application note

AB-0013:
SPICE Models for the
IAM- 81 and IAM-82 Active Mixers
Revised February, 1999

Introduction

SPICE models provide the designer with insight into the non-linear behavior and bias dependence of semiconductor devices. This Bulletin presents the SPICE models for Hewlett-Packard's IAM-81 and IAM-82 active mixer product families.

Simulation Accuracy

At the outset, a few words on the accuracy of SPICE predictions are in order. SPICE (Simulation Program with Integrated Circuit Emphasis) is the generic name for a number of time based non-linear simulators based on the original Berkeley SPICE of 1973. SPICE has become the accepted non-linear modeling tool of the analog IC design community, and in general SPICE simulations give good insight into how a circuit will perform.

SPICE is not, however, a perfect depiction of reality. Simplifications in design models and limitations in the simulator can lead to significant discrepancies between prediction and measured results. In particular, problems with accuracy have been encountered when saturated devices are simulated, for example in simulations with low values of Vcc or simulations at extreme temperatures. RF performance over temperature is not well modeled in SPICE. Self heating effects can be important, and simulation temperatures should be adjusted accordingly, especially for higher dissipation parts such as the IAM-82 mixers. A correct description of external parasitics, and in particular of the ground path, is essential if SPICE predictions are to correlate with reality. In summary, a SPICE simulation should be viewed as a way of predicting trends and directions, and in no way substitutes for actual measurements on physical parts.

IAM-81 and IAM-82

The IAM-81 and IAM-82 are Gilbert multiplier active mixers manufactured using Hewlett-Packard's ISOSAT ${ }^{T M}$ silicon MMIC process. Products based on these two designs can accept RF and LO signals up to 5 GHz , and provide gain with IF frequencies up to 1 GHz for the IAM- 81 and 2 GHz for the IAM-82. The [AM-81 mixers have a P1 dB of -6 d 8 m , while the IAM-82 mixers have a PI dB Of +8 dBm . More information on the IAM series products can be obtained in Applications Notes AN-SO10: A 5 GHz Bipolar Active Mixer and AN-SO13: MagIC ${ }^{\text {TM }}$ Active Mixers.

The IAM81 and IAM82 mixers are offered in a number of packages. IAM-81000 and IAM-82000 are chip form; IAM-81008 and IAM-82008 are SO-8 plastic packaged versions, and IAM-81028 and IAM-82028 are glass-metal packaged devices. [Note: The IAM82000 and IAM-82000 are obsolete products no longer offered for sale.]

SPICE Models

The IAM-81 and IAM-82 active mixers were designed using PSPICE, a variant of the original Berkeley SPICE program. These design models are reproduced below. Figures 1 and 2 present the models for the IAM-81 and IAM-82 mixers respectively. The equivalent circuits shown contain a description of the MMIC chip, of the packaging around the chip,
and of external circuit elements such as signal sources and bias networks. The values for the circuit components are given in Tables 1 and 2.

The solid (black) nodes in the Figures correspond to the node numbers in the simulations. Node 0 is reserved for hard ground. Note that a correct description of the path between the die substrate (node 100) and system ground (node 0) is critical for proper simulation results.

Chip Model

The MMIC chip description consists of an equivalent circuit that presented schematically, and transistor descriptions that appear as tables of parameter values. The boundaries of the chip are denoted in the Figures by hollow (white) circles. These circles correspond to the chip bond pads. Each bond pad is also labeled in square brackets (e.g. "[Vcc]") for easy identification.

The designed MIMIC consists of resistors and transistors. The resistors are all polysilicon, and have a temperature coefficient of TC1 $=-8 \mathrm{E}-04$. Process tolerances allows $a \pm 10 \%$ variation from lot to lot on resistor value, though tracking within a lot is typically $\pm 1 \%$.

On-chip parasitic capacitances resulting from the metal interconnects on the die are not shown in the equivalent circuit, but are included in the tables of elements. Parasitic capacitors are given a name corresponding to the node number they are
associated with; i.e. C3 represents the capacitance between node 3 and the substrate (node 100).
The active transistors are described by sets of SPICE parameters. These descriptions are given in Table 3. This table presents a 'library' of devices used to make both the IAM-81 and the IAM-82 mixers. The transistor name gives pitch, number of emitter fingers, and emitter finger length. Four micron pitch transistors are used for the high frequency signal processing; eight micron pitch devices are used as biasing elements. Because of the number of transistors in the design, the 'spread base' description used in the catalog for discrete transistors is not used in the models of the active mixers - the resulting simulations would be excessively complex.

A deficiency of SPICE is that R does not predict the variation in RC with VCE seen in actual devices; instead it uses a single value from the SPICE parameter tables. To mitigate this effect, two values of RC are listed in Table 3: one for 5 V operation (IAM-81) and one for 10 V operation (IAM-82).

