
Assessing the use of IVI drivers
in your test system:
Determining when IVI is the right choice

Application Note

Choices in instrument control

Why use an instrument driver?

Benefits of using an IVI driver

IVI driver classes

Requirements to use an IVI driver

Tradeoffs and limitations of IVI

drivers

Steps to getting started

Using IVI drivers in Visual Basic

.NET or Visual C#

•

•

•

•

•

•

•

•

If software reuse and system

“portability” are important to your

organization, it may be to your advan-

tage to use IVI drivers in present and

future test systems. This is especially

true if you are making the shift from

GPIB-based control to LAN and LXI:

All LXI-compliant instruments include

an IVI driver.

To help you decide if IVI drivers are

right for your system, this applica-

tion note provides an overview of

the technology, presents additional

considerations, and describes the

tradeoffs. The note includes eight

major sections:

Much of the material in this applica-

tion note has been leveraged from the

IVI Foundation’s IVI Getting Started

Guide. Sections taken directly from

the Getting Started Guide are marked

in italics. That document is available

as a PDF from the IVI Foundation

Web site at www.ivifoundation.org.

2

Choices in instrument
control

There are four choices available for

providing computer-based control of

most instruments:

Standard Commands for

Programmable Instrumentation

(SCPI)

A program- or language-specific

driver (e.g., a LabVIEW driver)

A proprietary driver (supplied with

many vendors’ instruments)

An open driver such as IVI

Each of these carries a set of

tradeoffs. For example, choosing a

proprietary or program-specific driver

may result in very tight integration

with any provided tools or programs;

however, this comes at the expense

of test system portability. You may

also be confronted with a com-

mon problem: the available set of

instrument drivers doesn’t match

your desired (or required) list of

instruments. We’ll talk about the

tradeoffs in using an IVI driver in a

later section.

SCPI control is one of the most

popular methods of programmatically

controlling instruments. These com-

mands work on instruments that have

implemented an appropriate SCPI

command set and also contain an

on-board command parser, typically

implemented through a microproces-

sor or state machine. This specifically

means that SCPI control will not

work on most register-based devices

housed in a cardcage (e.g., neither

VXI nor PXI architectures).

•

•

•

•

SCPI provides fine-level instrument

control through a consistent, test-

focused command set. However, it

can be complicated to use with more

complex instruments where it may

seem like programming a computer

in assembly language. SCPI carries

three other important considerations:

It is not dependent on the operat-

ing system or programming lan-

guage so is highly portable among

test systems.

It defines common functions, so is

generally portable among instru-

ments.

It does not require a certain set of

functions, so some calls may not

be implemented on similar instru-

ments.

In many cases, SCPI is a suitable

and sufficient choice. However,

drivers provide extended capabilities

that simplify instrument control and

reduce programming time.

•

•

•

A quick look at SCPI

Beginning in 1989, a group of

instrument manufacturers devel-

oped Standard Commands for

Programmable Instrumentation

(SCPI). This defined a set of

commands for controlling

instruments using ASCII

characters, providing some basic

standardization and consistency

to the commands used to control

instruments. For example, when

you want to measure a DC volt-

age, the standard SCPI command

is “MEASURE:VOLTAGE:DC?.”

3

Why use an
instrument driver?

To understand the benefits of IVI

drivers, we need to start by defining

instrument drivers in general and

describing why they are useful. An

instrument driver is a set of software

routines that controls a program-

mable instrument. Each routine cor-

responds to a programmatic operation

such as configuring, writing to, read-

ing from, or triggering the instrument.

Instrument drivers simplify instrument

control and reduce test program

development time by eliminating

the need to learn the programming

protocol for each instrument.

Although you must be syntactically

correct in all calls to an instrument

driver, making calls to a subroutine in

your preferred programming language

is less error prone. This is especially

true if you are using a language that

supports the Intellisense capabil-

ity, which presents valid syntax

choices as you type each command.

An instrument driver such as IVI

integrates more tightly with your

programming language than will SCPI

calls through the VISA I/O library.

If you’ve been programming instru-

ments without using a driver, then

you are probably well acquainted

with the chore of hunting through

the programming guide while looking

for the right SCPI command and its

exact syntax. You’ve also been deal-

ing with an I/O library to format and

send strings, and then embedding

response strings into variables. Let’s

take a look at some advantages of IVI

drivers.

