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This application note outlines a design flow for Field Programmable Gate Array
(FPGA) prototyping, using the Agilent SystemVue software, as well as third-party
applications that integrate well with SystemVue. The SystemVue FPGA flow can
be used to quickly validate communications digital signal processing (DSP) algo-
rithms and accelerate physical layer (PHY) performance measurements, such as
bit-error-rate (BER). Although specific applications and hardware platforms are
named in this case study, the flow generally applies to a variety of platforms and
vendors.

Figure 1 illustrates the general SystemVue FPGA design flow and features. It
also highlights the associated tools that can be used in each stage of the flow.

A more detailed, self-paced tutorial for VHDL/Verilog hardware design in
SystemVue can be found in the “Tutorials” section of the SystemVue release
2012.06 or later documentation. Supported customers may also download the
HDL tutorial online at: http://edocs.soco.agilent.com/display/sv201206/Getti
ng+Started+with+Hardware+Design

Also in this application note, a military communication receiver and BER
measurement application example is used to demonstrate a model-based design
approach to a software-defined radio (SDR) flow that moves from system-level
architecture to hardware verification. A conceptual diagram of this flow is shown
Figure 2.
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Introduction

The design process diagrammed in Figure 2 consists of the following steps:

System design and validation in floating point

System design and validation in fixed point

HDL code generation

HDL validation using co-simulation with Aldec Riviera-PRO
Generation of the FPGA programming file

Loading the .bit file into the FPGA

Generation of test signals for FPGA receiver test

Testing of the FPGA
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Figure 2. Conceptual diagram of the existing SDR FPGA flow

This process uses standard SystemVue libraries in both floating and fixed point
for design and verification, along with FPGA implementation tools from Xilinx
and Aldec. With this flow, FPGA-based communications and radar systems can
be designed, verified and implemented.

About the design: A real-time FSK BER tester

To illustrate the FPGA prototyping flow in more detail, a BER tester for a
Frequency Shift-Keying (FSK) receiver architecture will be taken from a system-
level concept down to an FPGA implementation on a common, external develop-
ment board. The BER tester recovers data bits within an FSK system and com-
pares them against a known input test vector. It outputs both the recovered bit
stream, as well as a running tally of any errors. In addition to the testing and 1/0
functions, some timing synchronization algorithms are also included. Supported
SystemVue customers can download these files for SystemVue 2012.06 or later
at: http://edocs.soco.agilent.com/display/eesofkcsysvue/FPGA+flow.



Step 1

System Design
and Validation in
Floating Point

{3 FSK_FL_Sim

The first step in the design process is to create a working model that can be
used to validate the receiver algorithms, first under ideal conditions, and then
under a variety of stressful conditions (e.g., impairments and noise). This initial
architectural and algorithmic modeling is done using floating-point models in
any of several formats: built-in graphical blocks, C++ or math language (.m).

The floating-point design for the FSK system, including transmitter, communica-
tions channel and receiver, is shown in Figure 3. Here, the transmitter portion of
the system begins with generation of the data payload. The resulting bit stream
is then mapped with FSK. Transmitter performance can be characterized at this
point, including waveform and spectrum measurements. (The Agilent 89600
VSA software can also be used for additional analysis capability on simulated
results, like these.) The bit stream then continues into a simple channel model
consisting of delay and additive white Gaussian noise (AWGN). A user-defined
channel model also can be included to verify a wider variety of test cases.

The receiver design consists of FSK demodulation, de-mapping into baseband

bits, timing synchronization, and BER measurement. A correlation is performed
to detect the delay between recovered data and original data, which then cali-
brates the composite delay in the synchronization model.

Simulation is used to validate the overall FSK system. Using internal SystemVue
graphs or external 89600 VSA software, the transmitter output is first verified
to ensure the time waveform and frequency spectrum are acceptable. For the
receiver, we can then observe that the recovered data payload bits are aligned

properly with the original bits and BER is zero. All received bits have been
completely recovered.

If the floating-point BER result is not zero, the FSK receiver algorithms must be

debugged before proceeding to fixed-point or hardware implementation. Since
the floating-point design has been validated, we can proceed to Step 2.
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Figure 3. Connecting to test improves the fidelity of system architecture design.

