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Figure 1. Overview of the FPGA design 
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Introduction
This application note outlines a design flow for Field Programmable Gate Array 
(FPGA) prototyping, using the Agilent SystemVue software, as well as third-party 
applications that integrate well with SystemVue. The SystemVue FPGA flow can 
be used to quickly validate communications digital signal processing (DSP) algo-
rithms and accelerate physical layer (PHY) performance measurements, such as 
bit-error-rate (BER). Although specific applications and hardware platforms are 
named in this case study, the flow generally applies to a variety of platforms and 
vendors. 

Figure 1 illustrates the general SystemVue FPGA design flow and features. It 
also highlights the associated tools that can be used in each stage of the flow.

A more detailed, self-paced tutorial for VHDL/Verilog hardware design in 
SystemVue can be found in the “Tutorials” section of the  SystemVue release 
2012.06 or later documentation. Supported customers may also download the 
HDL tutorial online at: http://edocs.soco.agilent.com/display/sv201206/Getti
ng+Started+with+Hardware+Design

Also in this application note, a military communication receiver and BER 
measurement application example is used to demonstrate a model-based design 
approach to a software-defined radio (SDR) flow that moves from system-level 
architecture to hardware verification. A conceptual diagram of this flow is shown 
Figure 2.
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The design process diagrammed in Figure 2 consists of the following steps:

1. System design and validation in floating point
2. System design and validation in fixed point
3. HDL code generation
4. HDL validation using co-simulation with Aldec Riviera-PRO
5. Generation of the FPGA programming file
6. Loading the .bit file into the FPGA
7. Generation of test signals for FPGA receiver test 
8. Testing of the FPGA 

Figure 2. Conceptual diagram of the existing SDR FPGA flow
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Introduction

This process uses standard SystemVue libraries in both floating and fixed point 
for design and verification, along with FPGA implementation tools from Xilinx 
and Aldec. With this flow, FPGA-based communications and radar systems can 
be designed, verified and implemented. 

About the design: A real-time FSK BER tester

To illustrate the FPGA prototyping flow in more detail, a BER tester for a 
Frequency Shift-Keying (FSK) receiver architecture will be taken from a system-
level concept down to an FPGA implementation on a common, external develop-
ment board. The BER tester recovers data bits within an FSK system and com-
pares them against a known input test vector. It outputs both the recovered bit 
stream, as well as a running tally of any errors. In addition to the testing and I/O 
functions, some timing synchronization algorithms are also included. Supported 
SystemVue customers can download these files for SystemVue 2012.06 or later 
at: http://edocs.soco.agilent.com/display/eesofkcsysvue/FPGA+flow.  
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The first step in the design process is to create a working model that can be 
used to validate the receiver algorithms, first under ideal conditions, and then 
under a variety of stressful conditions (e.g., impairments and noise). This initial 
architectural and algorithmic modeling is done using floating-point models in 
any of several formats: built-in graphical blocks, C++ or math language (.m). 

The floating-point design for the FSK system, including transmitter, communica-
tions channel and receiver, is shown in Figure 3. Here, the transmitter portion of 
the system begins with generation of the data payload. The resulting bit stream 
is then mapped with FSK. Transmitter performance can be  characterized at this 
point, including waveform and spectrum measurements.  (The Agilent 89600 
VSA software can also be used for additional analysis capability on simulated 
results, like these.) The bit stream then continues into a simple channel model 
consisting of delay and additive white Gaussian noise (AWGN). A user-defined 
channel model also can be included to verify a wider variety of test cases.  

The receiver design consists of FSK demodulation, de-mapping into baseband 
bits, timing synchronization, and BER measurement. A correlation is performed 
to detect the delay between recovered data and original data, which then cali-
brates the composite delay in the synchronization model.

Simulation is used to validate the overall FSK system. Using internal SystemVue 
graphs or external 89600 VSA software, the transmitter output is first verified 
to ensure the time waveform and frequency spectrum are acceptable. For the 
receiver, we can then observe that the recovered data payload bits are aligned 
properly with the original bits and BER is zero. All received bits have been 
completely recovered.  

If the floating-point BER result is not zero, the FSK receiver algorithms must be 
debugged before proceeding to fixed-point or hardware implementation. Since 
the floating-point design has been validated, we can proceed to Step 2.

Figure 3. Connecting to test improves the fidelity of system architecture design. 
Conversely, leveraging the design platform for early R&D validation creates new value for 
test.

