent_SA_Driver.mdd’, mxa_if);

connect(mxa)

%% Measurement Setup

set(mxa,’Mode’,’Basic’)

invoke(mxa, ‘WriteSCPI’, ‘*RST’)

% if using VISA object switch Byte Order

set(mxa, ‘ByteOrder’, ‘Swapped’)

set(mxa,’SAFreqCenter’,1000000000)

set(mxa,’SASweepSingle’, ‘Off’)

set(mxa,’WavAcquisitionTime’,.00007)

set(mxa,’WavRBW’,8000000)

invoke(mxa, ‘SAInitiate’);

%% Get IQ data

iq = invoke(mxa,’WavReadIQData’);
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% Create a fi gure 1 and bring it to the front

fi gure(1)

% Vector plot (imag vs real)

plot(real(iq),imag(iq))

% Axis adjustment

axis square

% Labels

xlabel(‘I’)

ylabel(‘Q’)

title(‘IQ vector plot’)

% Close the XA connection and clean up

disconnect(mxa);

clear mxa;

The resulting plot for QPSK modulation using baseband raised cosine fi ltering is 

displayed in Figure 6. The plot parameters may need to be edited for each spe-

cifi c setup.

Figure 6. QPSK modulation plot using baseband raised cosine fi ltering
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Using the instrument driver, the IQ data is transferred into MATLAB using the 

WavReadIQData function. The details of the WavReadIQData function can be 

found by looking at the driver code using the midedit command. The following 

code is the sequence of commands that retrieves the IQ data.

function [inphase,quad,iqr]=WavReadIQData(obj)

% If this is a group function, OBJ is the group object. If

% it a base device function, OBJ is the device object.

% Get the interface object

interface=get(obj,’interface’);

% Tell it the precision

fprintf(interface,’:FORM:DATA REAL,32’);

fprintf(interface,’:READ:WAV0?’);

% Get the data back

data=binblockread(interface,’fl oat’);

fread(interface,1);

% data is interleaved inphase, quad

inphase=data(1:2:end);

quad=data(2:2:end);

% fi nal complex vector

iqr=inphase+j*quad;

IQ arrays may be very long. The ‘InputBufferSize’ property may need to be in-

creased as required. The default buffer size is 2e6 and this may be suitable in 

most cases. If the buffer size needs to be increased, this can be accomplished by 

editing the “Create” code in the driver or by editing the interface object property 

using either of the following commands: 

set(mxa_if, ‘InputBufferSize’, new_buffer_value); or

mxa_if.InputBufferSize = new_buffer_value;

It is important to remember that interface parameters such as buffer size or time 

out need to be set prior to connecting the device object to the instrument using 

the connect() command.

2.3.3 TOI measurement example

Two-tone third order intermodulation (TOI) is an important measurement used to 

characterize amplifi ers and mixers. The program TOI Automation.m in the appen-

dix shows how to implement a complete TOI measurement capable of produc-

ing the surface plot shown in Figure 7 (a 3-D color intensity plot.) This program 

demonstrates how to control a signal generator in conjunction with the X-Series 

signal and spectrum analyzers and the powerful plotting features 

of MATLAB.
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A signal generator with multitone capability and a LAN interface, such as Agi-

lent’s ESG or MXG signal generator, is used to produce the two-tone signal re-

quired for this measurement. The measurement parameters are specifi ed in the 

initial portion of the code. These parameters include:

 • Center frequency of the measurement

 • Power level range

 • Tone separation range

 • Peak criteria

 • Number of trace averages per measurement

Next, the program enters the measurement cycle, sweeping the input power 

level for each tone separation. This is a faster combination than sweeping tone 

separation for each power level since changing tone separation in the generator 

takes a relatively longer time.