Conversely, leveraging the design platform for early R&D validation creates new value for
test.



Step 2

System Design and
Validation in Fixed
Point

= FSK_FX Sim

The next step on the path to a hardware implementation is to consider the
effects of quantization and finite-precision arithmetic on the algorithms. Will
they still work? How much precision is required for the specified system
performance? Do the calculations introduce latencies into the design that ruin
the performance? Are architectural changes needed to perform the calculations
faster, or using fewer resources or battery power? Are some functions easier to
implement in analog versus digital hardware?

In this case, SystemVue's fixed-point library may be used to consider these
questions. The W1717 Hardware Design Kit is a SystemVue design personality
that not only includes the fixed-point library and its diagnostic simulation sup-
port, but also VHDL/Verilog code-generation.

Because the fixed-point models have well-defined hardware behaviors, such as
overflow, underflow and latency, they represent a different simulation datatype
from the baseband floating point (blue pin) or timed-envelope (black pin)
datatypes shown in Step 1. A datatype converter is necessary to connect the
floating-point transmitter and channel sections to the fixed-point models in the
receiver. A fixed-point design for the FSK receiver is shown in Figure 4.
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Figure 4. FSK system design in fixed point

Although the transmitter and channel models in Figure 4 are pictured as
floating-point simulation blocks, a real radio signal can be substituted for these
blocks, using test equipment to capture a live signal and bring it into the simula-
tion at run-time, or by reading a stored waveform out of an external file.



Step 2

System Design and Validation

in Fixed Point

The remainder of this application note focuses on the hardware implementation
of the baseband receiver and BER tester. The transition from a simple floating-
point block to a series of fixed-point blocks is shown in Figure 5.
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Figure 5. Detailed structure of the FSK receiver design in fixed point

Prior to entering the fixed-point domain, the complex-valued signal is split into
separate real-valued | and Q paths, and then digitized. Although SystemVue
offers several ADC models with various impairments, an ideal datatype con-
verter is used to cast the floating-point values into fixed-point values. These
values have a specific number of bits allocated to the integer and mantissa por-
tions of the numeric stream, and a representation (e.g., signed/unsigned and 2's
complement). At this point, the connections between fixed-point components
(magenta colored pins) are single schematic wires, not buses. That is, a 16-bit
value is one schematic wire, not 16 individual wires grouped into a bus having

a value of “1” or “0.” This flexibility makes it easy to change precision, or even
sweep precision as a system variable, when determining the architectural
implications of word length, without altering the schematic. Note that the input
and output waveforms of these fixed-point models will be bit-accurate and
cycle-accurate, without needing a detailed hardware implementation or commit-
ment to a vendor.

About the FSK receiver algorithms

The timing synchronization algorithm is a key ingredient to making a good
receiver in the real world. The design example highlighted in the application
note provides just such an algorithm and may be adapted to other applications.
The detailed fixed-point receiver design is shown in Figure 5. It consists of three
subsections: filtering, synchronization and BER testing.



Step 2

System Design and Validation
in Fixed Point

First, the system symbol clock must be recovered so that the sample points
occur with the highest accuracy. Once the | and Q receiver inputs are overs-
ampled, the best sample position is decided by the “best sample position
decision” (BSPD) algorithm. After finding the best sample position, the received
symbol clock is aligned with the original transmit symbol clock. Next, the
receiver begins deciding whether the received bit values are 0 or 1. The initial
set of recovered bit values are then compared to the beginning of the original bit
sequence to determine the absolute time offset between the two bit streams.
Note that in the presence of bit errors, this correlation will not be exact.

In this BER tester, the original bit stream was saved to a file and is read into
the simulation as a reference. When the time offset has been corrected, the
received bit sequence and the original sequence are now time-aligned, and the
receiver can begin to accumulate the number of bit errors for the BER calcula-
tion.