Step 1
System Design 
and Validation in 
Floating Point
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The next step on the path to a hardware implementation is to consider the 
effects of quantization and finite-precision arithmetic on the algorithms. Will 
they still work? How much precision is required for the specified system 
performance? Do the calculations introduce latencies into the design that ruin 
the performance? Are architectural changes needed to perform the calculations 
faster, or using fewer resources or battery power? Are some functions easier to 
implement in analog versus digital hardware?  

In this case, SystemVue’s fixed-point library may be used to consider these 
questions. The W1717 Hardware Design Kit is a SystemVue design personality 
that not only includes the fixed-point library and its diagnostic simulation sup-
port, but also VHDL/Verilog code-generation.  

Because the fixed-point models have well-defined hardware behaviors, such as 
overflow, underflow and latency, they represent a different simulation datatype 
from the baseband floating point (blue pin) or timed-envelope (black pin) 
datatypes shown in Step 1. A datatype converter is necessary to connect the 
floating-point transmitter and channel sections to the fixed-point models in the 
receiver. A fixed-point design for the FSK receiver is shown in Figure 4. 

Figure 4. FSK system design in fixed point

Step 2
System Design and 
Validation in Fixed 
Point

Although the transmitter and channel models in Figure 4 are pictured as 
floating-point simulation blocks, a real radio signal can be substituted for these 
blocks, using test equipment to capture a live signal and bring it into the simula-
tion at run-time, or by reading a stored waveform out of an external file. 
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The remainder of this application note focuses on the hardware implementation 
of the baseband receiver and BER tester. The transition from a simple floating-
point block to a series of fixed-point blocks is shown in Figure 5.  

Figure 5. Detailed structure of the FSK receiver design in fixed point

Step 2

System Design and Validation 
in Fixed Point

Prior to entering the fixed-point domain, the complex-valued signal is split into 
separate real-valued I and Q paths, and then digitized. Although SystemVue 
offers several ADC models with various impairments, an ideal datatype con-
verter is used to cast the floating-point values into fixed-point values.  These 
values have a specific number of bits allocated to the integer and mantissa por-
tions of the numeric stream, and a representation (e.g., signed/unsigned and 2’s 
complement). At this point, the connections between fixed-point components 
(magenta colored pins) are single schematic wires, not buses. That is, a 16-bit 
value is one schematic wire, not 16 individual wires grouped into a bus having 
a value of “1” or “0.” This flexibility makes it easy to change precision, or even 
sweep precision as a system variable, when determining the architectural 
implications of word length, without altering the schematic. Note that the input 
and output waveforms of these fixed-point models will be bit-accurate and 
cycle-accurate, without needing a detailed hardware implementation or commit-
ment to a vendor.

About the FSK receiver algorithms

The timing synchronization algorithm is a key ingredient to making a good 
receiver in the real world. The design example highlighted in the application 
note provides just such an algorithm and may be adapted to other applications. 
The detailed fixed-point receiver design is shown in Figure 5. It consists of three 
subsections: filtering, synchronization and BER testing.
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First, the system symbol clock must be recovered so that the sample points 
occur with the highest accuracy. Once the I and Q receiver inputs are overs-
ampled, the best sample position is decided by the “best sample position 
decision” (BSPD) algorithm. After finding the best sample position, the received 
symbol clock is aligned with the original transmit symbol clock. Next, the 
receiver begins deciding whether the received bit values are 0 or 1. The initial 
set of recovered bit values are then compared to the beginning of the original bit 
sequence to determine the absolute time offset between the two bit streams. 
Note that in the presence of bit errors, this correlation will not be exact. 

In this BER tester, the original bit stream was saved to a file and is read into 
the simulation as a reference. When the time offset has been corrected, the 
received bit sequence and the original sequence are now time-aligned, and the 
receiver can begin to accumulate the number of bit errors for the BER calcula-
tion. 

As in Step 1, the BER of the fixed-point architecture is validated under ideal 
conditions and then under a range of non-ideal conditions. If the results are not 
what were expected, the user can use the SystemVue platform to debug the 
fixed-point algorithm, or return to Step 1 to try other floating-point algorithms. 
Although hardware-like behaviors have been accounted for, the generic fixed-
point design could still have a variety of hardware implementations, using a 
variety of FPGA, ASIC and embedded processor vendors.

Once the fixed-point design has been validated, the design process can progress 
to Step 3.

