
Agilent VEE
Extensible VEE Object (EVO)
Developer’s Guideline

Application Note

Overview Agilent VEE functionality has been extended through the use of Extensible VEE

Objects (EVOs). Each EVO can have its own graphical user interface (GUI) con-

trol and execution behavior. EVOs are very similar to generic VEE objects where

there are pins for input, output, control, sequence input, and sequence output

which cannot be found on imported .NET controls. Some vTools components are

created using EVOs. vTools are complimentary toolboxes that you can use with

Agilent VEE 9.3 and help in VEE program development.

EVO is a beta release in Agilent VEE version 9.3, allowing users to write their

EVOs for integration into Agilent VEE. EVOs are developed using the Microsoft®

.NET add-in platform and can be written using any Microsoft .NET Framework

language such as Visual C#® and Visual Basic® .NET.

Overview ...1

How EVO Works in VEE ...2

 For end users to use your EVO in Agilent VEE IDE ..3

 For end users to run programs containing EVO ...3

 EVO terminals ...3

System Requirements ..4

Creating an EVO ..5

Deployment ..7

 EVO assembly path ..7

Recommended Practices ...9

 EVO icon ...9

 EVO assemblies path location ...9

 Avoid duplicate terminal names ... 10

 Output terminal name vs error output terminal ... 10

 Dynamic terminal .. 10

How Do I Debug EVO Code? ... 11

Some Notes on the Expression Graph Example .. 12

Appendix A: Agilent.Vee.Extensibility.IExtensibleVeeObject Interface 13

Appendix B: EVO Configuration File (.evo) .. 14

Agilent Advantage Services ..Back cover

Contact Agilent ...Back cover

Table of Contents

2

How EVO Works in VEE

In order to write an EVO, two things are needed:

1. A .NET class needs to implement the Agilent.Vee.Extensibility.

IExtensibleVeeObject interface. This interface defines the contract

needed for VEE to host the EVO. Appendix A lists the interface details

and descriptions.

2. An EVO configuration file with extension .evo is needed to describe the

EVO. Appendix B lists the layout, contents and descriptions of the EVO

configuration file. One EVO configuration file is needed for each EVO.

The EVO configuration file must reside in either location below:

Table 1. EVO configuration file locations

Operating
system Directory

User visibility
in Device >
Extensible Vee
Objects menu

Windows XP C:\Documents and Settings\{User}\My

Documents\Agilent\Agilent VEE 9.3\Addins
Only user {User}

Windows Vista

or Windows 7

C:\Users\{User}\Documents\Agilent\

Agilent VEE 9.3\Addins

Windows XP C:\Documents and Settings\All Users\

Application Data\Agilent\Agilent VEE 9.3\

Addins All users

Windows Vista

or Windows 7

C:\ProgramData\Agilent\Agilent VEE 9.3\

Addins

If the directory does not exist in your system, you may need to create it manu-

ally and then place the EVO configuration file in the directory. If an EVO config-

uration file exists in both locations above, it will have two entries in the Device

> Extensible Vee Objects menu.

When VEE starts up, it browses the EVO configuration file locations, shown

in Table 1, for EVO configuration files. If the EVO configuration file format and

version match, VEE displays the EVO in the Device > Extensible Vee Objects

menu. However, in Device > Extensible Vee Objects menu, it appears as a flat

list and there is no method to organize its appearance in a hierarchical format.

When the EVO is added to the VEE workspace, VEE loads the EVO. The EVO

might take longer to load the first time, due to .NET Framework Just-In-Time

(JIT) and runtime constructions. It will take less time for subsequent loads.

When the program is saved, the EVO is saved as a .NET component, where its

.NET assembly’s full name and full directory path are saved in the VEE program.

In other words, the EVO’s full absolute path is saved inside the VEE program.

Due to this behavior, there are two scenarios you need to consider when sharing

or deploying your EVO:

• When the end user is to use your EVO in Agilent VEE Integrated Development

Environment (IDE)

• When the end user is to run a program that contains your EVO

3

How EVO Works in VEE

For end users to use your EVO in
Agilent VEE IDE

As explained above, in the Device > Extensible VEE Objects menu, EVOs appear

in a flat list. However, sometimes it is more appropriate to show EVOs in a

hierarchical representation, which can be achieved in other VEE menus. For

example, in vTools, EVOs are grouped in categories for a better user experience.

