
USB 3.0 Protocol Testing
with Active Error Insertion

Application Note

Discovering the source of errors in today’s complex USB 3.0 designs without the right tools is a time consuming task.
State-of-the-art designs in mobile computing and high speed digital applications are now adopting SuperSpeed USB 3.0,
and require fast and easy insight into conditions that cause design flaws. Traditional debug methods relied on protocol
analyzers and difficult error simulation techniques. Errors were created through the lengthy process of writing scripts
and simulating errors in post-processed data. This was both a cumbersome and inefficient process, with more time
spent on trying to create and insert the error, than studying the effects and the possible causes of an error. Jammers
enhance the power of today’s protocol analysis tools, by adding active error insertion into the live data stream. This
added tool gives engineers the powerful ability to troubleshoot USB designs like never before.

Speed up design and verification of USB designs using the U4612A jammer

2

Figure 1. Jammers can modify the commands sent by the host or device in real time to recreate errors or to stress protocol operations.

1. Golden device

Common and useful; the golden device method provides the first level of
verification that things are working as expected. Golden device simply involves
selecting typical device deployment configurations, and then recreating that
common scenario. This approach does not allow you to create the error condi-
tions that will occur within the large variety of deployment environments that
products will encounter. It simply verifies operation under ideal conditions for a
given device configuration.

2. Generator

The generator method involves recreating very tightly controlled test sequences.
It allows manual creation of the exact protocol packets for a specific test and
applies it to the device under test. The level of control is high, but the time
required to develop the test is also high due to the need to create custom
scripts for each error condition. It is almost impossible to create a generic test
that can be used with all devices. Continuous tuning and optimizing of the test
scripts is required. The generator method is useful for testing the link layer
operations but cannot be programmed to modify operations in the Transactions,
End point, or Device class operation.

3. Active insertion

With Active Insertion, the developer uses a “golden device” to perform all of
the normal protocol operations, but also connects a jammer in the middle of
the physical connection between the host and device under test (Figure 1).
This allows the engineer to make controlled error modifications in real-time
and instantly analyze the effect on the device’s response. With active insertion,
modifications can be created at low levels of communication as well as with the
device operation. The possibilities of testing are much greater compared with
using a generator that only sends out specific packets.

Active error insertion allows develop-
ers to quickly and easily create error
conditions that simulate today’s real
world challenging design environ-
ments. Testing and verifying the error
detection and system recovery are
greatly enhanced with the addition
of a jammer in the design and debug
phases. Methods to troubleshoot
designs and perform active link test-
ing can be divided into three different
methods.

Active Insertion

Command “A”
Command “B”

3

Advantages of Active Insertion Testing
In normal USB operation a device is connected into an active USB port and both
host and device execute flawlessly. Unfortunately the normal setup gives limited
visibility into the protocol operation on this link. Therefore the first step is to
insert a protocol analyzer into this link to capture and display what is happening
on this link. Active insertion takes this process one step further by allowing the
developer to insert errors into an active link and change this communication in
real time.

Uses of Active Insertion Testing
The ability to quickly change the information on a live link provides the ability
to push the design to its limits. Active error insertion is an unprecedented
capability. It is revolutionary in that it allows designers to create real-time, user-
defined errors, thus replicating a wide range of anticipated real and theoretical
fault conditions. This capability is driving improved SuperSpeed design, test
criteria, and debug capability, as well shortening design cycles. Those who bring
a product to market quickly often maintain a competitive advantage. Losses in
productivity directly translate to losses in product cycle time, sales, and market
advantage.

For today’s USB developers and integrators, verifying design robustness and
error recovery can be a challenging task, especially when it is difficult to dupli-
cate test cases and customer issues. New designs require quick, powerful, and
easily created user-defined tests that explore a design’s outer limits. Pushing
a system’s design to the full extent with powerful error sequences can quickly
uncover future surprises. Creating consistent test sequences helps ensure the
confidence needed for product release. The Agilent U4612A USB 3.0 Jammer
gives designers the ability to insert a variety of errors into a live data stream to
test real-time error handling, system recovery, and duplication of issues seen
in the field. The Jammer’s error injection allows the creation of random and
defined line errors such as CRC or 8b/10b encoding errors, modify or replace
frames, frame data and link management packets.