Benefi ts of using an
IVI driver

Before IVI drivers, there was a stan-

dard framework called VXIplug&play

drivers. This specification defined a

standard dynamic-link library (.dll)

interface; however, did not provide

for interchangeability among similar

types of instruments. In fact, the nor-

mal syntax of a VXIplug&play driver

discouraged inter-vendor operability

because the keywords contained ven-

dor names. Furthermore, the standard

did not define standard keywords for

common actions. For instance, one

vendor may use “read” while another

may use “get” as the syntax for

acquiring a measured value from an

instrument.

In contrast, the IVI standard defines

the concept of an “instrument class.”

For any type or “class” of instru-

ment, common functions have been

defined. Using digital multimeters

(DMMs) as an example, the IVI driver

for every DMM from any vendor

uses the measurement command

IviDmmMeasurement.Read. Once you

learn to program the IVI-specified

commands for the instrument class,

you can use any vendor’s instrument

without relearning the commands.

Commands that are common to all

drivers, such as Initialize and Close,

are identical for every instrument

class. This commonality ensures

portability across test systems and

lets you spend less time searching

through help files or programming an

instrument—and leaves more time

for your primary job.

This level of commonality—or

interoperability—was the motivation

behind the development of IVI drivers.

The specifications define an open

driver architecture, a set of instru-

ment classes, and shared software

components. Together these provide

consistency and ease of use, as

well as the crucial elements needed

for advanced features. IVI drivers

also support instrument simulation,

automatic range checking and state

caching. These capabilities provide

several benefits:

Instrument simulation enables

program development and debug-

ging even when an instrument is

not available. This is particularly

useful when you are waiting for the

test hardware to arrive or if several

people must share expensive test

resources.

Automatic range checking can

eliminate unnecessary program-

ming errors.

State caching is optionally imple-

mented within the driver. This

capability can accelerate the exe-

cution of certain test programs by

making only the minimum changes

to the state of an instrument.

Eliminating unnecessary instrument

resets, range changes or other similar

functions can further accelerate the

execution of measurement functions.

•

•

•

4

IVI driver classes

The IVI Foundation has created IVI

class specifications that define a

common set of capabilities for drivers

for eight instrument classes (Table 1).

Class IVI driver
Digital multimeter IviDmm

Oscilloscope IviScope

Arbitrary waveform/

function generator

IviFgen

DC power supply IviDCPwr

Switch IviSwitch

Power meter IviPwrMeter

Spectrum analyzer IviSpecAn

RF signal generator IviRFSigGen

Table 1. The IVI standard includes eight

instrument classes.

In addition to the existing class

drivers, there are six other classes in

development as this paper is being

written. The timer/counter and

AC power classes are directed at

general-purpose instruments while

upconverter, downconverter, digitizer,

and arb (baseband) classes are being

developed as part of the synthetic

instruments program spearheaded by

the US military.

It is common for instruments within

a specific class to provide IVI class-

compliant drivers to additionally

provide functions beyond the defined

IVI Class definition. There may be two

reasons for this: Either the capability

is not common to all instruments of

the class or because the instrument

offers a level of control that is more

refined than what the class defines.

IVI defines “custom drivers,” which

are used for instruments that are not

members of a class. For example,

there is not a class definition for

network analyzers, so those drivers

must be custom. Custom drivers

provide the same consistency and

benefits described above for an IVI

driver, but are specific to a device

so lack interchangeability across

vendors.

Requirements to use
an IVI driver

The primary gating item is the avail-

ability of a specific IVI driver for the

instrument you want to control. If

such a driver is available, it must be

installed on the controlling computer

along with four other essential items:

An appropriate Microsoft® operat-

ing system and certain operating-

system services.

An appropriate programming

language.

An appropriate I/O library.

IVI shared components code.

With these items all in place, you are

ready to proceed.

•

•

•

•

Types of IVI drivers

To support all popular programming languages and development environ-

ments, IVI drivers provide either an IVI-C or an IVI-COM application

programming interface (API). Driver developers may provide either or both

interfaces, as well as wrapper interfaces optimized for specific develop-

ment environments.

Although the functionality is similar, IVI-C drivers are optimized for use in

ANSI C development environments while IVI-COM drivers are optimized

for environments that support COM. IVI-C drivers extend the VXIplug&play

driver specification and their usage is similar. IVI-COM drivers provide easy

access to instrument functionality through methods and properties. IVI-C

drivers may require more active management of driver versions to ensure

compatibility.

All IVI drivers communicate with the instrument through an I/O library.