Package Description

The equivalent circuits in Figures 1 and 2 include a number of elements labeled "pkg'. These elements represent the physical path between the semiconductor chip and the circuit. Included in this path are such elements as bond wire inductances, MOS capacitors used with the chip, and package parasitics. These elements vary with package style, and can radically effect simulation predictions.

A generic package model is given in Figure 4. Element values corresponding to the 08 plastic SO-8 package, the 28 ceramic package and the 00 chip version are listed in Table 4. In general the inductors next to the die represent bond wires, and the inductors away from the die represent package lead inductance (omitted from the chip description). C5, C7, and C9 represent MOS capacitors used with the chip that are internal to the 08 and 28 packages, and must be supplied by the user when working with the 00 die. C5 bypasses the DC line; C7 and C9 provide AC ground references to the low side of the RF and LO ports respectively. Hewlett-Packard uses 150 pF
capacitors for each of these elements. The remaining capacitors represent package parasitics.

External Circuitry

The equivalent circuits include such off-chip elements as AC signal sources and bias networks. These elements are required by the SPICE simulation, but will vary in value from simulation to simulation to fit device usage. The values listed are what was used in the design files, and represent ideal connections of signal sources to the packaged chip. This description should be augmented with a description of the physical environment the mixer will be used in. Particularly critical are accurate descriptions of the ground path (e.g. vias) and the decoupling of the bias line. Cglo, Cgrf represent external capacitors used to AC ground the FIF and LO ports. These elements are mandatory with chip (00 package) use, but are only used to extend frequency range for the packaged devices. For more on extended low frequency use see AN-S013. Cvcc represents external bypassing on the bias line.

VCC is the DC power supply; the values shown in Tables 1 and 2 represent the recommended bias levels for the mixer being modeled. The AC signal sources are simply listed as "AC*, their characteristics will vary from simulation to simulation as they define the frequency and power level of the input signals to the mixer. Vout is a "dummy' generator used to measure output characteristics.

A sample PSPICE file for the IAM-81028 mixer is given in Figure 5. This simulation results in a model of the packaged device only; no circuit effects are included. When describing the use of the packaged MMIC in a real circuit, appropriate values would be provided for Cglo, Cgrf and Lvia. Values for blocking capacitors Clo, Crf and Cout would be adjusted to those used in the circuit. Generator and load impedances would be adjusted to reflect the circuit environment- this might include moderately detailed descriptions of the applications circuit. Vlo and Vrf sources would be adjusted to describe applied signals.

Figure 1. Equivalent Circuit for IAM-81 Active Mixer

Table 1. Equivalent Circuit Values for the IAM-81 Active Mixer

Figure 2. Equivalent Circuit for IAM-82 Active Mixer
Table 2. Equivalent Circuit Values for the IAM-82 Active Mixer

Transistors		Resistors		Parasitic Capacitors		External Components	
XR1	140820	R1	700	C2	05 pF	VLO	AC
XR2	140820	R2	700	C3	. 05 pF	RSLO	50
XL1	140420	R3	50	C4	. 08 pF	CLO	6800 pF
XL2	140420	R4	50	C6	. 11 pF	VRF	AC
XL3	140420	R21	100	C7	. 02 pF	RSRF	50
XL4	140420	R22	100	C8	. 02 pF	CRF	6800 pF
XEF1	140420	R23	100	C12	. 07 pF	Vout	AC
XEF2	141620	R24	100	C15	. 09 pF	Road	50
XB1	180420	RE	40	C16	. 15 pF	Cout	6800 pF
XB2	180420	REF	25	C17	. 14 pF	Vcc	10 V DC
XB3	180420	RB1	1260	C20	. 05 pF	Cglo	user
Xbias	180420	RB2	465	C21	. 11 pF	Cgrf	user
XBR1	180420	RB3	275	C23	. 01 pF	Cvcc	user
XBR2	180420	RB45	1000	C30	. 05 pF	pkg	Table 4
XBEM1	180420	RBEM RBEM	100	C31	. 03 pF		
XBEM2	180820	RBEM2	25	C32	. 15 pF		
			$\begin{aligned} & <0 \\ & 170 \end{aligned}$	C33	. 01 pF		
		RBR2	170	C34	. 13 pF		
		RBR2	170	C52	. 06 pF		