In this application note we will be creating test scripts using the Agilent GUI. It
is very similar to the Agilent USB protocol analyzer software to maintain ease
of use and without the need to learn new interfaces. The following examples
provide just a few of the possibilities for testing.

4

Creating a Simple Error Injection Script:
Verifying 10-bit Error Detection and Link Recovery
In our first example, we will test the ability of the device to recover from bit
errors on the link. Everything about your design works to minimize errors, so
let’s create a 10-bit error in 3 consecutive data packets, and analyze the design’s
response. According to the USB 3.0 specification, this should cause our link
to go into a recovery state, retrain and then resume communication. Here is a
look at our test setup. We connect the Analyzer and Jammer in series with the
connection. The order of these connections will affect the visibility of data that
is monitored. In this layout, see Figure 2, the analyzer will capture the data that
is modified by the Jammer that is going to the DUT (device under test), but not
the data that is modified from the DUT to the host. The jammer can modify the
traffic in either direction, but the order of the USB connection will affect the
data that is visible to our analyzer.

Our test goal is to verify that our device will transition to link recovery if we
receive 3 data packets in a row that contain 10-bit errors.

•	 Step	1: Configure the host and DUT to enter a valid data transfer state, by
starting a data file copy (or other functions that will transfer data as
appropriate).

•	 Step	2: Configure the analyzer to inject a 10-bit error on 3 consecutive data
packets and then trigger to stop the test.

Figure 3. A one-state program that uses
a global counter. We tell the analyzer to
wait until it detects a data packet sent
from the host to the device, then inject a
10-bit error into the packet.

It then increments the global counter and
waits for another data packet.

It is also checking to see if the global
counter has reached its threshold. If so,
then trigger to stop the capture, and stop
the jammer.

Figure 2. Testing the ability of the device
to recover from bit errors on the link

USB DUT

USB host “golden device”

U4612A USB 3.0 jammer

 C
om

ma
nd

 “A
”

Command “B”

U4611A USB 2.0/3.0 analyzer

5

In the capture buffer, we can see that
three errored data packets were indeed
sent, and the device correctly reported
that there was a problem by sending
LBAD (link bad) packets to the host.

The host then (correctly) responded that
it would retry the link. However after
the three errored packets, the device
immediately entered link recovery, as
can be seen by the sending of the TS1
training sequence packets. We have
now verified that the device is able to
correctly respond to 10-bit errors that
may occur during data transfers.

Additional simple verification test
scenarios can be created that are
very similar to this. For example:

•	 One of the 10-bit errors occurs
 during a SKP message rather than
a data packet.

•	 Two data packets with a 10-bit
error, then one good packet, then
two more errored.

•	 Multiple 10-bit errors in a single
data packet.

•	 Creating additional 10-bit error
tests.

All of these conditions can easily be
created with simple changes to the
test script.

For another example, let’s test the
effect of a single 10-bit error. The
particular device that causes failure
is to create a single 10-bit error, but
this time we will place the error in the
“Set_Configuration” command from
the host during device enumeration.

Figure 4. Capture buffer showing errored data packets (device responds LBAD - Link BAD).

Figure 5. Creating multiple error test scenarios is simple and fast

6

In the packet capture we see that the set configuration packet was sent, but it has an error. The device sent an ACK
response, asking for the same packet again (Seq Num 00), which the host then retransmits, but then checks that status,
and immediately takes the device offline with a LGO_U3.

Figure 6. From the transaction view
we see the set configuration. The first
command is errored, and then resent. In
the spreadsheet view we see the error
detail and the sequence numbers of the
packets.

Inserting 8b/10b errors

Normal operations should have a very low error rate (10-12 BER), but errors do
happen. When using active insertion, is it simple to create these errors at any
phase of the protocol operation to test and verify the device’s response to these
errors.

From the USB 3.0 specification: “There are two types of errors when a receiver
decodes 8b/10b symbols. One is a disparity error that is declared when the run-
ning disparity of the received 8b/10b symbols is not +2, or 0, or –2. The other is
a decode error when an unrecognized 8b/10b symbol is received.
Upon receiving notification of an 8b/10b error:

•	 A port may optionally do the following:

1. If the link is receiving a header packet, it shall send LBAD.

2. If the link is receiving a link command, it shall ignore the link command.

3. If the link is receiving a DPP, it shall drop the DPP.

•	 The link error count shall remain unchanged.”