Step 2

System Design and Validation 
in Fixed Point
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The third step is to implement the fixed-point design as a register-transfer-level 
(RTL) hardware design, in a behavioral modeling language such as VHDL or 
Verilog. Conveniently, the models in SystemVue’s W1717 fixed-point library 
directly support HDL code-generation. The procedure is as follows:

•	 Go to Workspace tree, and click on “HDL Code Generator1” (lower left 
of figure 6)

•	 Once the “HDL Code Generator Option s” window is opened, as shown 
in the center of figure 6, verify that this receiver model is the subnet-
work you want to generate (“DDC_demod”). 

•	 Look at the “Target Configuration” to verify that it is “HDL Only”.  

•	 Then, click Generate to generate the VHDL code.

•	 Go to the Workspace directory named “FPGA” in Windows, and locate 
the HDL code files: \FPGA\DDC_Demod_HDL\HDL\*.vhd as shown in 
the right hand of figure 6.

Step 3
HDL Code 
Generation

Figure 6. HDL code generation
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Design teams doing high-performance communications and radar processing 
may already have their own library of HDL models which have been hand-opti-
mized, validated, and are now trusted for re-use. It is not necessary to re-code 
these models. They can simply be imported into SystemVue and manipulated at 
a system level, alongside other blocks. If desired, these models can be set up 
to be “code re-generated,” and become part of the same model-based design 
process.

Note that  if you are planning to perform the HDL co-simulation using Aldec 
Riviera-PRO in step 4, make sure the executable path to Riviera-PRO is set up 
correctly on the “Code Generation” tab of the SystemVue Global Options, as 
shown in Figure 7.

Figure 7.  Configuring third-party software locations for coordinated use with 
SystemVue

Step 3

HDL Code Generation
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Step 4
HDL Validation 
using Co-Simulation 
with Aldec Riviera-
PRO 

The fourth step in the FPGA rapid prototyping design process is to validate the 
generated VHDL or Verilog models to ensure they have the same behaviors 
and input/output test vectors as the previous floating- and fixed-point models. 
Subtle differences in truncation, overflow, latency, and timing can cause unex-
pected system-level results.

Fortunately, the generated HDL models can be easily verified directly inside 
SystemVue using co-simulation with a supported HDL simulator. During the 
process of code-generation, SystemVue automatically loads the new HDL model 
on the schematic as another model choice, under the list of polymorphic models 
(Figure 8).  SystemVue’s support for polymorphism makes scripted validations 
and regression suites quite easy, but this topic is beyond the scope of this 
application note. For more information on  polymorphism, please refer to the 
SystemVue tutorial video: www.youtube.com/watch?v=LEEibGvIDvc.

Figure 8. SystemVue’s model polymorphism makes HDL co-simulation easy and enables a 
model-based design flow

SystemVue 2012 supports two HDL simulators: ModelSim from Mentor Graphics 
and Riviera-PRO from Aldec. Throughout the rest of this document, Riviera-PRO 
will be used to illustrate the flow.  

As shown in Figure 8, there are two co-simulation models using Riviera-PRO:

•	 DDC_Demod [Riviera Pro, Dbl], which is a co-simulation block that pro-
vides a floating-point interface. Here, the fixed-point conversion is done 
automatically inside the block. 

•	 DDC_Demod [Riviera Pro, Fxp], which is a co-simulation block with 
fixed-point interface. 

Switch the model to DDC_Demod [Riviera Pro, Fxp] and then configure the 
Inputs and Outputs pages for word lengths and formats, as shown in Figure 9a 
and 9b.
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Step 4

HDL Validation using Co-
Simulation with Aldec Riviera-
PRO 

Figure 9. Inputs and Outputs configuration tabs for SystemVue co-simulation with Aldec 
Riviera-PRO
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Before running the simulation, make sure that the Simulation Settings are set to 
run in the automated “batch mode” as shown in Figure 10. Refer to SystemVue 
documentation for further details about other modes.

Figure 10. HDL co-simulation settings to enable “Batch Mode”

Run the simulation. A Microsoft® shell window will be invoked showing the 
detailed progress of the co-simulation process as shown in Figure 11.

