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Introduction
Noise. It is the classical limitation of electronics.
In measurements, noise and distortion limit the 
dynamic range of test results.

In this four-part paper, the characteristics of 
noise and its direct measurement are discussed 
in Part I. Part II contains a discussion of the 
measurement of noise-like signals exemplified 
by digital CDMA and TDMA signals. Part III 
discusses using averaging techniques to reduce 
noise. Part IV is about compensating for the 
noise in instrumentation while measuring CW 
(sinusoidal) and noise-like signals.

Simple noise—Baseband, Real, Gaussian
Noise occurs due to the random motion of 
electrons. The number of electrons involved is 
large, and their motions are independent. Therefore, 
the variation in the rate of current flow takes 
on a bell-shaped curve known as the Gaussian 
Probability Density Function (PDF) in accordance 
with the central limit theorem from statistics. 
The Gaussian PDF is shown in Figure 1.

The Gaussian PDF explains some of the 
characteristics of a noise signal seen on a 
baseband instrument such as an oscilloscope. 
The baseband signal is a real signal; it has no 
imaginary components.

Bandpassed noise—I and Q
In RF design work and when using spectrum 
analyzers, we usually deal with signals within a 
passband, such as a communications channel or 
the resolution bandwidth (RBW, the bandwidth 
of the final IF) of a spectrum analyzer. Noise in 
this bandwidth still has a Gaussian PDF, but 
few RF instruments display PDF-related metrics.

Instead, we deal with a signal’s magnitude and 
phase (polar coordinates) or I/Q components. 
The latter are the in-phase (I) and quadrature 
(Q) parts of a signal, or the real and imaginary 
components of a rectangular-coordinate 
representation of a signal. Basic (scalar) spectrum 
analyzers measure only the magnitude of a signal. 
We are interested in the characteristics of the 
magnitude of a noise signal.

Part I: Noise Measurements
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Figure 1. The Gaussian PDF is maximum at zero current and falls off away from zero, 
as shown (rotated 90 degrees) on the left. A typical noise waveform is shown on the right.



We can consider the noise within a passband as 
being made of independent I and Q components, 
each with Gaussian PDFs. Figure 2 shows samples 
of I and Q components of noise represented in the 
I/Q plane. The signal in the passband is actually 
given by the sum of the I magnitude, vI , multiplied 
by a cosine wave (at the center frequency of the 
passband) and the Q magnitude, vQ , multiplied by 
a sine wave. But we can discuss just the I and Q 
components without the complications of the sine/
cosine waves.

Spectrum analyzers respond to the magnitude       
of the signal within their RBW passband. The    
magnitude, or envelope, of a signal represented     
by an I/Q pair is given by:

venv = √ (vI
2+vQ

2)

Graphically, the envelope is the length of the vector 
from the origin to the I/Q pair. It is instructive to 
draw circles of evenly spaced constant-amplitude 
envelopes on the samples of I/Q pairs as shown 
in Figure 3.

Figure 2. Bandpassed noise has a Gaussian PDF independently in both its I and Q components. 
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If one were to count the number of samples within 
each annular ring in Figure 3, we would see that 
the area near zero volts does not have the highest 
count of samples. Even though the density of 
samples is highest there, this area is smaller 
than any of the other rings.

The count within each ring constitutes a histogram 
of the distribution of the envelope. If the width 
of the rings were reduced and expressed as the 

count per unit of ring width, the limit becomes a 
continuous function instead of a histogram. This 
continuous function is the PDF of the envelope of 
bandpassed noise. It is a Rayleigh distribution in 
the envelope voltage, v, that depends on the sigma 
of the signal; for v greater than or equal to 0

PDF (v)= (v–σ 2) exp (– 1—
2 ( v–σ )2)  

The Rayleigh distribution is shown in Figure 4.

Figure 3. Samples of I/Q pairs shown with evenly spaced constant-amplitude envelope circles
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Figure 4. The PDF of the voltage of the envelope of a noise signal is a Rayleigh distribution. 
The PDF is zero at zero volts, even though the PDFs of the individual I and Q components are 
maximum at zero volts. It is maximum for v=sigma.
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Measuring the power of noise with an envelope 
detector
The power of the noise is the parameter we 
usually want to measure with a spectrum 
analyzer. The power is the heating value of the 
signal. Mathematically, it is the time-average of 
v2(t)/R, where R is the impedance and v(t) is the 
voltage at time t.