The actual measurement routine is based on the peak table functionality of the 

X-Series signal and spectrum analyzers. Only one SPCI command is required to 

retrieve the detected peaks. The peaks are then processed and the relevant ones 

for the TOI measurement are identifi ed. The TOI computation follows the follow-

ing rules:

 TOI_left  = [min(y1,y2)-y3]/2 + y1

 TOI_right  = [min(y1,y2)-y4]/2 + y2

where y1 and y2 are the main tone levels, y3 is the lower frequency third order 

product and y4 is the higher frequency third order product. In the event a mea-

surement is invalid (no peak is detected), a value of –999.0 is returned.

Figure 7. Surface plot

TOI versus Input level and tone separation (Center = 1000 MHz)
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While explaining the specific steps to develop entire X-Series and PSA applica-

tions with a GUI is outside the scope of this paper, there are already several 

example programs with a GUI developed by Agilent that will run from inside, or 

remote to, the X-Series signal and spectrum analyzers. The following example 

programs (analog demodulation and advanced data visualization) are complete 

applications as they use the front panel keys of the instrument to control the 

program. 

Those desiring to create their own GUI-based applications for the signal or spec-

trum analyzers are encouraged to download an existing example from 

www.agilent.com/find/n6171a or www.mathworks.com/agilent, and modify 

those applications as needed to suit your specific testing needs. Developing 

your own applications is one of the key benefits of having MATLAB installed or 

interfaced to your X-Series or PSA signal or spectrum analyzer.

3.1 Analog signal demodulation example

Analog demodulation is a baseband IQ processing operation frequently used 

to test analog communications. This example shows how to process IQ data 

captured from a modulated signal (in this case using FM.) The program continu-

ously acquires IQ data and displays it on the top plot of shown in Figure 8.

For this program, the trace update is controlled by a timer. The AM and FM de-

modulation is accomplished using simple math operations and the resulting sig-

nals displayed on the bottom plots. The operations for each modulation type are:

 • AM:abs(iq) / mean(abs(iq)) -1

 • FM:diff(unwrap(angle(iq)))

The demodulation takes place inside the update_plot() function.

3.0  Creating,   

 Modifying,

 and Executing  

 X-Series and PSA 

 Applications 

 using MATLAB

 Software

Figure 8. Surface plot
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Figure 9. Example of program using MATLAB’s GUI capabilities

Figure 8 shows a more complete use of the MATLAB GUI capabilities. This ap-

plication is driven from the front panel keyboard of the instrument, using the 

group of soft keys. Simultaneously, it can also be driven by a mouse device. GUI 

objects in MATLAB are identifi ed by handles. This particular code (MXA GUI 

Example.m) uses the following objects and respective handles (in parentheses) 

and is created in the GUI layout section:

 • Figure (fh)

 •  Axes (ah)

 • Plot (ph)

 • Text objects for the frequency, span, and reference level 

  (freq_text_h, span_text_h, ref_text_h)

 • Four-button objects for the soft keys (softkeyh1, softkeyh2,   

  softkeyh3, softkeyh7)

The properties of these objects are confi gured by the set() command, in a 

similar fashion as that used for the instrument object. Two relevant properties 

for the fi gure object are the KeyPressFcn and DefaultUicontrolKeyPressFcn. 

These properties defi ne the function to be called upon by any front panel key 

press when the fi gure has the mouse focus (the fi rst property) and when any 

of the fi gure objects have the mouse focus (the pushbuttons in this case.) Key 

press events are processed by the keypress() function. It traps the name of the 

pressed key and any modifi er like SHIFT or CONTROL. For instance, the fi rst soft 

key produces the sequence Shift+Control+F2; in this event, the function associ-

ated to this button is called cont_button_callback(). Also, the [FREQ], [SPAN], 

and [AMPTD] hard keys are processed and when any of these are pressed, the 

corresponding text object is highlighted by the green color. A screenshot of this 

application example is shown in the Figure 9.
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3.2 Advanced data visualization example

As seen in the TOI example, MATLAB provides powerful plotting tools for graph-

ing data. Using MATLAB and an X-Series signal and spectrum analyzer can 

provide a way to transfer measurement data and plot it in a dynamically. The 

advanced data visualization uses MATLAB to constantly acquire trace data and 

display it in four unique ways. This program provides a GUI to allow the user to 

select which mode to use.

