
Database Connectivity Guide
for TestExec SL

Application Note

Overview

The requirement for database storage is gaining prevalence in today’s industries

as manufacturing becomes more complex. Essential information such as results

of unit under test (UUT) should be stored for further data analysis or as part of

operations records.

This application note outlines the importance of proper data logging in a

database and discusses best practices to import extensible markup language

(XML) files from TestExec into a database. This document assumes you have

working knowledge of database concepts, Structured Query Language (SQL) and

database management system (DBMS).

Introduction

In industries where automated test systems, functional tests and design veri-

fications play a key role, the importance of data logging is irrefutable. The data

generated from a test execution can be formatted for storage in a spreadsheet

or database via the TestExec’s data configuration editor (DCE). While there

are alternative ways of data storage, it all boils down to the users’ needs and

preferences. In high volume manufacturing where new data is generated every

few seconds, it is recommended that a database is set up for fast and efficient

data retrieval. The advantages of database storage include:

• Fast and efficient data retrieval – A database helps you to organize data in

a logical manner and the database management systems are fine-tuned to

rapidly retrieve the data just the way you want it. In addition, databases help

you to break your data into specific parts and you only have to specify the

right SQL code to extract your data as compared to scrutinizing every folder to

find a particular XML file that contained the record you wanted.

• Centralized storage – For an organization with multiple manufacturing sites

around the world, engineers are able to access data linked up via a networked

database. This is a significant benefit for teams that are working on the same

project and can simultaneously access the database at the same time.

2

• Security – To access a database, each user has to log on as a specific user

and each user has various rights and limits. Most database management

systems allow you to configure a user with its corresponding level of security,

such as full access to the database administrator to change the database’s

structure or to delete users as well as only read access for operators.

• Maintenance – With enormous amounts of data that need to be searched,

sorted and regularly updated, databases combined with SQL allow you to get

the data in the order you want it.

1.0 Overview on Data Logging in Test Exec SL

Each time a testplan is run, the corresponding logged data is stored in your

selected data logging directory. By default, the location is \My TxSL Files\Log

Files.

Each file has a unique name and an extension of “.xml” as the default data is

written in industry-standard XML format. An example of a data logging file in the

log directory is shown below.

Figure 1: Example of data logging file

The XML file contains data resulting from the execution of testplans and is

customizable by user. An excerpt from the data logging file for a sample test-

plan is shown in Figure 2:

Figure 2: Contents in data logging file

3

The data resulted from the execution of testplan as illustrated in Figure 2 (in

Bold) is enclosed in a nested structure of identifiers that provide structure for

the data. This makes it possible for other programs to parse the data into its

individual components later. You could write a custom program to parse it for

use with your favorite database or statistical quality control tool.

2.0 Setting Configuration in the Data Configuration Editor (DCE)

You can specify the type of records or fields to appear in the data logging file

via Data Logging Configuration Editor. In addition, you can define the attributes

of the records and fields as well as specify the behavior and format for the data

logging files.

Figure 3 is a snapshot of the Data Logging Configuration Editor. On the left

pane is the ‘Record Hierarchy’, which is a hierarchy of log records and the

corresponding fields. The right pane consists of ‘Field Definitions from..’ which

lists all possible fields that you can associate with the records in the ‘Record

Hierarchy’.

Figure 3: Data Logging Configuration Editor

4

3.0 Database Concepts

A database is a structured collection of records or data that is stored in a

computer system. Every table contains records known as rows and their cor-

responding fields, also known as columns. Each column has a data type and this

is configured using the DBMS.

Table 1 shows an example of how a database can store results for testing

purposes.

UUT Serial Number Test Name Test Status

301C098 TEST1 PASS

301C060 TEST2 FAIL

301C567 TEST1 PASS

 Table 1: Example of Database Table

4.0 Importing XML results from TestExec into Microsoft SQL Server

There are a few methods to import XML file into Microsoft ® SQL Server, such

as by using the OPENXML, T-SQL, SSIS or XML Bulk Load component. However,

OPENXML and T-SQL have a common drawback – they are not suitable for

loading large amounts of data, which results in slow processing and is resource

intensive.

SQLXML provides the facility intended specifically to address this problem.

Called the XML Bulk Load component, it is a COM component that you can call

from OLE Automation-capable languages and tools comprising Visual Basic,

Delphi and Transact-SQL. The OLE Automation-capable languages include

Windows ® scripting languages such as VBScript and JScript.

This document focuses on using the XML Bulk Load component to insert

XML data into SQL and assumes that you have completed a full installation of

Microsoft SQL Server 2005 that includes SQLXML 4.0.

Step 1: Creating table in Microsoft SQL Server 2005

 ◦ Connect to the SQL Server and create a database with the title ‘AutoLine

Results’.