We recommend using the Virtual Instrument Software Architecture (VISA)

library, a widely used standard library for communicating with instruments

from a personal computer.

Tradeoffs and
limitations of IVI drivers

The various companies that defined

the IVI standard tried to minimize the

tradeoffs in using an IVI driver. Even

so, there five key considerations you

should keep in mind:

An IVI driver may or may not

take full advantage of the speed

capabilities of an instrument.

An IVI driver will seldom imple-

ment the entire feature set of an

instrument.

IVI drivers are not available

for all commercially available

instruments.

The two types of IVI drivers, IVI-C

and IVI-COM (Common Object

Model) (see sidebar), mean that

you will need to choose one or the

other. To make an informed choice,

it’s useful to understand the ben-

efits and tradeoffs of each type.

Your system must meet the

requirements outlined in the

previous section

Let’s expand on the first three points.

•

•

•

•

•

5

An IVI driver may or may not take

full advantage of speed capabilities:

Instrument drivers are generally

written for a general user and may

include extra code such as range

checking to ensure proper operation.

If you are operating an instrument

within well-known parameters, you

can often program a more concise set

of instrument commands than those

provided by the driver. Additionally,

many drivers are built to maximize

programming compatibility across

interfaces (e.g., GPIB, LAN and USB)

and may use compatibility modes

that do not take full advantage of

instrument speed. On the other hand,

some drivers incorporate state cach-

ing, which eliminates unnecessary

steps and accelerates operation. As a

result, it is very difficult to know if a

driver will provide the fastest possible

execution. Often, advanced program-

mers will use a driver for most instru-

ment functions, then will selectively

tune their code (e.g., by using SCPI

calls or direct register operations) for

time-critical operations.

An IVI driver may not implement

the entire feature set: A simple

DMM may have only 25 commands,

whereas a more complex instrument

may have hundreds. You can imagine

how expensive it is to write an intel-

ligent driver that anticipates all the

possible permutations of instrument

setup, triggering, sourcing and mea-

surement. That’s why you’ll seldom

see a driver that covers every com-

mand in an instrument. Instrument

manufacturers take their best guess

at the commands you are likely to use

and craft the driver accordingly. For

most users, the commands available

in the driver will cover their program-

ming needs. Advanced users may

be disappointed in the functionality

of some drivers and might consider

other alternatives.

IVI drivers are not available for all

instruments: It isn’t practical for

instrument manufacturers to create

drivers for all past models. IVI drivers

are available for most new instru-

ments and many popular older ones,

but you should verify driver availabil-

ity before beginning a project.

Getting started

The following 10 steps will help

you prepare your system using IVI

instrument drivers.

1. Choose a programming language.

We’ll show examples for VB .NET

and Visual C. For other languages,

see the Getting Started Guide

available from the IVI Foundation

Web site. www.ivifoundation.org/

2. Install the I/O libraries. Agilent

I/O libraries are available at no

charge to Agilent customers. See

www.agilent.com/find/iolib

to download the latest version.

3. Download and install the IVI

shared components. These are

available from vendor Web sites

or directly from the IVI Foundation

Web site

4. Download and install the appropri-

ate IVI driver for any instruments

you will be controlling. These

are commonly available at the

vendor’s Web site. For Agilent

instruments, see www.agilent.

com/find/drivers. The IVI

Foundation Web site also has

links to many instrument vendor

sites. Note that occasionally driv-

ers will unload into multiple files.

When you reference the driver

(see below), you should choose

the files you need based on the

functionality you require.

5. Determine the VISA address

string.

6. Reference the driver or load driver

files.

7. Create an instance of the driver if

your development environment is

using COM.

8. Create a variable to represent your

instrument(s).

9. Initialize the instrument(s).

10. Write your test program. Be sure

any instruments are closed before

exiting your program as this frees

any system resources reserved for

those devices.

6

Using IVI drivers in
Visual Basic .NET or
Visual C#

Let’s start with Microsoft Visual

Studio®, which is a popular develop-

ment environment. The procedures

for Visual C# and Visual Basic .NET

are very similar. Start by installing the

required software from the list above:

operating system, Visual Studio with

appropriate compiler, I/O libraries,

IVI shared components and any IVI

instrument drivers. We recommend

using the IVI-COM driver in Visual

Studio whenever available.

To use a driver, you must first add a

reference to it. After that, the follow-

ing steps are recommended:

1. Launch Visual Studio and start a

new Console Application (in Visual

C# or Basic). Keep any code gener-

ated.