The Analog Advanced mode provides a color-graded persistence display as 

shown in Figure 10. A signal will change from blue to red the longer a signal 

remains at a given frequency. This mode stores 200 traces in a fi rst-in, fi rst-out 

(FIFO) buffer and then processes the traces to create the color-graded display.

The Analog Plus mode is identical to the Analog Advanced mode, except that it 

is not color graded and the measurement points are not connected with lines. 

(See Figure 11.)

Figure 10. A color-graded persistence display provided by Analog Advanced mode

Figure 11. Plot generated by Analog Plus mode
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The Waterfall mode displays individual spectra in a three dimensional format, 

with the most recent trace displayed in the front. A total of 50 traces are dis-

played at a time.

The Spectrogram mode displays a standard color-graded spectrogram 

(refer to Figure 13.)

Figure 12. Waterfall mode’s individual spectra plot in a three dimension

Figure 13. Color-graded spectrogram generated in Spectorgram mode
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3.3 Tune and listen example

Similar to the advanced data visualization program, the tune and listen program 

uses a GUI to control the program. Tune and listen uses several built-in MATLAB 

functions, such as angle(), unwrap(), and wavplay(), allowing the user to cap-

ture and demodulate an AM or FM signal. Once the data has been transferred to 

MATLAB, it is demodulated and then re-sampled to play the demodulated signal 

through a computer’s sound card. The GUI allows the user to set the frequency 

to acquire the demodulation bandwidth, the demodulation time, and power range 

of the signal (see Figure 14.)

Figure 14. MATLABS’s GUI used for tune and listen program

The Agilent X-Series signal and spectrum analyzers are built using the Microsoft 

Windows operating system. Integrating this operating system into Agilent instru-

ments enables users to interface their instruments to application software using 

industry-standard connectivity (LAN, USB, GPIB), and provides the ability to 

develop and modify custom applications to execute on Agilent signal and spec-

trum analyzers. MATLAB is a well respected software environment used to make 

measurements, analyze and visualize data, generate arbitrary waveforms, control 

instruments, execute modulation schemes, and build test systems. Agilent is 

now able to sell MATLAB software to enable users of Agilent signal and spec-

trum analyzers to create, modify, and execute their own applications for specifi c 

testing needs.

4.0 Summary
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The MATLAB code used for many of the examples described in this application 

note is provided below. Most of this code can also be downloaded from 

www.agilent.com/find/n6171a. 

1. Basic instrument control using SCPI

% A example program using basic SCPI commands

% TCPIP parameters of the analyzer

mxa_ip = ‘10.10.10.10’;

mxa_port = 5025;

% MXA Interface creation and connection opening

fprintf(‘\nConnecting to XA ...\n’);

mxa = tcpip(mxa_ip,mxa_port);

fopen(mxa);

% Intrument identification

idn = query(mxa,’*IDN?’);

fprintf(‘Hello from %s’, idn);

% Set the center frequency to 1 GHz

fprintf(mxa,’:FREQ:CENT 1 GHz’);

% Set the span to 20 MHz

fprintf(mxa,’:FREQ:SPAN 20 MHz’);

% Set the reference level to +10 dBm

fprintf(mxa,’:DISP:WIND:TRAC:Y:RLEV 10’);

% Query the resolution bandwidth using fprinf()/fgets()

fprintf(mxa,’:BAND:RES?’);

rbw = str2double(fgets(mxa));

fprintf(‘Resolution bandwidth: %d kHz\n’, rbw/1e3);