Figure 11. Riviera-PRO during the SystemVue co-simulation process

Step 4

HDL Validation using Co-
Simulation with Aldec Riviera-
PRO 
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Configurations for external applications

If you are running these HDL code generations and co-simulations for the 
first time, it may be necessary to visit the SystemVue “Global Options” screen 
(see figure 7). Here, users can configure the search paths to local software 
applications such as Aldec Riviera-PRO, the Xilinx and Altera synthesis tools, 
and other applications that integrate with SystemVue. In particular, if there is 
no declared Windows® path to Riviera-PRO, SystemVue will not be aware of 
that application, and HDL code generation will not automatically create and load 
models appropriate to that simulator. If no polymorphic co-simulation models are 
available after code-generation, check this settings tab.

HDL co-simulation using user-defined HDL libraries

When using SystemVue’s built-in HDL code generation feature, the system 
automatically builds and loads the polymorphic co-simulation models. However, 
in the case of HDL models that originate outside SystemVue, HDL co-simulation 
requires a couple of extra steps, depending on the simulator. With Riviera-PRO, 
the following additional steps are needed: 

•	 In Riviera-PRO:
Compile the HDL files and generate an .XML library file for SystemVue. 

•	 In SystemVue:
Load the generated XML library from Aldec and instantiate the co-
simulation models as parts on the schematic. 

These manual steps are described in more detail in the SystemVue docu-
mentation (see section entitled “HDL Cosimulation with Riviera PRO”). After 
completion of the steps, the SystemVue schematic will have HDL co-simulation 
instances for Riviera-PRO or ModelSim that look like the screens in Figure 13a 
and 13b, each with parameters meaningful to that particular engine.  

Step 4

HDL Validation using Co-
Simulation with Aldec Riviera-
PRO 

Figure 12. HDL co-simulation results comparing input and output bits for BER testing.  
The co-simulation results are returned to the SystemVue environment for post-processing 
and visualization.

Go to the generated dataset and plot the Ref and Test signals (reference bits 
and received bits) to verify the results, as shown in Figure 12. Note that the 
comparison must start after a certain period of the simulation to account for 
processing delays on the receiver side. 
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Figure 13a. Co-simulation block for HDL models imported by hand into Aldec Riviera-PRO, 
and then exported as models to SystemVue.

Figure 13b. Co-simulation block for models imported by hand into SystemVue, for co-
simulation with Mentor ModelSim SE.

Step 4

HDL Validation using Co-
Simulation with Aldec Riviera-
PRO 
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The next step in the FPGA rapid prototyping process is to target the behavioral-
level RTL to a specific FPGA hardware part within an FPGA family. This 
capability is not included with SystemVue, but low-cost tools for synthesis and 
place & route are available from FPGA vendors such as Xilinx and Altera. If the 
parameter choices for clock domains, I/O and other parameters are known, 
SystemVue’s code generation screen makes it possible to continue code-
generation all the way to the FPGA programming file, also known as a “.bit” file. 
Xilinx ISE for Virtex platforms and Altera Quartus II for Stratix platforms are both 
supported from the SystemVue user interface (UI).

Alternatively, many users already have experience with FPGA design tools, and 
are more comfortable running these tools standalone, to ensure greater control. 
In this case, SystemVue’s generated HDL file tree and associated wrappers 
and testbenches have been imported into Xilinx ISE. The Xilinx tool is used to 
complete the synthesis to a particular hardware programming file (Figure 14). 

The associated design steps are: 

1. Open the “Configxx.xise” file in Xilinx ISE 

2. Generate the program file (top.bit) 

3. Load the program file into the FPGA

Step 5. 
Generate the FPGA 
Programming File 

Figure 14. Using Xilinx ISE to finish generating the programming file
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In Step 6, the FPGA .bit file is loaded onto the target, which is typically an FPGA 
development board using a USB, PCI Express® or LAN connection. For Xilinx 
Virtex boards, the iMPACT software within the Xilinx ISE suite can be used for 
this task.

Step 6. 
Load the .bit File 
into the FPGA 

Figure 15. Using Xilinx iMPACT to load the .bit file into the FPGA

The processing sequence for loading the program into the FPGA board is as 
follows:

•	 Under Windows Start, run Xilinx ISE Design Suite 13.x/ISE Design Tools/
Tools/Impact.

•	 Double click on “Boundary Scan.”

•	  On the opened iMPACT window, right click on the green box and load the 
program. The .bit file will be automatically loaded into the FPGA. 
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Figure 16. Simulating and downloading the FSK signal, in order to test the FPGA receiver

Step 7 involves hardware verification of FPGA algorithms in the final step of the 
model-based design flow. Recall that as the design moved from floating to fixed 
point and to HDL, it was necessary to verify its integrity at each step. Now, with 
the final hardware implementation, verification is performed one more time. 
Depending on the rest of the system around it, the component can finally be 
tested in real-time at the true symbol rate of the signal.