2. Select <Project> and <Add

Reference>. The Add Reference

dialog box will appear.

3. Select the COM tab. Scroll to the

IVI section (all IVI drivers begin

with IVI) and select the type library

for your chosen instrument(s).

Any IVI drivers you have installed

should appear in this list. Select

the driver(s) and press <OK>. Note

that you can add multiple drivers

with one selection. Note also that

a single instrument will sometimes

contain more than one driver. See

Figure 1 as an example.

Figure 1. A single instrument may include more than one driver.

7

4. Create an instance of each driver

by adding a using statement to

allow your program to access the

driver. For an Agilent driver, type

“using A” and Intellisense will

show the available Agilent drivers

(e.g., using Agilent.A will pop up

the list of installed drivers). Put

this directly beneath the other

using statements in your code.

See Figure 2 for an example of the

Intellisense popup.

5. Initialize the instrument: Create a

variable to represent your instru-

ment and set the initialization

parameters.

For Visual Basic.NET:

a. Enforce type checking (Option

Explicit On).

b. Add Dim variables for the instru-

ment and for the reading.

6. To view the functions and param-

eters available in the instrument

driver, right-click the library in

the References folder in Solution

Explorer and select View in Object

Browser.

7. You can now start writing the

program to use the available

instrument drivers.

8. When you are finished, be sure

to close the session.

Conclusion

The optimum choice of instrument

control method depends on many

factors. Today, IVI drivers are being

shipped with more and more new

instruments—so it may be time to

consider using them in your applica-

tion. The increasing availability of

IVI drivers along with their tight

integration with modern programming

languages means that IVI drivers

could be the best choice for your

next test programming project.

Figure 2. Depending on the context, the

Intellisense popup window will show

available drivers or installed drivers.

Remove all doubt

Our repair and calibration services

will get your equipment back to you,

performing like new, when prom-

ised. You will get full value out of

your Agilent equipment through-

out its lifetime. Your equipment

will be serviced by Agilent-trained

technicians using the latest factory

calibration procedures, automated

repair diagnostics and genuine parts.

You will always have the utmost

confi dence in your measurements.

For information regarding self

maintenance of this product, please

contact your Agilent offi ce.

Agilent offers a wide range of ad-

ditional expert test and measure-

ment services for your equipment,

including initial start-up assistance,

onsite education and training, as

well as design, system integration,

and project management.

For more information on repair and

calibration services, go to:

www.agilent.com/fi nd/removealldoubt

For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent

offi ce. The complete list is available at:

www.agilent.com/fi nd/contactus

Americas

Canada (877) 894-4414

Latin America 305 269 7500

United States (800) 829-4444

Asia Pacifi c

Australia 1 800 629 485

China 800 810 0189

Hong Kong 800 938 693

India 1 800 112 929

Japan 0120 (421) 345

Korea 080 769 0800

Malaysia 1 800 888 848

Singapore 1 800 375 8100

Taiwan 0800 047 866

Thailand 1 800 226 008

Europe & Middle East

Austria 01 36027 71571

Belgium 32 (0) 2 404 93 40

Denmark 45 70 13 15 15

Finland 358 (0) 10 855 2100

France 0825 010 700*
 *0.125 €/minute

Germany 07031 464 6333

Ireland 1890 924 204

Israel 972-3-9288-504/544

Italy 39 02 92 60 8484

Netherlands 31 (0) 20 547 2111

Spain 34 (91) 631 3300

Sweden 0200-88 22 55

Switzerland 0800 80 53 53

United Kingdom 44 (0) 118 9276201

Other European Countries:

www.agilent.com/fi nd/contactus

Revised: October 1, 2008

Product specifi cations and descriptions

in this document subject to change

without notice.

www.agilent.com
www.agilent.com/fi nd/XXX

Agilent Email Updates

www.agilent.com/fi nd/emailupdates

Get the latest information on the

products and applications you select.

Agilent Direct

www.agilent.com/fi nd/agilentdirect

Quickly choose and use your test

equipment solutions with confi dence.

www.lxistandard.org

LXI is the LAN-based successor to

GPIB, providing faster, more effi cient

connectivity. Agilent is a founding

member of the LXI consortium.

© Agilent Technologies, Inc. 2008

Printed in USA, November 14, 2008

5990-3186EN

Microsoft is a U.S. registered trademark of

Microsoft Corporation.

Visual Studio is a registered trademark of

Microsoft Corporation in the United States

and/or other countries.