% Query the resolution bandwidth using fprinf()/fgets()

fprintf(mxa,’:BAND:RES?’);

rbw = str2double(fgets(mxa));

fprintf(‘Resolution bandwidth: %d kHz\n’, rbw/1e3);

% Query the sweep time using query()

swp = str2double(query(mxa,’:SWE:TIME?’));

fprintf(‘Sweep time: %d ms\n’, round(swp*1000));

% Close the XA  connection and clean up

fprintf(‘Disconnecting from XA ...\n’);

fclose(mxa);

clear; % clear from the workspace

Appendix – 

Additional Examples
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2. Basic instrument control using the MATLAB instrument driver

% Using the MXA Instrument Driver

% Initial setup

mxa_ip = ‘10.10.10.10’;

mxa_port = 5025;

fprintf(‘\nConnecting to MXA ...\n’);

% MXA Interface creation and connection opening

mxa_if = tcpip(mxa_ip,mxa_port);

mxa = icdevice(Agilent_SA_Driver.mdd’, mxa_if);

connect(mxa,’object’)

% Intrument identifi cation

idn = get(mxa,’Identify’);

fprintf(‘Hello from %s\n’, idn);

% Set the center frequency to 1 GHz

mxa.SAFreqCenter = 1e9;

% optionally, the center frequency parameter can be

% changed using set(): set(mxa, ‘SAFreqCenter’, 1e9);

% Set the span to 20 MHz

mxa.SASpan = 20e6;

% Set the reference level to +10 dBm using set()

set(mxa, ‘SARefLevel’, 10);

% Query the resolution bandwidth

rbw = mxa.SARBW;

fprintf(‘Resolution bandwidth: %d kHz\n’, rbw/1e3);

% Query the sweep time using get()

swp = get(mxa, ‘SASweepTime’);

fprintf(‘Sweep time: %d ms\n’, round(swp*1000));

% Close the MXA connection and clean up

fprintf(‘Disconnecting from MXA ...\n’);

disconnect(mxa);

clear mxa;
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3. Acquire single trace

% Single trace aquisition

oldobjs=instrfi nd;

if ~isempty(oldobjs)

disp(‘Cleaning up ...’)

delete(oldobjs);

clear oldobjs;

end

% Initial setup

mxa_ip = ‘10.10.10.10’;

mxa_port = 5025;

mxa=tcpip(mxa_ip, 5025);

% input buffer size to receive trace data

% should be at least 4 times the number of trace

% points for 32-bit real format

set(mxa,’InputBufferSize’,4005);

% instrument response timeout

set(mxa,’Timeout’,5);

fopen(mxa);

% Set the data trace format to REAL, 32 bits

fprintf(mxa,’:FORM:DATA REAL,32’);

% Get the nr of trace points

nr_points = str2double(query(mxa,’:SWE:POIN?’));

% Get the reference level

ref_lev = str2num(query(mxa,’:DISP:WIND:TRAC:Y:RLEV?’));

% Get the trace data

fprintf(mxa,’:INIT:IMM;*WAI’); % start a sweep and 

%wait until it completes

fprintf(mxa,’:TRAC? TRACE1’);

data = binblockread(mxa,’fl oat32’); % get the trace data

fscanf(mxa); %removes the terminator character

% create and bring to front fi gure number 1

fi gure(1)

% Plot trace data vs sweep point index

plot(1:nr_points,data)

% Adjust the x limits to the nr of points

% and the y limits for 100 dB of dynamic range

xlim([1 nr_points])

ylim([ref_lev-100 ref_lev])

% activate the grid lines

grid on

title(‘Swept SA trace’)

xlabel(‘Point index’)

ylabel(‘Amplitude (dBm)’)

% Disconnect an clean up

fclose(mxa);

delete(mxa);

clear;
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4. Acquire trace continuous async

% Continuous trace aquisition (async)

oldobjs=instrfi nd;

if ~isempty(oldobjs)

disp(‘Cleaning up ...’)