7

Link layer testing begins to focus on
the exchange of messages between
the logic processes of the host
and device. For example, before a
device can send data it must receive
confirmation that the host has buffers
available in which to receive the data.
See Link Credit LCRD_x in the USB
3.0 specification.

The link layer commands fall into
4 categories:

•	 Power management (LGO_Ux com-
mands to change the power state)

•	 Packet transfer success
(LGOOD_X, packet sequencing)

•	 Link flow control (LCRD_x, signal-
ing available receive buffers)

•	 Valid U0 link ready (data transfer
state, LUP/LDN or other packet
every 10 μsec)

The USB Implementers Forum
Compliance Committee added link
layer testing to the SuperSpeed USB
certification program as part of our
ongoing effort to ensure compre-
hensive compliance for the USB 3.0
standard. See http://www.usb.org/
developers/ssusb/testing/ .

The USB-IF’s link layer compliance
specification includes 37 test cases
that verify hundreds of link layer test
assertions from the USB 3.0 base
specification. Most of these tests
are easily implemented by using the
Agilent USB jammer. These tests
analyze the proper sequencing, using
valid timeouts, and recovery from
errors. The following list of the
37 tests comprise link layer
compliance test.

Testing the Link Layer

Universal Serial Bus 3.0

Link Layer Test Specification (List of Compliance tests)

5.3 Link Layer
TD.7.1 Link Bring-up Test
TD.7.2 Link Commands Framings Robustness Test
TD.7.3 Link Commands CRC-5 Robustness Test
TD.7.4 Invalid Link Commands Test
TD.7.5 Header Packet Framing Robustness Test
TD.7.6 Data Payload Packet Framing Robustness Test
TD.7.7 RX Header Packet Retransmission Test
TD.7.8 TX Header Packet Retransmission Test
TD.7.9 PENDING_HP_TIMER Deadline Test
TD.7.10 CREDIT_HP_TIMER Deadline Test
TD.7.11 PENDING_HP_TIMER Timeout Test
TD.7.12 CREDIT_HP_TIMER Timeout Test
TD.7.13 Wrong Header Sequence Test
TD.7.14 Wrong LGOOD_N Sequence Test
TD.7.15 Wrong LCRD_X Sequence Test
TD.7.16 Link Command Missing Test (Upstream Port Only)
TD.7.17 tPortConfiguration Time Timeout Test
TD.7.18 Low Power initiation for U1 test (Downstream Port Only)
TD.7.19 Low Power initiation for U2 test (Downstream Port Only)
TD.7.20 PM_LC_TIMER Deadline Test (Downstream Port Only)
TD.7.21 PM_LC_TIMER Timeout Test (Downstream Port Only)
TD.7.22 PM_ENTRY_TIMER Timeout Test (Upstream Port Only)
TD.7.23 Accepted Power Management Transaction for U1 Test
(Upstream Port Only)
TD.7.24 Accepted Power Management Transaction for U2 Test
(Upstream Port Only)
TD.7.25 Accepted Power Management Transaction for U3 Test
(Upstream Port Only)
TD.7.26 Transition to U0 from Recovery Test
TD.7.27 Hot Reset Detection in Polling Test (Upstream Port Only)
TD.7.28 Hot Reset Detection in U0 Test (Upstream Port Only)
TD.7.29 Hot Reset Initiation in U0 Test (Downstream Port Only)
TD.7.30 Recovery on three consecutive failed RX Header Packets
Test
TD.7.31 Hot Reset Failure Test (Downstream Port Only)
TD.7.32 Warm Reset Rx.Detect Timeout Test (Hub Downstream Port
Only
TD.7.33 Exit Compliance Mode Test (Upstream Port Only)
TD.7.34 Exit Compliance Mode Test (Downstream Port Only)
TD.7.35 Exit U3 by Reset Test (Downstream Port Only)
TD.7.36 Exit U3 Test (Host Downstream Port Only)
TD.7.37 Packet Pending Test (Upstream Port Only)

Figure 7. List of 37 tests comprising the link layer compliance test.

8

To demonstrate how to test the link
layer protocol, consider testing TD
7.14 Wrong LGOOD_X Sequence. This
test verifies that the DUT will go to
recovery when it receives an incorrect
LGOOD_N sequence.