To create a hierarchical view:

• Add the EVOs into Main.

• Add the necessary VEE objects e.g. notepad and text constant.

• Save them into a VEE program.

• Use the VEE customize menu (.mnu file or .xmnu file) to create a hierarchical

menu presentation. Please refer to the VEE help file Contents > To Customize

the VEE Menus.

In this scenario, the EVO assembly, the VEE program file and customize menu file

(.mnu or .xmnu) are needed. The EVO assembly needs to exist in target machine

with the same absolute path that is saved inside the VEE program. The EVO

configuration file (.evo) can be excluded because the EVO .NET assembly’s full

absolute path is saved in the VEE program.

If you are planning on creating an installation package for your EVO package,

the Deployment section of this document provides information on the steps

and details for a seamless end user experience when using EVO and running

programs containing EVO.

If you are using EVOs when writing a VEE program and need to deploy the final

program only to other users or other PCs, the EVO configuration file (.evo) is not

needed. This is because the EVO assembly’s absolute path is saved in the VEE

program. In this scenario, in addition to the VEE program, the EVO assembly

needs to exist in target machine with the same absolute path that is saved

inside the VEE program. However, VEE has enhanced this mechanism and the

details are discussed in the Deployment section of this document.

Each EVO uses a fixed set of data terminals which is defined in DataInputs,

DataOutputs, and ControlInputs. All data input terminals must be added and

connected, or else there will be compilation errors.

Control input terminals can be left unconnected, thus some EVO developers

use them as optional input terminals. When the user adds EVO control input,

VEE invokes ControlEvoTerminalAdded. Then the EVO developer can handle the

required logic, for example disable some control. Similarly, the removed method

is available via ControlEvoTerminalRemoved. Similar methods are available for

data input terminals, i.e. InputEvoTerminalAdded and InputEvoTerminalRemoved.

However, control input terminals have a different data propagation behavior.

For details, refer to VEE help file Contents > Tell Me About… > Propagation >

Handling Propagation Problems > Data Propagation on Control Pins.

Similar to other VEE objects, data output terminals can be left unconnected.

For end users to run programs
containing EVO

EVO terminals

4

System Requirements

For some EVO functionality there is a need to be able to update the EVO

terminal list during VEE program development. This can be done by using the

TerminalChanged event in the IExtensibleVeeObject interface. We called this a

dynamic terminal in EVO. With this feature, we recommend avoiding the use

of EVO control input terminals. In most cases, using the dynamic terminal is

sufficient.

EVO terminal behavior is slightly different from other VEE object terminal

behavior. For example, in the Formula object the user is allowed to add any

number of input terminals as needed. This is different in EVO since its terminals

are fixed set terminals written in .NET. If there is a need to allow users to add

any number of terminals with a customized name, it’s recommended that the

dynamic terminal feature be used. Also note that the EVO terminal name cannot

be edited. Avoid duplicated terminal Names. More details can be found in Avoid

Duplicate Terminal Names.

Agilent VEE version 9.3 and above

Microsoft Visual Studio® 2008 and above

EVO terminals (continued)

How EVO Works in VEE

5

Creating an EVO

In this section we will be describing the steps to create an EVO using a C#

expression graph example. This example can be downloaded from

http://www.agilent.com/find/veesamples

1. Create a new Microsoft Visual Studio C# control library. This will be either

a WPF User Control Library or a Windows Forms Control Library depending

on the EVO developer.

2. At Project Properties, change the Target Framework to .NET Framework 3.5,

3.0 or 2.0.

3. Add a reference to

{VEE Installed Directory}\ AddInViews\Agilent.Vee.AddInView.dll.

Typically it is C:\Program Files\Agilent\VEE Pro 9.3\AddInViews\

Agilent.Vee.AddInView.dll.

In 64-bit OS, it could be C:\Program Files (x86)\Agilent\VEE Pro 9.3\

AddInViews\Agilent.Vee.AddInView.dll.

When compiling the example program, if there is compilation error on

missing Agilent.Vee.AddInView, re-add the reference.

4. In Solution Explorer’s References, select the DLL just added and change the

Copy Local to False. If this change is not done, it could yield a compilation

error later.