delete(oldobjs);

clear oldobjs;

end

% Initial setup

mxa_ip = ‘10.10.10.10’;

mxa_port = 5025;

mxa=tcpip(mxa_ip, 5025);

set(mxa,’InputBufferSize’,100000);

set(mxa,’Timeout’,5);

fopen(mxa);

% Set the data trace format to REAL, 32 bits

fprintf(mxa,’:FORM:DATA REAL,32’);

% Get the nr of trace points

nr_points = str2double(query(mxa,’:SWE:POIN?’));

% Get the reference level

ref_lev = str2num(query(mxa,’:DISP:WIND:TRAC:Y:RLEV?’));

% Put the instrument in continuos mode

fprintf(mxa,’:INIT:CONT ON’);

% Create and bring to front fi gure number 1

fi gure(1)

% Create a plot handle, ph, and draw a line at the refl evel

ph = plot(1:nr_points,ref_lev*ones(1,nr_points));

% Adjust the x limits to the nr of points

% and the y limits for 100 dB of dynamic range

xlim([1 nr_points])

ylim([ref_lev-100 ref_lev])

% Activate the grid

grid on

% Plot cycle

for i=1:100

fprintf(mxa,’:TRAC? TRACE1’);

data = binblockread(mxa,’fl oat32’);

fscanf(mxa); %removes the terminator character

% Change the plot line data (fast update method)

set(ph,’Ydata’,data);

% fl ushes the plot event queue

drawnow

end

% Disconnect an clean up

fclose(mxa);

delete(mxa);

clear;
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5. Acquire trace timer

% Continuous aquisition with timer

oldobjs=instrfi nd;

if ~isempty(oldobjs)

disp(‘Cleaning up ...’)

delete(oldobjs);

clear oldobjs;

end

% Initial setup

mxa_ip = ‘141.121.92.157’;

mxa=tcpip(mxa_ip, 5025);

set(mxa,’InputBufferSize’,30000);

set(mxa,’Timeout’,5);

fopen(mxa);

% Set the data trace format to REAL, 32 bits

fprintf(mxa,’:FORM:DATA REAL,32’);

% Get the nr of trace points

nr_points = str2double(query(mxa,’:SWE:POIN?’));

% Get the reference level

ref_lev = str2num(query(mxa,’DISP:WIND:TRAC:Y:RLEV?’));

% Put the instrument in continuos mode

fprintf(mxa,’:INIT:CONT ON’);

% create and bring to front fi gure number 1

fi gure(1)

ph = plot(1:nr_points,ref_lev*ones(1,nr_points));

% Adjust the x limits to the nr of points

% and the y limits for 100 dB of dynamic range

xlim([1 nr_points])

ylim([ref_lev-100 ref_lev])

grid on

th =timer(‘timerfcn’,@update_plot,...

‘ExecutionMode’,’FixedRate’,...

‘Period’,0.1);

start(th)

pause(10)

stop(th)

% Disconnect an clean up

fclose(mxa);

delete(mxa);

clear mxa;

function update_plot(varargin)

% Get the trace data

fprintf(mxa,’TRAC? TRACE1’);

data = binblockread(mxa,’fl oat32’);

fscanf(mxa); %removes the terminator character

% Plot trace data vs sweep point index

set(ph,’Ydata’,data);

drawnow

end

end
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6. Acquire IQ vector

% Getting IQ data using the XA driver and plot display

% TCPIP parameters

mxa_ip = ‘10.10.10.10’;

mxa_port = 5025;

% MXA Interface creation and connection opening

mxa_if = tcpip(mxa_ip,mxa_port);

mxa = icdevice(‘Agilent_SA_Driver.mdd’, mxa_if);

connect(mxa)

%% Get IQ data

%% Measurement Setup

set(mxa,’Mode’,’Basic’)

invoke(mxa, ‘WriteSCPI’, ‘*RST’)