 ◦ In the ‘AutoLine Results’ database, create a table with the title

‘TestResults’ and its corresponding columns. Alternatively, you can run the

following SQL statement in Query Analyzer:

USE AutoLine Results
CREATE TABLE TestResults (
 SerialNumber NVARCHAR(20),
 TestStationID NVARCHAR(10),
 TestplanJudgement INT(10),

5

Figure 4: Creating Table

Step 2: Configure the format for the XML data logging file

As mentioned in Section 2, you can configure the format of the XML output

using the DCE. For the example here, three parameters are identified –

SerialNumber, TestStationID and Testplan Judgement. By default, the filename

should be in timestamp format but it has been changed to string format in

this document for clarity purposes. Figure 5 shows a sample of XML file (C:\

TestResults.xml).

Figure 5: XML file from TestExec

6

Step 3: Create the mapping schema file

The first step in using the XML Bulk Load component is to define a mapping

schema that maps the XML data from TestExec into the tables and columns in

your database. When the component loads the XML data, it will read the data as

a stream and use the mapping schema to decide where exactly the data should

go in the database.

This is a sample mapping schema that maps the format of TestResults.xml to

the format of the TestResults table in the ‘AutoLine Results’ database. Paste

this schema into ‘Notepad’ and save the file as C:/Testresultsmapping.xml.

•

<?xml version=”1.0” ?>
<Schema xmlns=”urn:schemas-microsoft-com:xml-data”
 xmlns:dt=”urn:schemas-microsoft-com:xml:datatypes”
 xmlns:sql=”urn:schemas-microsoft-com:xml-sql” >

 <ElementType name=”SerialNumber” dt:type=”string” />
 <ElementType name=”TestStationID” dt:type=”string” />
 <ElementType name=”TestplanJudgement” dt:type=”int” />

 <ElementType name=”LogBatch” sql:is-constant=”1”>
 <element type=”LogTestplan” />
 </ElementType>

 <ElementType name=”LogTestplan” sql:relation=”TestResults”>
 <element type=”SerialNumber” sql:field=”SerialNumber” />
 <element type=”TestStationID” sql:field=”TestStationID” />
 <element type=”TestplanJudgement”
sql:field=”Testplanjudgement” />
 </ElementType>

</Schema>

Figure 6: Mapping Schema File

7

Step 4: Create a VBScript program to execute the XML Bulk Load component

This is the executable script that uses the XML Bulk Load component to insert

the three records from the XML file into the database table created by using the

mapping schema. Paste this VBScript code into Notepad, and then save the file

as C:\Inserttestresults.vbs.

Set objBL = CreateObject(“SQLXMLBulkLoad.SQLXMLBulkLoad”)
objBL.ConnectionString = “provider=SQLOLEDB.1;data source=MySQ
LServer;database=MyDatabase;uid=MyAccount;pwd=MyPassword”
objBL.ErrorLogFile = “c:\error.log”
objBL.Execute “c:\TestResultsMapping.xml”, “c:\TestResults.xml”
Set objBL = Nothing

Note: If you have connected to the SQL database using the SQL Server

Authentication, you must configure the ‘ConnectionString’ credentials (as

highlighted) for the script to work with your SQL Server installation. If not con-

figured, the following error message will occur after you execute the script:

‘Error connecting to the data source’

Alternatively, if you have connected to the SQL database with your Windows

Authentication (as shown in Figure 7) you can use this script:

Set objBL = CreateObject(“SQLXMLBulkLoad.SQLXMLBulkload.4.0”)
objBL.ConnectionString = “provider=SQLOLEDB.1;data
source=TXSL-DEMO02;database=AutoLine Results;Integrated
Security=SSPI”
objBL.ErrorLogFile = “c:\error.log”
objBL.Execute “C:\TestResultsMapping.xml”, “c:\TestResult.xml”
Set objBL = Nothing

Figure 7: Connection Method

Note: Enter your Windows credentials and the database details (as highlighted).

You can refer to the Connection Properties for the credentials as shown in

Figure 9.

8

Figure 8: Connection Properties

Step 5: Run the VB Script program

Double click to run the VB Script program (C:\Inserttestresults.vbs) in order to

insert records from XML file into the TestResults table. You will see the data in

the database as show in Figure 9.

Figure 9: Results in Database

Note: To automate the VB script for periodic stream of data insertion, you can

go to Control Panel and click on Scheduled Tasks. You can then set the sched-

uler to execute the VB Script on a periodic basis. However, the VB Script must

be modified to always detect for new XML files each time it is executed.

Conclusion

In addition to VB Script, you can also consider using VB or .NET for connect-

ing to Microsoft SQL. TestExec offers you the flexibility of customizing your

selection of database connectivity. Besides Microsoft SQL, you can utilize other

databases such as Oracle® or IBM DB2.

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the

products and applications you select.

For more information on Agilent
Technologies’ products, applications
or services, please contact your local
Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 01 36027 71571
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 07031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland 0800 80 53 53
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus
Revised: July 2, 2009

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2009
Printed in USA, July 16, 2009
5990-4367EN

www.agilent.com

Windows and MS Windows are U.S.

registered trademarks of Microsoft

Corporation.

Oracle is a U.S. registered trademark

of Oracle Corporation, Redwood City,

California.