As in Step 1, the BER of the fixed-point architecture is validated under ideal
conditions and then under a range of non-ideal conditions. If the results are not
what were expected, the user can use the SystemVue platform to debug the
fixed-point algorithm, or return to Step 1 to try other floating-point algorithms.
Although hardware-like behaviors have been accounted for, the generic fixed-
point design could still have a variety of hardware implementations, using a
variety of FPGA, ASIC and embedded processor vendors.

Once the fixed-point design has been validated, the design process can progress
to Step 3.



Step 3

HDL Code

Generation

The third step is to implement the fixed-point design as a register-transfer-level
(RTL) hardware design, in a behavioral modeling language such as VHDL or
Verilog. Conveniently, the models in SystemVue’s W1717 fixed-point library
directly support HDL code-generation. The procedure is as follows:

*  Go to Workspace tree, and click on “HDL Code Generator1” (lower left
of figure 6)

*  Once the “"HDL Code Generator Option s” window is opened, as shown
in the center of figure 6, verify that this receiver model is the subnet-
work you want to generate (“DDC_demod”).

*  Look at the “Target Configuration” to verify that it is “HDL Only”.

«  Then, click Generate to generate the VHDL code.

Go to the Workspace directory named “FPGA” in Windows, and locate
the HDL code files: \FPGA\DDC_Demod_HDL\HDL\*.vhd as shown in

the right hand of figure 6.
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Step 3

Note that if you are planning to perform the HDL co-simulation using Aldec
HDL Code Generation Riviera-PRO in step 4, make sure the executable path to Riviera-PRO is set up
correctly on the “Code Generation” tab of the SystemVue Global Options, as
shown in Figure 7.

SystemVue Global Options ﬁ

General | Startup I Waorkspace Recovery Graph I Schematic I Directories
Language I Units | Appearance Code Generation | Externals

C++ Compile/Build Configuration
[C]start IDE

Automatically compile after code generation

Load SystemVue library after compilation (for SystemVue Model Target only)

HOL Tool Configuration
ModelSim Executable:
C:\modeltech_10.0c\win32'modelsim.exe Browse

¥ilinx ISE Executable:
Browse
Altera Quartus II Executable:

Browse

Aldec Riviera PRO Executable:

C\Aldec\Riviera-PRO-2012. 06-x64bin'iviera.exe Browse

o) (ol

b #|

Figure 7. Configuring third-party software locations for coordinated use with
SystemVue

Design teams doing high-performance communications and radar processing
may already have their own library of HDL models which have been hand-opti-
mized, validated, and are now trusted for re-use. It is not necessary to re-code
these models. They can simply be imported into SystemVue and manipulated at
a system level, alongside other blocks. If desired, these models can be set up
to be “code re-generated,” and become part of the same model-based design
process.



Step 4

HDL Validation
using Co-Simulation
with Aldec Riviera-
PRO

The fourth step in the FPGA rapid prototyping design process is to validate the
generated VHDL or Verilog models to ensure they have the same behaviors
and input/output test vectors as the previous floating- and fixed-point models.
Subtle differences in truncation, overflow, latency, and timing can cause unex-
pected system-level results.

Fortunately, the generated HDL models can be easily verified directly inside
SystemVue using co-simulation with a supported HDL simulator. During the
process of code-generation, SystemVue automatically loads the new HDL model
on the schematic as another model choice, under the list of polymorphic models
(Figure 8). SystemVue's support for polymorphism makes scripted validations
and regression suites quite easy, but this topic is beyond the scope of this
application note. For more information on polymorphism, please refer to the
SystemVue tutorial video: www.youtube.com/watch?v=LEEibGvIDvc.
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= EODC demod| H [¥] show Model W: .|
DDC_demad lUse Model E
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Figure 8. SystemVue’s model polymorphism makes HDL co-simulation easy and enables a
model-based design flow

SystemVue 2012 supports two HDL simulators: ModelSim from Mentor Graphics
and Riviera-PRO from Aldec. Throughout the rest of this document, Riviera-PRO
will be used to illustrate the flow.

As shown in Figure 8, there are two co-simulation models using Riviera-PRO:

* DDC_Demod [Riviera Pro, Dbl], which is a co-simulation block that pro-
vides a floating-point interface. Here, the fixed-point conversion is done
automatically inside the block.