% if using VISA object switch Byte Order

set(mxa, ‘ByteOrder’, ‘Swapped’)

set(mxa,’SAFreqCenter’,1000000000)

set(mxa,’SASweepSingle’, ‘Off’)

set(mxa,’WavAcquisitionTime’,.00007)

set(mxa,’WavRBW’,8000000)

invoke(mxa, ‘SAInitiate’);

%% Get IQ data

iq = invoke(mxa,’WavReadIQData’);

% Create a fi gure 1 and bring it to the front

fi gure(1)

% Vector plot (imag vs real)

plot(real(iq),imag(iq))

% Axis adjustment

axis square

% Labels

xlabel(‘I’)

ylabel(‘Q’)

title(‘IQ vector plot’)

% Close the MXA connection and clean up

disconnect(mxa);

clear mxa;
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7. TOI automation

function example8

% TOI automated measurement and surface plot

% Version: 1.0

% Date: Sep 11, 2006

% 2006 Agilent Technologies, Inc.

% Clean up any unclosed instrument object

oldobjs=instrfi nd;

if ~isempty(oldobjs)

disp(‘Cleaning up ...’)

delete(oldobjs);

clear oldobjs;

end

% TOI measurement parameters

f_cent = 1e9; % center frequency

pow = -30:1:-15; % input power range

sep = logspace(5,7,7); % tone separation range

pk_threshold = -80; % peak_threshold criterium

pk_excursion = 6; % peak_excursion criterium

num_ave = 4; % number of trace averages for eachmeasurement

n_sep = length(sep);

TOI = zeros(n_sep,n_pow,2);

% Initial setup

nimitz = ‘nimitzcpu142.soco.agilent.com’;

baker = ‘baker.soco.agilent.com’;

socodhcpe28 = ‘socodhcpe28.soco.agilent.com’;

randyesg = ‘141.121.88.234’;

eric_mxg = ‘141.121.92.32’;

mxa = tcpip(nimitz, 5025);

esg = tcpip(randyesg, 5025);

disp(‘ ‘)

disp(‘Connecting to MXA/ESG ...’);

set(mxa,’InputBufferSize’,2000);

set(mxa,’Timeout’,10);

fopen(mxa)

fopen(esg)

% MXA initial setup

fprintf(mxa,[‘:FREQ:CENT ‘ num2str(f_cent)]);

fprintf(mxa,[‘:FREQ:SPAN ‘ num2str(5*sep(1))]);

fprintf(mxa,’DISP:WIND:TRAC:Y:RLEV 10’);

fprintf(mxa,’INIT:IMM;*OPC?’);

fscanf(mxa);

fprintf(mxa,’FORM:DATA REAL,32’);

fprintf(mxa,[‘CALC:MARK:PEAK:THR ‘ num2str(pk_threshold)]);

fprintf(mxa,[‘CALC:MARK:PEAK:EXC ‘ num2str(pk_excursion)]);

fprintf(mxa,’CALC:MARK:PEAK:TABLE:STAT ON’);

fprintf(mxa,[‘AVER:COUNT ‘ num2str(num_ave)]);

fprintf(mxa,’TRAC:TYPE AVER’);

fprintf(mxa,’INIT:IMM;*OPC?’);

fscanf(mxa);
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% ESG/MXG initial setup

fprintf(esg,[‘:FREQ ‘ num2str(f_cent)]);

fprintf(esg,’:POW -20’);

fprintf(esg,’:RADIO:MTONE:ARB:SETUP:TABLE:NTONES 2’);

fprintf(esg,’:RADIO:MTONE:ARB:SETUP:TABLE:FSPACING 1e5’);

fprintf(esg,’:RADIO:MTONE:ARB on’);

fprintf(esg,’:OUTPUT on’);

fprintf(esg,’:OUTPUT:MOD on’);

fprintf(‘\nStarting toi measurement:’);