5. EVO class implements the Agilent.Vee.Extensibility.

IExtensibleVeeObject interface. This can be done quickly using the Visual

Studio-provided implement interface options.

6

Creating an EVO

6 EVO-related Intellisense in Step 5 should appear automatically. If it doesn’t,

verify Agilent.Vee.AddInView.xml exists in {VEE Installed Directory}\

AddInViews folder.

Typically it is C:\Program Files\Agilent\VEE Pro 9.3\AddInViews.

In 64-bit OS, it could be C:\Program Files (x86)\Agilent\VEE Pro 9.3\

AddInViews.

The VEE 9.3 installer will put the XML file inside the folder mentioned.

7 Implement the method appropriately as in ExpressionGraphEvo.cs.

In the expression graph solution some other classes are also implemented.

8 Close all VEE instances to allow VEE to load the newly added EVO. Build

the project. After it is successfully built, copy ExpressionGraph.evo to either

location below. (Create the folder manually if it does not exist.)

For EVO to be visible to only {user}: C:\Documents and Settings\{user}\My

Documents\Agilent\Agilent VEE 9.3\Addins

For EVO to be visible to all users logged in to the PC:

C:\Documents and Settings\All Users\Agilent\Agilent VEE 9.3\Addins

Refer to Table 1: EVO configuration file locations for other OS directories.

9 Copy the DLL and its related references to the path mentioned in the

ExpressionGraph.evo <Assembly> field.

For example, in the example provided, <Assembly>ExpressionGraph.dll</

Assembly> requires ExpressionGraph.dll and antlr.runtime.dll to be in the

same folder as ExpressionGraph.evo. However, you may specify another

absolute path, such as <Assembly>C:\MyAddin\ExpressionGraph.dll</

Assembly>.

10 Launch VEE. The EVO should appears in Device > Extensible Vee Objects menu.

11 Drag-and-drop the EVO to VEE and it is ready to use.

7

Deployment

If your EVO assemblies always reside in a fixed and common directory such as

C:\Documents and Settings\All Users\Application Data\MyEVO, then you

may skip this section.

EVO assembly path

When saving an Agilent VEE program that contains an EVO, the EVO’s absolute

path is saved, similar to .NET DLL. (Unfortunately, VEE is currently unable to

load EVOs from Global Assembly Cache (GAC).) To illustrate, let’s use a scenario

where an EVO assembly is located in Path A. When it is used in a VEE program,

upon being saved, the EVO’s full path is saved, i.e. Path A. When opening the

program in another PC, if the EVO assembly is available in Path B instead of

Path A, an error occurs during the loading of the EVO. This applies when run-

ning either a VEE program or VEE runtime program.

To fix the issue, the quickest method is to manually create Path A in the new

machine and place the EVO assembly in Path A accordingly. If this workaround

is acceptable, you may skip to next section. If this workaround is not acceptable,

implementing the following deployment practices is recommended.

During VEE 9.3 installation, two groups of three system environment variables

(SEVs) listed below will be added. As with the SEV nomenclature, PRO is

reserved for VEE Pro, STU for VEE Student, while RUN is for VEE Runtime.

Group A: SEV for EVO file path

VEE_PRO93_EVO_PATH

VEE_STU93_EVO_PATH

VEE_RUN93_EVO_PATH

Group B: EVO SEV counter

NUM_OF_PRO93_EVO

NUM_OF_STU93_EVO

NUM_OF_RUN93_EVO

For Agilent VEE 9.2, different sets of SEV are used and those are not discussed

here.

8

Deployment

EVO assembly path (continued) Table 2. Installing EVO

Step Action

1 Check that the SEV you need to use is in Group A and Group B,

if not, create it.

For example, to install SEV into VEE runtime, verify that you

have SEV VEE_RUN93_EVO_PATH.

2 Add your EVO file path value to the appropriate SEV value.

For example:

VEE_RUN93_EVO_PATH = “C:\Program Files\Agilent\VEE Pro

9.3\Lib\Toolboxes; C:\Program Files\myEvo”

3 At the appropriate SEV counter, increment the existing value by

one.

For example, vTools installer has increment NUM_OF_RUN93_

EVO to 1. During myEVO’s EVO1 installation, the value will be

increased to 2.