+ DDC_Demod [Riviera Pro, Fxp], which is a co-simulation block with
fixed-point interface.

Switch the model to DDC_Demod [Riviera Pro, Fxp] and then configure the
Inputs and Outputs pages for word lengths and formats, as shown in Figure 9a
and 9b.



Step 4

HDL Validation using Co-

Simulation with Aldec Riviera-
PRO

r
'Subnetworkl' Properties

Designator: Subnetworkl [#] Show Designator
Description:  Cosimulate with VHDLVerilog Entity -
Model: DDC_demod [Riviera Pro, Fxp] (DDC_demod_CoS w  [¥]show Model
[ﬁ Manage Models. .. ] [@ Model Help ] Use Model E
Inputs | Outputs | Parameters | Clocks | Stimulators | Waveform | Simulation settings |
Mame Made Cast  Integer Word Length Quant OVF  Break Wave Word Length Type
CLK clock Boolean - --- -—- MNo MNo 1 STD_LOGIC
LIN input Signed 2 Round Saturate Mo MNo 16 STD_LOGIC_V
QIN input Signed 2 Round Saturate No MNo 16 STD_LOGIC_V
RST stim. Boclean - - - Mo Mo 1 STD_LOGIC
4 m »
Integer Word Leng'  Cast Quantization  Overflow
Signed * | |Round v | |Saturate  ~ | [C]Break [C]wave
Advanced Options... I OK I [ Cancel ] [ Help
-
-
‘Subnetworkl’ Properties
Designator:  Subnetworkl [#] Show Designator
Desgription:  Cosimulate with VHDL Verilog Entity -
Model: DDC_demod [Riviera Pro, Fxp] (DDC_demod_CoS «  [V]Show Model
[ﬁ Manage Models. .. ] [@ Model Help ] Use Model E
Inputs | Cutputs | Parameters | Clocks | Stimulators | Wavefarm | Simulation settings |
Name Integer Word Length  Cast Quant Break Wave Word Length  Type
BER 32 Unsigned Round No Ne 32 STD_LOG
Demad 7 Signed Round MNe No 16 STD_LOG
OutPort - Boclean  --- Ne No 1 STD LOG
ref_bits - Boolean  --- No No 1 STD_LOG
test_bit_out - Boolean  --- No No 1 STD_LOG
Integer Word Lengt  Cast Quantization
Signed * | |Round v Break Wave
Advanced Options. .. ] I OK I [ Cancel ] [ Help ]

b

Figure 9. Inputs and Outputs configuration tabs for SystemVue co-simulation with Aldec

Riviera-PRO
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Step 4

S } Before running the simulation, make sure that the Simulation Settings are set to
HDL Validation using Co- run in the automated “batch mode” as shown in Figure 10. Refer to SystemVue
Simulation with Aldec Riviera-  documentation for further details about other modes.

PRO

r -
‘Subnetworkl' Properties &J

Designator: Subnetworkl Show Designator

Desgription: - Cosimulate with VHDLVerilog Entity -

Model: DDC_demod [Riviera Pro, Fxp] (DDC_demod_CoS

Show Model

[,_3 Manage Models... ] I@ Model Help ] Use Model E

vy

| Inputs | Qutputs | Parameters | Clocks | Stimulators | Waveform | Simulation settings

Enable Batch Mode
Quit simulator after cosimulation

[E Advanced Options... ] [ oK. ] [ Cancel ] [ Help

Figure 10. HDL co-simulation settings to enable “Batch Mode”

Run the simulation. A Microsoft® shell window will be invoked showing the
detailed progress of the co-simulation process as shown in Figure 11.
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Figure 11. Riviera-PRO during the SystemVue co-simulation process
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Step 4

HDL Validation using Co-

Simulation with Aldec Riviera-
PRO

Go to the generated dataset and plot the Ref and Test signals (reference bits
and received bits) to verify the results, as shown in Figure 12. Note that the
comparison must start after a certain period of the simulation to account for
processing delays on the receiver side.