Now that the FPGA has been programmed, it needs a hardware test vector to 
act as a stimulus and some kind of display to monitor the results. Additionally, 
for this application, a specific FSK signal must be generated. It is also necessary 
to provide a hardware clock signal of the same timebase.

For the purposes of this application note, two Agilent ESG or MXG signal gen-
erators are employed for hardware signal generation. However, a wide variety of 
signal sources may be suitable.  

To create the test waveform, a SystemVue simulation is used. Returning to 
Step 1, the simulated transmitter signal can be automatically downloaded into 
an Agilent signal generator using SystemVue’s “SignalDownloader” (Figure 
16). This instrument connection is easy to configure and has been described in 
Agilent application note http://cp.literature.agilent.com/litweb/pdf/5990-
7757EN.pdf. This particular signal is embedded with a known number of bit 
errors, in order to validate the final BER algorithm.

Step 7. 
Generate Test 
Signals
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If you are following this application note using the SystemVue Workspace and 
wish to complete validation of the FSK BER tester using actual test equipment, 
here is a short list of resources you will find helpful.

Step 8. 
Testing the FSK 
Receiver using 
SystemVue

Software and Hardware Requirements

Software needed to reproduce this work:

•	 SystemVue 2012.06 with the W1717 Hardware Design Kit, or a 
configuration that includes this feature

•	 The SystemVue .wsv workspace, downloadable by supported 
users from the Agilent EEsof KnowledgeCenter article (login 
required): 

http://edocs.soco.agilent.com/display/eesofkcsysvue/FPGA+flow

•	  Agilent 89600 VSA software, with option 105 (Agilent simulator 
connectivity) and  option 300 (hardware connectivity)

•	 Agilent Connection Expert (Agilent I/O Libraries, version 15.0 or 
higher)

•	  Xilinx ISE, version 13.1 or higher

Helpful download links may be found at: 

www.agilent.com/find/eesof-systemvue-download-apps 

Hardware needed to reproduce this work:

•	 FPGA development board

•	  Sources: Agilent signal generators, such the ESG/MXG families, 
to provide: 

 ◦ 250-kHz FSK input signal into the FPGA

 ◦  FPGA clock signal

•	 Analyzer
Agilent Infiniium Oscilloscope and/or Agilent 16900 Logic 
Analyzer
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Figure 17. Testing the FSK FPGA hardware receiver, using a Xilinx probe to feed a 

Step 8. 

Testing the FSK Receiver using 
SystemVue

At this point, the designed FPGA receiver has been programmed. As shown in 
Figure 17, the test signal in the FSK format has been generated, downloaded 
to an Agilent ESG E4438C signal generator and connected to the FPGA input 
port. The clock data generated by a ESG E4432D is connected to the FPGA clock 
input. A Chipscope performance cable is connected to the FPGA and also con-
nected to SystemVue through a USB cable.   
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Now, the FPGA performance can be tested. First, verify the input FSK signal by 
connecting the signal generator’s RF output to a RF signal analyzer or Infiniium 
oscilloscope. The FSK signal can be observed using the 89600 VSA software, 
which runs on either instrument. Figure 18 shows the instrument connections 
and the observed transmit waveform, constellation, spectrum, and EVM. Using 
Chipscope, the test and reference bits are aligned, and the expected number of 
errors  are observed, as shown in Figure 19. 

Figure 18. FSK signal constellation and spectrum

Figure 19. FSK receiver results, after FPGA processing. Above, err_num = number of 
accumulated bit-errors, while ref_bits and rx_bits are the received and recovered 
bitstreams, respectively.

Step 8. 

Testing the FSK Receiver using 
SystemVue



Conclusion

As seen in this application note, SystemVue can be used to design and 
implement software-defined radio (SDR) communication systems using a model-
based design flow at progressively detailed levels of implementation.  Since 
SystemVue can also control test equipment, the design capability can also be 
applied to custom test personalities, such as the simple BER tester shown here.  

Please visit the SystemVue resources listed below to see how SystemVue 
can also integrate RF design, math language and C++ modeling, and wireless 
standards libraries into a cross-domain design cockpit for communications 
system design.
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