When VEE program loads, it first uses the EVO .NET’s absolute path saved in the VEE

program. If VEE cannot find the DLL, it looks for the appropriate value captured in the

associated SEV path.

Table 3. Un-installing EVO

Step Action

A Remove your path value from the SEV path in Step 2 of the prior

section.

B Decrement the SEV counter in Step 3 of the prior section.

C Check the value of SEV counter in Step B above. If it is zero

remove it. Otherwise, keep it in the system.

The operation above provides seamless EVO integration and VEE experience

for the following:

1. Installing EVO then VEE, or

2. Installing VEE then EVO, or

3. During development, install EVO in a specific folder. However during

runtime, install EVO in a different folder.

9

Recommended Practices

EVO icon In the EVO configuration file (.evo), the EVO developer can specify the EVO icon

be minimized by adding: <Icon>myIcon\info.gif</Icon>

There are two choices for the icon path value:

1. A subfolder inside the VEE bitmap folder: {VEE Installed Directory}\bitmaps.

The icon value looks like: <Icon>myIcon\info.gif</Icon>

In this example, the icon image file is:

C:\Program Files\Agilent\VEE Pro 9.3\bitmaps\myIcon\info.gif. In 64-bit

OS, it could be C:\Program Files (x86)\Agilent\VEE Pro 9.3\bitmaps\

myIcon\info.gif

2. Use the absolute icon’s full path, for example: <Icon>C:\My product\

myIcon\info.gif</Icon>

When using the full absolute path and deploying the program to another PC,

remember that the image needs to reside in the same full absolute path. If

there is a path mismatch, when the user minimizes the VEE object, an icon

not found message will appear.

In the EVO configuration file (.evo), the EVO developer can specify the EVO

assembly location by using:

<Assembly>ExpressionGraph.dll</Assembly>

There are two choices for the assembly path value:

1. Specifying the assembly name only: <Assembly>ExpressionGraph.dll</

Assembly> In this case, the assembly is assumed to be in the same path as

the EVO configuration file, in other words if you are using the Windows XP

operating system it will be: C:\Documents and Settings\{user}\My Documents\

Agilent\Agilent VEE 9.3\Addins. Alternatively, if you are using a Windows Vista

or Windows 7 operating system it will be: C:\Users\{user}\Documents\

Agilent\Agilent VEE 9.3\Addins.

Please refer to the How EVO Works in VEE section of this document for

alternatives on the EVO configuration file path. Using this definition, if there

are a few EVOs installed, the EVO configuration file path could be full of .evo

files and assemblies. This could eventually become wieldy.

2. Using the absolute assembly’s full path, such as:

<Assembly>C:\MyEvo1\ExpressionGraph.dll</Assembly>

When the full absolute path is used and the need arises to use the program

on another PC, remember that the assembly needs to reside in the same full

absolute path. Refer to the EVO Assembly Path section of this document for

details on how to fix relevant deployment issues.

EVO assemblies path location

10

Recommended Practices

Avoid duplicate terminal names Duplicate names should be avoided within the same type of input type. For

example, it is safe to have an input terminal named “Data” and an output

terminal named “Data”, but having two input terminals both named “Data”

is not recommended.

If there are duplicated names, there will be no compilation error/warning in

Visual Studio, however, when using the EVO in Agilent VEE, the data container

value and execution may result in incorrect values.

VEE EVO terminals are case sensitive. For example if there are two data input

terminals named In1 and in1, VEE EVO treats these as different terminals. This

is the same for data output terminals. If there is a data output terminal named

error, it will be unique from the VEE error output terminal. However, this naming

practice is not recommended because most of the other VEE objects (such as

Formula) terminal names are not case sensitive. In other words, In1 and in1 are

the same for a Formula object. Thus avoiding the use of terminal names that

differ only by case sensitivity is strongly recommended.

Output terminal name vs. error
output terminal

Dynamic terminal

When defining an output terminal name, avoid using the name Error. Output

terminal name Error is reserved. If you name an output terminal Error, there is no

compilation error/warning in Visual Studio, however, when you execute the VEE

program, a malfunction may occur.

Dynamic terminal is useful during VEE program development, though it is recom-

mended that its use be avoided when running a VEE program. This is because

the program may break some terminal connections and cause unconnected

pin errors. The EVO developer may hide/disable the dynamic terminal changes

using the PreRun method and then show/enable it using the PostRun method.