Test DATA

i 1

Figure 12. HDL co-simulation results comparing input and output bits for BER testing.
The co-simulation results are returned to the SystemVue environment for post-processing
and visualization.

Configurations for external applications

If you are running these HDL code generations and co-simulations for the

first time, it may be necessary to visit the SystemVue “Global Options” screen
(see figure 7). Here, users can configure the search paths to local software
applications such as Aldec Riviera-PRO, the Xilinx and Altera synthesis tools,
and other applications that integrate with SystemVue. In particular, if there is

no declared Windows® path to Riviera-PR0O, SystemVue will not be aware of
that application, and HDL code generation will not automatically create and load
models appropriate to that simulator. If no polymorphic co-simulation models are
available after code-generation, check this settings tab.

HDL co-simulation using user-defined HDL libraries

When using SystemVue's built-in HDL code generation feature, the system
automatically builds and loads the polymorphic co-simulation models. However,
in the case of HDL models that originate outside SystemVue, HDL co-simulation
requires a couple of extra steps, depending on the simulator. With Riviera-PRO,
the following additional steps are needed:

* In Riviera-PRO:
Compile the HDL files and generate an XML library file for SystemVue.

*  In SystemVue:
Load the generated XML library from Aldec and instantiate the co-
simulation models as parts on the schematic.

These manual steps are described in more detail in the SystemVue docu-
mentation (see section entitled “HDL Cosimulation with Riviera PRO"). After
completion of the steps, the SystemVue schematic will have HDL co-simulation
instances for Riviera-PRO or ModelSim that look like the screens in Figure 13a
and 13b, each with parameters meaningful to that particular engine.
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Step 4

N H . r'Al' Properties . N
HDL Validation using Co- - —

. . . .o Designator: Al [¥] Show Designatar
Simulation with Aldec Riviera-
Description:  HpL Model - o
Model: ADD_PAR_DBL@HDL DBL/FXP Timed Library Mode + [ Show Model gt
[J Manage Models... ] [@ Mode! Help ] Use Model EI
Inputs | Qutputs | Parameters | Clocks | Stimulators | Wavefarm | Simulation settings |
Mame Mades Cast  Imteger Word Length Quant OVF  Break Wave  Size Type
A input Signed 0 Round Saturate Mo No 8 [7:0]wire
B nput Signed 0 Round Saturate Mo MNo 8 [7:0]wire
C input Boolean - - - No No 1 wire

m v

1
o
el

Integer Word Leng Quantization  Overflow

Signed Round Saturate Break Wave

Advanced Options. .. ] [ oK J[ Cancel H Help I !

=

—_——— = = = ==

J

Figure 13a. Co-simulation block for HDL models imported by hand into Aldec Riviera-PRO,
and then exported as models to SystemVue.

‘H1° Properties E

Diesignator: | H1 ‘ Show Designator

Description:
ModelSim SE Simulatar

Cosirulate with YHDL Merilog Entity using ‘

Model: | HOL@Crata Flow Models w | Show Model H D L
[ﬁ Manage Madels. .. ] [@ Model Help ] Use Model
HOL Files | HOL Settings | 1j0 | Libraries | Custom Parameters |
HOL Files, in order of compilation
File Path | + Add
A Remove
E Parameter Options ﬁ Browse, ..
Advanced Options. .. ] [ OF ] [ Cancel ] [ Help ]

Figure 13b. Co-simulation block for models imported by hand into SystemVue, for co-
simulation with Mentor ModelSim SE.

13



Step b.

Generate the FPGA
Programming File

The next step in the FPGA rapid prototyping process is to target the behavioral-
level RTL to a specific FPGA hardware part within an FPGA family. This
capability is not included with SystemVue, but low-cost tools for synthesis and
place & route are available from FPGA vendors such as Xilinx and Altera. If the
parameter choices for clock domains, 1/0 and other parameters are known,
SystemVue's code generation screen makes it possible to continue code-
generation all the way to the FPGA programming file, also known as a “.bit" file.
Xilinx ISE for Virtex platforms and Altera Quartus Il for Stratix platforms are both
supported from the SystemVue user interface (Ul).