Table 3. SPICE transistor models for IAM -81 and IAM-82 Active Mixers

Parameter	140220	140420	140820	141620	180220	180420	180820
model	NPN		NPN	NPN	NPN	NPN	NPN
BF	90	100	100	100	90	100	NPN
IS	$7.9 \mathrm{E}-17$	$1.6 \mathrm{E}-16$	$3.2 \mathrm{E}-16$	$6.3 \mathrm{E}-16$	$9.6 \mathrm{E}-17$	$1.9 \mathrm{E}-16$	$3.8 \mathrm{E}-16$
VA	20	20	20	20	20	20	20
BR	2.5	2.5	2.5	2.5	2.5	2.5	2.5
ME	0.6	0.6	0.6	0.6	0.6	0.6	0.6
NF	1.03	1.03	1.03	1.03	1.03	1.03	1.03
PTF	25	25	25	25	25	25	25
TF	$1.2 \mathrm{E}-11$						
CJE	$1.2 \mathrm{E}-13$	$2.3 \mathrm{E}-13$	$4.6 \mathrm{E}-13$	$9.2 \mathrm{E}-13$	$1.4 \mathrm{E}-13$	$2.8 \mathrm{E}-13$	$5.6 \mathrm{E}-13$
XTF	4	4	4	4	4	4	4
IK	$6.4 \mathrm{E}-03$	$1.3 \mathrm{E}-02$	$2.6 \mathrm{E}-02$	$5.1 \mathrm{E}-02$	$7.7 \mathrm{E}-03$	$1.5 \mathrm{E}-02$	$3.1 \mathrm{E}-02$
PE	1.01	1.01	1.01	1.01	1.01	1.01	1.01
ISE	$2.4 \mathrm{E}-13$	$4.8 \mathrm{E}-13$	$9.6 \mathrm{E}-13$	$1.9 \mathrm{E}-12$	$2.9 \mathrm{E}-13$	$5.8 \mathrm{E}-13$	$1.2 \mathrm{E}-12$
NE	2.5	2.5	2.5	2.5	2.5	2.5	2.5
VTF	6	6	6	6	6	6	6
XTB	1.818	1.818	1.818	1.818	1.818	1.818	1.818
ITF	$1.4 \mathrm{E}-02$	$2.9 \mathrm{E}-02$	$5.8 \mathrm{E}-02$	$1.2 \mathrm{E}-01$	$1.7 \mathrm{E}-02$	$3.5 \mathrm{E}-02$	$7.0 \mathrm{E}-02$
RB	58.47	29.42	14.78	7.59	90.24	44.69	22.40
RE	2.08	1.04	0.52	0.26	1.60	0.80	0.40
RC (5V)	81.45	59.90	31.62		95.27	27.63	
RC (10V)		20.83	29.73	13.64		13.64	14.61
CJC	$6.1 \mathrm{E}-14$	$1.0 \mathrm{E}-13$	$1.9 \mathrm{E}-13$	$3.6 \mathrm{E}-13$	$1.0 \mathrm{E}-13$	$1.9 \mathrm{E}-13$	$3.6 \mathrm{E}-13$
CJS	$1.0 \mathrm{E}-13$	$1.3 \mathrm{E}-13$	$1.8 \mathrm{E}-13$	$2.8 \mathrm{E}-13$	$1.3 \mathrm{E}-13$	$1.8 \mathrm{E}-13$	$1.8 \mathrm{E}-13$
XCJC	0.16	0.19	0.20	0.21	0.12	0.13	0.14
PS	0.80	0.80	0.80	0.80	0.80	0.80	0.80
MS	0.5	0.5	0.5	0.5	0.5	0.5	0.5
PC	0.76	0.76	0.76	0.76	0.76	0.76	0.76
MC	0.53	0.53	0.53	0.53	0.53	0.53	0.53

Figure 3. Package Equivalent Circuit
Table 4. Component Values for 00, 08 and 28 Package Models

Elements	Units	Chip (00)	SO-8 (08)	Ceramic (28)
L1	nH	(1.8	1.5
L2	nH	0.8	0.8	0.8
C1	pF	-	0.2	0.2
L3	nH	-	1.8	1.5
L4	nH	-	0.6	0.6
C2	pF	-	0.2	0.2
L5	nH	0.15	-	0.25
L6	nH	-	1.8	1.5
L7	nH	-	0.6	0.6
C3	pF	-	0.2	0.2
L8	nH	-	1.8	1.5
L9	nH	0.8	0.8	0.8
C4	pF	-	0.2	0.2
L10	nH	0.4	0.4	0.4
L11	nH	-	0.4	0.4
L12	nH	-	1.8	1.5
C5	pF	-	150	150
C6	pF	-	0.2	0.2
L13	nH	0.4	0.4	0.4
L14	nH	-	0.4	0.4
L15	nH	-	1.8	1.5
C7	pF	-	150	150
C8	pF	-	0.2	0.2
L16	nH	0.4	0.4	0.4
L17	nH	-	0.4	0.4
L18	nH	-	1.8	1.5
C9	pF	-	150	150
C10	pF	-	0.2	0.2
L19	nH	1.0	1.0	1.0
L20	nH	-	1.8	1.5
C11	pF	-	0.2	0.2

Figure 5. PSPICE simulation of IAM-81028

For technical assistance or the location of your nearest HewlettPackard sales office, distributor or representative call:

Americas/C anada: 1-800-235-0312 or 408-654-8675

Far East/Australasia: Call your local HP sales office.

J apan: (81 3) 3335-8152
E urope: Call your local HP sales office.
Technical information contained in this document is subject to change without notice.

This document is available in electronic form only