fprintf(‘\nPower sweep range: %d dBm to %d dBm in %d dB steps’,

min(pow), max(pow), pow(2)-pow(1));

fprintf(mxa,’:INIT:CONT OFF’);

for x = 1:n_sep

fprintf(esg,[‘:RADIO:MTONE:ARB:SETUP:TABLE:FSPACING ‘

num2str(sep(x))]);

fprintf(esg,’*OPC?’);

fscanf(esg);

fprintf(mxa,[‘:FREQ:SPAN ‘ num2str(5*sep(x))]);

fprintf(mxa,’*OPC?’);

fscanf(mxa);

fprintf([‘\nFrequency separation: ‘ num2str(round(sep(x)/1e3))

‘ kHz ‘])

for y = 1:n_pow

fprintf(esg,[‘:POW ‘ num2str(pow(y))]’);

fprintf(esg,’*OPC?’);

fscanf(esg);

toi = toi_meas(mxa,pk_threshold,pk_excursion);

TOI(x,y,1) = toi(1);

TOI(x,y,2) = toi(2);

fprintf(‘.’)

end

%pause(4)

end

fprintf(mxa,’CALC:MARK:PEAK:TABLE:STAT OFF’);

fprintf(mxa,’:INIT:CONT ON’);

% Surface plot

fprintf(‘\nPlotting results ...\n’)

surf(log10(sep),pow,((TOI(:,:,1)+TOI(:,:,2))/2)’,...

‘FaceColor’,’interp’,...

‘EdgeColor’,’k’,...

‘Linewidth’,.2) % plot the average of toi lower and right

colormap(jet(256))

xlabel(‘Tone Separation (log_{10}(f) Hz)’)

ylabel(‘Input Power Leval (dBm)’)

zlabel(‘TOI (dBm)’)

title([‘TOI vs Input Level and Tone Separation (Center = ‘

num2str(f_cent/1e6) ‘ MHz)’])

colorbar

%Disconnect an clean up

disp(‘ ‘)

disp(‘Disconnecting from MXA/ESG ...’)

fclose(mxa)

fclose(esg)

delete([mxa esg]);

clear mxa esg

function toi = toi_meas(mxa,pk_thr,pk_exc)
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fprintf(mxa,’:INIT:IMM;*OPC?’);

fscanf(mxa);

fprintf(mxa,[‘:CALC:DATA1:PEAK? ‘ num2str(pk_thr) ‘,’

num2str(pk_exc) ‘,AMPL,ALL’]);

peak_data = binblockread(mxa,’fl oat32’);

peak_num = peak_data(1);

peak_amp = peak_data(2:2:end);

peak_freq = peak_data(3:2:end);

toi = [-999.0 -999.0];

if peak_num <= 2 % no 3rd order products found

return

end

if peak_freq(1) < peak_freq(2)

f1 = peak_freq(1); y1 = peak_amp(1);

f2 = peak_freq(2); y2 = peak_amp(2);

else

f1 = peak_freq(2); y1 = peak_amp(2);

f2 = peak_freq(1); y2 = peak_amp(1);

end

peak_sep = f2-f1;

f3_idx = fi nd(abs(peak_freq - (f1 - peak_sep)) <

peak_sep/25);

if ~isempty(f3_idx)

f3 = peak_freq(f3_idx(1)); y3 = peak_amp(f3_idx(1));

toi(1) = (min(y1,y2)-y3)/2+y1;

end

f4_idx = fi nd(abs(peak_freq - (f2 + peak_sep)) <

peak_sep/25);

if ~isempty(f4_idx)

f4 = peak_freq(f4_idx(1)); y4 = peak_amp(f4_idx(1));

toi(2) = (min(y1,y2)-y4)/2+y2;

end

end

end

To learn more about using MATLAB software with your EXA, MXA, and PSA sig-

nal and spectrum analyzers, as well to download free reference applications to 

execute on these instruments, visit www.agilent.com/find/n6171a. 
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