Alternatively, many users already have experience with FPGA design tools, and
are more comfortable running these tools standalone, to ensure greater control.
In this case, SystemVue's generated HDL file tree and associated wrappers

and testbenches have been imported into Xilinx ISE. The Xilinx tool is used to
complete the synthesis to a particular hardware programming file (Figure 14).

The associated design steps are:
1. Openthe “Configxx.xise” file in Xilinx ISE

2. Generate the program file (top.bit)

3. Load the program file into the FPGA

™ ISE Project Navigator (0.76xd) - C:\Ber_Algorithm\Config. 2. W_LX240.xise

File Edit Wiew Project Source Process  Tools  ‘Window  Layout  Help =& x
i Ea =% )X |0 o BRAR|ABTEOZI,RiP L L)Q
Design +O8x | 6 ff y
[0 | view: @ {8 tmplementation O [ simulation b 7 module ber_algorithm wrapper |
Higrarchy ~ 8 //chipscope debugy
ﬁgl - T =l inout [35:0] chipscope ctrl,
Canfig_z_W_L¥z40 - @ -
I L
— = 63 xc6vl>.<240t-2ff.1156 . W inouis
o = DivFxp - DivFxp_arch (DivFxp.vhd) = 12 input system rst, /i syate
"y inst_divider1_section - divider_section - divider_section_arch (DivFaxp.vhd) “ 13 input [31:0] alg_rsz, //algor
El & ti:l Top {Tap.v) _ _ 14 input [31:0] oversample ratio,
L n?.set_de.lay_lnst -.reset_delay (re.set_delay_whlzz.v) A 15 input sys_clk, //generic
. | xiline_peie - w6_peie_wl_3 (v6_pcie_v1_3.v) % 16 input [63:0] data inm, /764 de
B | bar_rearder - order_bar_enables {order_bar_enables_32.v) 17 input d.ma_aat,a_val id, £/ outp
- L myJ.:ulda - pIdé_ezdmaZ_vE; (plda_ezdmaZ_vs_bb.v) e 18 input data_availsble in DMA_FIFO,
L. v clkdivz - clle_div_by_2 {clk_div_by_2.v) x4 19 //outputs
| rie_addr - tie_addr_lines (tie_addr_lines_1MEB.v) 20 output reg read request, /iread
¥| dma_sgl - dma_sg (dina_sg.v} @ 21 output [31:0] her_result, /fBER ¢
W] dma_sg2 - dma_sg (dma_sg.v) (5) 22 ocutput [31:0] walid result //outp
| dma_sg3 - dma_sg {dma_sg.v) v 23 1 -
) 24
¥ | F2 Mo Processes Running 25 wire algorithm rst;
I?t Processes: Top ~ 22 assign algorithm rst = alg rst[0]: fithe I
E{ T 28 wire [31:0] IQ PAIR DATA;
- 29 reg GEN SAMPLE CLE = 0;
q 2.t Generate Programming Fie 30 reg GEM SAMPLE CLK pipelined = O; B
¥ &8 Analyze Design Using ChipScope hd < | >
|’ Start | B8 Design | U] Files " E Libraries || E  Design Summary || I Topv [ | ber_algarithm_wrappery [ : »
Console +08F X
Started : "Launching ISE Text Editor to edit Top.w™. ]
Started : "Launching ISE Text Editor to edit ber algorithm wrapper.w™.
-
< | >
Console | o Errors " L Warnings " |28 Find in Files Results |
Ln7 Col 1 WYerilog

Figure 14. Using Xilinx ISE to finish generating the programming file
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Step 6.

In Step 6, the FPGA .bit file is loaded onto the target, which is typically an FPGA

I_oad the b|t F|Ie development board using a USB, PCI Express® or LAN connection. For Xilinx
- Virtex boards, the iMPACT software within the Xilinx ISE suite can be used for
into the FPGA this task

BRclcase 13.3 - iMHEd
Copyright {(c)> 1995 D } H PR % 2= pw
MPACT Flows w08 X
+- 25 Boundary Scan ETEED

E SystemfCE L__T__2

|=] Create PROM File (PROM File Farmatter)
+- =] webTalk Data 0] —=—x |

wohvh240t
top bit
T2
oo Program Fil to FPGA £ Cable Notification
- :Jc.,,mh,.,,. v zman o IMPACT Processes 05 x
Fha Avalable Operations are Connection ko download cable. ..
e H
o = = Program
=" S = [ | e
= =} = Program eFUJSE Registers. ..