Figure 8. In this test script, we simply wait until there has been a user-defined
number of valid sequences completed (state 1 of the script is not displayed), and then
our script modifies one of the LGOOD_4 messages to be an LGOOD_2 then it triggers
to let us know it finished and where to find the information.

As soon as the test executes we
can see in the capture buffer that
this device transitioned into recovery
when the LGOOD sequence occurred
out of order.

These tests work on one specific
aspect of the link layer protocol at
a time. They test the execution of
the recovery processes when errors
are detected and the availability of
buffer credits, in addition to check-
ing that the timeouts are correctly
implemented.

Figure 9. As you can see in the decode display, as soon as the LGOOD_2 message was
received by the device (which was received after an LGOOD_3), it executed the recovery
sequence (as indicated by the TS1 messages).

9

Testing Mass Storage
Devices

Mass storage devices are the most
common application of USB 3.0. The
convenience and ease of use makes
it the ideal interface to use for backup
devices and storage to transport
large files. While the USB connection
has been in use for some time for
this purpose, USB 2.0 devices used
a variation of SCSI over USB called
bulk only transport (BOT). While USB
3.0 enables greater speed, the BOT
protocol is not able to take advantage
of performance to match the current
generation of devices. The solution
to this is a new standard called USB
attached SCSI (UAS). UAS uses the
same basic command set as BOT,
but has improved the efficiency by
improving transfer size and reducing
overhead, implementing queuing and
high performance storage stacks.
The USB jammer enables a wide vari-
ety of tests of these communication
stacks. For example, sometimes the
initiator may wish to have the blocks
of data read from the medium instead
of from the cache memory. The force
unit access (FUA) bit is used to
indicate that the direct-access device
shall access the physical medium.
For a write operation, setting FUA to
1 causes the direct-access device
to complete the data write to the
physical medium before completing
the command. For a read operation,
setting FUA to 1 causes the logical
blocks to be retrieved from the physi-
cal medium.

Using the USB jammer allows test-
ing to include utilizing the FUA and
DPO flags to force the device to
bypass cache and not return until the
information is stored and all write
operations are completed. On the
write function, it forces the device to
bypass the cache and not return until
the information is physically written
to the disc.

Figure 10. In this example, we are waiting until 100 write commands have executed and
then setting the FUA and DPO bits in one write command, making it easy to see the
performance hit of a single command.

10

In the decode display below, you can see that the majority of the write commands execute in approximately
1.4 microseconds. Each command writes 128 kB.

Figure 11. On the selected write command, we can see that the duration of the command is 13.5 microseconds. (Examination of
additional transactions with the FUA and DPO bits set have similar duration times.)

Figure 12. Looking at the detailed packets of the transaction show that the device accepted
all of the packets, then sent a NRDY (not ready) message. It was then 12 microseconds later
that the device was ready to proceed (as indicated by the ERDY (end device ready) message).

11

Summary

The Agilent USB jammer has a wide variety of uses that enable testing in ways
that have not been available before. The powerful yet easy scripting language
allows for the creation of very complex sequences to manipulate the data. The
Agilent USB analyzer is the ideal tool to see the results of these tests.

The complete system has an easy-to-use GUI and API (application programming
interface) that allows these test sequences to be automated and repeated.
After device deployment into the market there are times when problems occur
that cannot be replicated with normal device configurations. However, a proto-
col trace can be captured and delivered to support and R&D for diagnosis. It is
critical that after examination of the protocol traces the cause of the failure be
replicated in order to verify a resolution. The use of active insertion provides the
ability to make a controlled environment for testing.

Figure 13. U4612A USB 3.0 jammer

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the
products and applications you select.

For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
office. The complete list is available at:
www.agilent.com/find/contactus

Americas
Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800
United States (800) 829 4444

Asia	Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Other AP Countries (65) 375 8100

Europe	&	Middle	East
Belgium 32 (0) 2 404 93 40
Denmark 45 45 80 12 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
United Kingdom 44 (0) 118 927 6201
For other unlisted countries:
www.agilent.com/find/contactus
Revised: January 6, 2012

Product specifications and descriptions
in this document subject to change
without notice.

www.agilent.com

© Agilent Technologies, Inc. 2012
Published in USA, March 19, 2012
5991-0097EN