When using dynamic terminal:

1. Avoid duplicate terminal names as mentioned in the Avoid Duplicate

Terminal Names section of this document.

2. Use SetObjectData/GetObjectData to handle device terminal status.

This allows previously set terminal information to be loaded when a user

reopens the VEE program. SetObjectData/GetObjectData is useful in

storing and retrieving EVO state information from saved VEE program file.

11

How Do I Debug EVO Code?

Regardless of whether the EVO is added from a Device > Extensible Vee Objects

menu, or via the VEE customized menu, the debugging steps are identical. The

same debugging steps are applicable for running a VEE runtime program containing

EVO.

There are two ways to debug EVO .NET source code.

1. Launch the VEE instance from Visual Studio. EVO is a Class Library project

type, thus it is not allowed to be started in Visual Studio when clicking on

Start Debugging. Use the following procedure to debug EVO .NET source

code:

Table 4. Debugging

Step Action

1 In Visual Studio Solution Explorer, right click on the Project.

2 Select Properties.

3 In Debug > Start Action, select Start external program and

point to the VEE Pro 9.3 executable file.

If you are debugging from a VEE runtime program (.vxe), point

the start up program to the VEE Runtime 9.3 executable file

and enter the runtime program name in the Command line

arguments.

4. Click Start Debugging or F5. Visual Studio brings up a VEE Pro

(or VEE Runtime) instance. Use the EVO in VEE. If you put a

break point in the EVO source code, it breaks accordingly and

you may debug your EVO source code now.

2. Go to the Visual Studio menu Debug > Attach to Process. Select the VEE

Pro (or VEE runtime) instance containing the EVO instance.

If there is error in loading EVO, please refer to the EVO Assembly Path section

of this document.

12

Some Notes on the Expression Graph Example

If there is compilation error about a missing Agilent.Vee.AddInView.dll, add the

DLL reference following the steps below:

Table 5. Adding the DLL reference

Step Action

1 Remove the Agilent.Vee.AddInView reference.

Right click on Agilent.Vee.AddInView.

Select Remove.

2 Add a reference to:

Agilent.Vee.AddInView in {VEE Installed Directory}\

AddInViews.

Typically it is: C:\Program Files\Agilent\VEE Pro 9.3\

AddInViews\Agilent.Vee.AddInView.dll.

In 64-bit OS, it could be: C:\Program Files (x86)\Agilent\VEE

Pro 9.3\AddInViews\Agilent.Vee.AddInView.dll

3 Rebuild the solution. No compilation error should occur.

Please contact Agilent for support if other difficulties are

experienced.

13

Appendix A: Agilent.Vee.Extensibility.IExtensibleVeeObject Interface

This table lists all members in IExtensibleVeeObject interface with description.

Table 6. Properties

Name Description

Title Gets the default title of EVO. User can change it in VEE.

ControlInputs Gets the list of EVO control input terminals. It serves as the optional data input terminals.

Its behavior is same as the control input terminals of the original VEE objects. Avoid using

control input terminals names if possible.

DataInputs Gets the list of EVO data input terminals.

DataOutputs Gets the list of EVO data output terminals.

DefaultWidth Gets the default width of the EVO.

DefaultHeight Gets the default height of the EVO.

ErrorOutput Gets/Sets the EVO error message. If the EVO error output terminal is added, it will be stored

in that terminal; otherwise VEE will display the message in runtime error dialog.

Table 7. Methods

Name Description

GetControl The UI control of the Extensible VEE Object. It can be Windows Forms Control or WPF

window. Returns null if there is no EVO UI.

PreRun This method executes before the VEE program starts to run.

Execute This method executes when the VEE program executes to this EVO. If there is an unhandled

exception in this method, VEE catches it and treats it as a runtime error.

PostRun This method executes right after the Execute method and before the VEE program ends.

GetCurrentApplication Gets a reference to the current instance of the Agilent VEE application, which is the

root object of the Agilent VEE automation model. It is a good practice to check that the

application is not null before using it.

GetObjectData Gets the data representing the EVO state. VEE saves the data into the VEE program file.