= Read eFUSE Registers

= Set eFUSE Control Register. .,

i Read eFLISE Control Benister

Figure 15. Using Xilinx iMPACT to load the .bit file into the FPGA

The processing sequence for loading the program into the FPGA board is as
follows:

* Under Windows Start, run Xilinx ISE Design Suite 13.x/ISE Design Tools/
Tools/Impact.

* Double click on “Boundary Scan.”

* 0On the opened iIMPACT window, right click on the green box and load the
program. The .bit file will be automatically loaded into the FPGA.
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Step /.

Generate Test
Signals

Generation of the FSK Transmitter signal

Information Bits

Step 7 involves hardware verification of FPGA algorithms in the final step of the
model-based design flow. Recall that as the design moved from floating to fixed
point and to HDL, it was necessary to verify its integrity at each step. Now, with
the final hardware implementation, verification is performed one more time.
Depending on the rest of the system around it, the component can finally be
tested in real-time at the true symbol rate of the signal.

Now that the FPGA has been programmed, it needs a hardware test vector to
act as a stimulus and some kind of display to monitor the results. Additionally,
for this application, a specific FSK signal must be generated. It is also necessary
to provide a hardware clock signal of the same timebase.

For the purposes of this application note, two Agilent ESG or MXG signal gen-
erators are employed for hardware signal generation. However, a wide variety of
signal sources may be suitable.

To create the test waveform, a SystemVue simulation is used. Returning to
Step 1, the simulated transmitter signal can be automatically downloaded into
an Agilent signal generator using SystemVue’'s “SignalDownloader” (Figure
16). This instrument connection is easy to configure and has been described in
Agilent application note http://cp.literature.agilent.com/litweb/pdf/5990-
7757EN.pdf. This particular signal is embedded with a known number of bit
errors, in order to validate the final BER algorithm.

Modulator
o
FeTHL
Ml L (123
ARB Link ) B
- \f === 1
- §

(-

Figure 16. Simulating and downloading the FSK signal, in order to test the FPGA receiver
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Step 8.

If you are following this application note using the SystemVue Workspace and

Testing the FSK wish to complete validation of the FSK BER tester using actual test equipment,

Receiver using
SystemVue

here is a short list of resources you will find helpful.

Software and Hardware Requirements

Software needed to reproduce this work:

SystemVue 2012.06 with the W1717 Hardware Design Kit, or a
configuration that includes this feature

The SystemVue .wsv workspace, downloadable by supported
users from the Agilent EEsof KnowledgeCenter article (login
required):

http://edocs.soco.agilent.com/display/eesofkcsysvue/FPGA+flow

Agilent 89600 VSA software, with option 105 (Agilent simulator
connectivity) and option 300 (hardware connectivity)

Agilent Connection Expert (Agilent I/0 Libraries, version 15.0 or
higher)

Xilinx ISE, version 13.1 or higher

Helpful download links may be found at:

www.agilent.com/find/eesof-systemvue-download-apps
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Step 8.

At this point, the designed FPGA receiver has been programmed. As shown in
Testing the FSK Receiver using  Figure 17, the test signal in the FSK format has been generated, downloaded
SystemVue to an Agilent ESG E4438C signal generator and connected to the FPGA input

port. The clock data generated by a ESG E4432D is connected to the FPGA clock
input. A Chipscope performance cable is connected to the FPGA and also con-
nected to SystemVue through a USB cable.

it Pt |

Pl ] =2l “e— ]'I

Figure 17. Testing the FSK FPGA hardware receiver, using a Xilinx probe to feed a
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Step 8.

Now, the FPGA performance can be tested. First, verify the input FSK signal by
Testing the FSK Receiver using connecting the signal generator’s RF output to a RF signal analyzer or Infiniium
SystemVue oscilloscope. The FSK signal can be observed using the 89600 VSA software,
which runs on either instrument. Figure 18 shows the instrument connections
and the observed transmit waveform, constellation, spectrum, and EVM. Using
Chipscope, the test and reference bits are aligned, and the expected number of
errors are observed, as shown in Figure 19.

A Meas Tme Rangec 1V C. Ok 2FSK En Spechum Rarge: 10 Em
s 40 +— DATAY
&% PN LT il VLT Y %

YL | P N R T eyt
1 — Loghag T TN
15 £t magatal :
&% ! t T
S0813 508125 Canter 20 kHz Sparc 40 kH2
REW: E16026 Hz TimeLan 3392 Sym

D: Chil 2FSK Syms/Ens Range: 1V

FSKEm= 299  mime
A2M mEpk & am 62
MagEn= 247 m%me
X migkaam B

: : 0 11700000 00110711 Q1010781 D1110111
Center 458 752 MHz Span; 152 S8TR0E3 kH:
FW 58541 He e T\ 0 mEes | 32 00101110 11010111 01001110 00111101

Figure 18. FSK signal constellation and spectrum

_. e oo - DLW Wyllrvac @) DG AW 550 LRI 0 Riyil A0 (L&)

R — - o L@ 3P0 G40 D60 1280 G009 2280 FEE0 FHE XAN 1520 240 4160 4480 §B00 5120 5440 5760 GOS0 600 6720 F040 350

= onrr_mun -]
& chan_sel 3 1
=kl AR S
= Cchd ARG AFF
okl AR 430
= okl SEB| 409

rei_bice <} i}

X _hiza a i

Figure 19. FSK receiver results, after FPGA processing. Above, err num = number of
accumulated bit-errors, while ref bitsand rx bits are the received and recovered
bitstreams, respectively.
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Conclusion

As seen in this application note, SystemVue can be used to design and

implement software-defined radio (SDR) communication systems using a model-

based design flow at progressively detailed levels of implementation. Since
SystemVue can also control test equipment, the design capability can also be

applied to custom test personalities, such as the simple BER tester shown here.

Please visit the SystemVue resources listed below to see how SystemVue
can also integrate RF design, math language and C++ modeling, and wireless
standards libraries into a cross-domain design cockpit for communications
system design.

For more information about SystemVue, please visit us on the web:

Product information
www.agilent.com/find/eesof-systemvue

Product Configurations
www.agilent.com/find/eesof-systemvue-configs

Request a 30-day Evaluation
www.agilent.com/find/eesof-systemvue-evaluation

Downloads
www.agilent.com/find/eesof-systemvue-latest-downloads

Helpful Videos
www.agilent.com/find/eesof-systemvue-videos

Technical Support Forum
www.agilent.com/find/eesof-systemvue-forum

www.agilent.com/find/eesof-systemvue

Agilent Email Updates

www.agilent.com/find/emailupdates
Get the latest information on the
products and applications you select.

Microsoft is a trademark or registered trade-
mark of Microsoft Corporation in the United
States and/or other countries.

Windows, Windows NT, MS Windows, and
Windows Vista are trademarks or registered
trademarks of Microsoft Corporation in the
United States and/or other countries.

PCI-SIG®, PCle® and the PCI Express® are US
registered trademarks and/or service marks of
PCI-SIG.
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www.agilent.com

For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
office. The complete list is available at:

www.agilent.com/find/contactus

Americas

Canada (877) 894 4414
Brazil (11) 4197 3600
Mexico 01800 5064 800

United States (800) 829 4444

Asia Pacific

Australia 1800 629 485
China 8008100189
Hong Kong 800 938 693
India 1800112929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1800 888 848
Singapore 1800 375 8100
Taiwan 0800 047 866

Other AP Countries (65) 375 8100

Europe & Middle East

Belgium 32 (0) 2404 93 40
Denmark 4545801215
Finland 358 (0) 10 855 2100
France 0825 010 700*
*0.125 €/minute
Germany 49 (0) 7031 464 6333
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55

United Kingdom 44 (0) 118 927 6201
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