SetObjectData When opening a saved VEE program, saved EVO state data is serialized into a string. The

string data is passed to EVO to process the state.

ShowHelp Launches the EVO help function.

InputEvoTerminalAdded This method executes after the EVO input terminal is added.

InputEvoTerminalRemoved This method executes after the EVO input terminal is removed.

ControlEvoTerminalAdded This method executes after the EVO control terminal is added.

ControlEvoTerminalRemoved This method executes after the EVO control terminal is removed.

Table 8. Events

Name Description

ModifiedSet An event to notify the VEE that there are EVO changes. When this event is fired, the VEE

displays an asterisk symbol in the program title bar.

TerminalChanged An event to notify the VEE that there is a change in input/output/control terminal.

14

Appendix B: EVO Configuration File (.evo)

This is the layout and description of the content of EVO configuration file (.evo).

<?xml version=“1.0” encoding=“UTF-16” standalone=“no”?>
<Extensibility xmlns=“http://www.agilent.com/Schemas/AutomationExtensibility”>
 <HostApplication>
 <Name>Agilent VEE</Name>
 <!-- Change to appropriate VEE version, i.e. 9.3 -->
 <Version>9.3</Version>
 </HostApplication>
 <Addin>
 <!-- EVO default name displays in Device menu -->
 <FriendlyName>ExpressionGraph</FriendlyName>

 <!-- Text in status bar when the EVO menu item is highlighted in VEE -->
 <Description>Realtime expression graph</Description>

 <!-- The full path of the EVO assembly -->
 <!-- In the example below, VEE will search ExpressionGraph.dll in
Addins folder -->
 <!-- If full absolute path e.g. C:\MyProject\ExpressionGraph.dll is
specifi ed, VEE will search for the assembly in the path specifi ed. -->
 <Assembly>ExpressionGraph.dll</Assembly>

 <!-- The full class name of the EVO -->
 <FullClassName>Agilent.Vee.EvoExample.ExpressionGraphEvo</FullClassName>

 <!-- Currently not in use, leave it as 0 -->
 <StartUp>0</StartUp>

 <!-- Display icon picture when EVO is minimized in VEE -->
 <!-- In example below, VEE will look for info.gif in VeeInstallDir\bitmaps\
myIcon folder-->
 <!-- If full absolute path is specifi ed e.g. C:\MyIcon\info.gif, VEE will
search for the icon in the path specifi ed. -->
 <Icon>myIcon\info.gif</Icon>

 <!-- Set to 1,to add EVO into the Device menu. If 0, the EVO will not be
visible -->
 <CreateMenu>1</CreateMenu>
 </Addin>
</Extensibility>

Agilent Email Updates

www.agilent.com/find/emailupdates

Get the latest information on the

products and applications you select.

www.lxistandard.org

LAN eXtensions for Instruments puts

the power of Ethernet and the Web

inside your test systems. Agilent

is a founding member of the LXI

consortium.

Agilent Channel Partners

www.agilent.com/find/channelpartners

Get the best of both worlds: Agilent’s

measurement expertise and product

breadth, combined with channel

partner convenience.

For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent

office. The complete list is available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe & Middle East
Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute

Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 972 6201

For other unlisted countries:
www.agilent.com/find/contactus
Revised: January 6, 2012

Product specifications and descriptions
in this document subject to change
without notice.

© Agilent Technologies, Inc. 2012
Published in USA, January 23, 2012
5990-9437EN

www.agilent.com
www.agilent.com/find/vee

Agilent Advantage Services is committed

to your success throughout your equip-

ment’s lifetime. To keep you competitive,

we continually invest in tools and

processes that speed up calibration and

repair and reduce your cost of ownership.

You can also use Infoline Web Services

to manage equipment and services more

effectively. By sharing our measurement

and service expertise, we help you create

the products that change our world.

www.agilent.com/quality

www.agilent.com/find/advantageservices

Quality Management SystemQuality Management Sys
ISO 9001:2008

Agilent Electronic Measurement Group

DEKRA Certified

Microsoft is a trademark or registered trade-

mark of Microsoft Corporation in the United

States and/or other countries.

Visual C++, Visual C#, Visual Basic, Visual

Studio and the Visual Studio logo are trade-

marks or registered trademarks of Microsoft

Corporation in the United States and/or other

countries.