At first glance, we might like to find the average 
envelope voltage and square it, then divide by R. 
But finding the square of the average is not the 
same as finding the average of the square. In fact, 
there is a consistent under-measurement of noise 
from squaring the average instead of averaging 
the square; this under-measurement is 1.05 dB

The average envelope voltage is given by             
integrating the product of the envelope voltage    
and the probability that the envelope takes on that 
voltage. This probability is the Rayleigh PDF, so:

v– = ∫ ∞

0
vPDF (v)dv = σ √ π–

2

The average power of the signal is given by an    
analogous expression with v2/R in place of the "v" 
part:

p– = ∫ ∞

0 (v–
R

2)PDF (v)dv = 2σ–
R

2

We can compare the true power, from the average 
power integral, with the voltage-envelope-detected 
estimate of v2/R and find the ratio to be 1.05 dB, 
independent of s and R.

10 log (v– 2

p–
/R ) 10 log (π–

4 ) = –1.05 dB= 

Thus, if we were to measure noise with a spectrum 
analyzer using voltage-envelope detection (the 
linear scale) and averaging, an additional 1.05 dB 
would need to be added to the result to compensate 
for averaging voltage instead of voltage-squared.
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Logarithmic processing
Spectrum Analyzers are most commonly used in
their logarithmic (log) display mode, in which the 
vertical axis is calibrated in decibels. Let us look 
again at our PDF for the voltage envelope of a noise 
signal, but let’s mark the x-axis with points equally 
spaced on a decibel scale, in this case with 1 dB 
spacing. See Figure 5. The area under the curve 

between markings is the probability that the log 
of the envelope voltage will be within that 1 dB 
interval. Figure 6 represents the continuous PDF 
of a logged signal which we predict from the areas 
in Figure 5.

Figure 5. The PDF of the voltage envelope of noise is graphed. 1 dB spaced marks on the x-axis 
shows how the probability density would be different on a log scale. Where the decibel markings 
are dense, the probability that the noise will fall between adjacent marks is reduced.
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Figure 6. The PDF of logged noise is about 30 dB wide and tilted toward the high end.

7



Measuring the power of noise with a 
log-envelope scale
When a spectrum analyzer is in a log (dB) display
mode, averaging of the results can occur in 
numerous ways. Multiple traces can be averaged, 
the envelope can be averaged by the action of the 
video filter, or the noise marker (more on this 
below) averages results across the x-axis.  Some 
recently introduced analyzers also have a detector 
that averages the signal amplitude for the duration 
of a measurement cell.

When we express the average power of the noise in 
decibels, we compute a logarithm of that average 
power. When we average the output of the log scale 
of a spectrum analyzer, we compute the average 
of the log. The log of the average is not equal to 
the average of the log. If we go through the same 
kinds of computations that we did comparing 
average voltage envelopes with average power 
envelopes, we find that log processing causes an 
under-response to noise of 2.51 dB, rather than 
1.05 dB.1

The log amplification acts as a compressor for 
large noise peaks; a peak of ten times the average 
level is only 10 dB higher. Instantaneous near-zero 
envelopes, on the other hand, contain no power 
but are expanded toward negative infinity decibels. 
The combination of these two aspects of the 
logarithmic curve causes noise power to measure 
lower than the true noise power.

Equivalent noise bandwidth
Before discussing the measurement of noise 
with a spectrum analyzer noise marker, it is 
necessary to understand the RBW filter of a 
spectrum analyzer.

The ideal RBW has a flat passband and infinite 
attenuation outside that passband. But it must 
also have good time domain performance so that 
it behaves well when signals sweep through the 
passband. Most spectrum analyzers use four-pole 
synchronously tuned filters for their RBW filters. 
We can plot the power gain (the square of the 
voltage gain) of the RBW filter versus frequency 
as shown in Figure 7. The response of the filter 
to noise of flat power spectral density will be the 
same as the response of a rectangular filter with 
the same maximum gain and the same area under 
their curves. The width of such a rectangular filter 
is the equivalent noise bandwidth of the RBW 
filter. The noise density at the input to the RBW 
filter is given by the output power divided by the 
equivalent noise bandwidth.

1.  Most authors on this subject artificially state that this factor is due to 1.05 dB from 
 envelope detection and another 1.45 dB from logarithmic amplification, reasoning that 

the signal is first voltage-envelope detected, then logarithmically amplified. But if we 
were to measure the voltage-squared envelope (in other words, the power envelope, 
which would cause zero error instead of 1.05 dB) and then log it, we would still find a 
2.51 dB under-response. Therefore, there is no real point in separating the 2.51 dB 

 into two pieces.
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The ratio of the equivalent noise bandwidth to the 
–3 dB bandwidth (An  RBW is usually identified by 
its –3 dB BW) is given by the following table:  

Filter type Application NBW/–3 dB BW

4-pole sync Most SAs analog 1.128  (0.52 dB)

5-pole sync Some SAs analog 1.111  (0.46 dB)

Typical FFT FFT-based SAs 1.056 (0.24 dB)

The noise marker
As discussed above, the measured level at the out
put of a spectrum analyzer must be manipulated in 
order to represent the input spectral noise density 
we wish to measure. This manipulation involves 
three factors, which may be added in decibel units:

1. Under-response due to voltage envelope detection 
(add 1.05 dB) or log-scale response (add 2.51 dB).

2. Over-response due to the ratio of the equivalent 
noise bandwidth to the –3 dB bandwidth (subtract 
0.52 dB).

3.  Normalization to a 1 Hz bandwidth (subtract 
10 times the log of the RBW, where the RBW is 
given in units of Hz).

Most spectrum analyzers include a noise marker 
that accounts for the above factors. To reduce 
the variance of the result, the Agilent 8590 and 
8560 families of spectrum analyzers compute the 
average of 32 trace points centered around the 
marker location. The Agilent ESA family, which 
allows you to select the number of points in a trace, 
compute the average over one half of a division 
centered at the marker location. For an accurate 
measurement, you must be sure not to place the 
marker too close to a discrete spectral component. 

The final result of these computations is a measure 
of the noise density, the noise in a theoretical ideal 
1 Hz bandwidth. The units are typically dBm/Hz.

Figure 7. The power gain versus frequency of an RBW filter can be modeled by a rectangular filter 
with the same area and peak level, and a width of the “equivalent noise bandwidth.”
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Spectrum analyzers and envelope detectors

A simplified block diagram of a spectrum 
analyzer is shown in Figure A.

The envelope detector/logarithmic amplifier block 
is shown configured as they are used in the Agilent 
8560 E-Series spectrum analyzers. Although the 
order of these two circuits can be reversed, the 
important concept to recognize is that an IF signal 
goes into this block and a baseband signal (referred 
to as the “video” signal because it was used to 
deflect the electron beam in the original analog 
spectrum analyzers) comes out.

Notice that there is a second set of detectors 
in the block diagram: the peak/pit/sample hardware 
of what is normally called the detector mode of a 
spectrum analyzer. These display detectors are 
not relevant to this discussion, and should not be 
confused with the envelope detector.

The salient features of the envelope detector 
are two:

1. The output voltage is proportional to the input  
 voltage envelope.
2. The bandwidth for following envelope variations  
 is large compared to the widest RBW.

Figure A. Simplified spectrum analyzer block diagram

Figure B. Detectors: a) half-wave, b) full-wave 
implemented as a “product detector,” c) peak. 
Practical implementations usually have their gain 
terms implemented elsewhere, and implement 
buffering after the filters that remove the residual 
IF carrier and harmonics. The peak detector must 
be cleared; leakage through a resistor or a switch 
with appropriate timing are possible clearing 
mechanisms.
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Figure B shows envelope detectors and their 
associated waveforms in (a) and (b). Notice that 
the gain required to make the average output 
voltage equal to the r.m.s. voltage of a sinusoidal 
input is different for the different topologies.

Some authors on this topic have stated that “an 
envelope detector is a peak detector.” After all, 
an idealized detector that responds to the peak 
of each cycle of IF energy independently makes 
an easy conceptual model of ideal behavior. But 
real peak detectors do not reset on each IF cycle. 
Figure B, part c, shows a typical peak detector 
with its gain calibration factor. It is called a peak 
detector because its response is proportional to 
the peak voltage of the signal. If the signal is CW, 
a peak detector and an envelope detector act 
identically. But if the signal has variations in its 
envelope, the envelope detector with the shown 
LPF (low pass filter) will follow those variations 
with the linear, time-domain characteristics of 
the filter; the peak detector will follow nonlinearly, 
subject to its maximum negative-going dv/dt limit, 
as demonstrated in Figure C. The nonlinearity will 
make for unpredictable behavior for signals with 
noise-like statistical variations. 

A peak detector may act like an envelope detector 
in the limit as its resistive load dominates and the 
capacitive load is minimized. But practically, the 
nonideal voltage drop across the diodes and the 
heavy required resistive load make this topology 
unsuitable for envelope detection. All spectrum 
analyzers use envelope detectors, some are just 
misnamed.

Figure C. An envelope detector will follow the envelope of the shown 
signal, albeit with the delay and filtering action of the LPF used to 
remove the carrier harmonics. A peak detector is subject to negative 
slew limits, as demonstrated by the dashed line it will follow across 
a response pit. This drawing is done for the case in which the 
logarithmic amplification precedes the envelope detection, opposite 
to Figure A; in this case, the pits of the envelope are especially sharp.
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Cautions when measuring noise with 
spectrum analyzers
There are three ways in which noise measurements
can look perfectly reasonable on the screen of a 
spectrum analyzer, yet be significantly in error.

Caution 1, input mixer level. A noise-like signal 
of very high amplitude can overdrive the front 
end of a spectrum analyzer while the displayed 
signal is within the normal display range. This 
problem is possible whenever the bandwidth of 
the noise-like signal is much wider than the RBW. 
The power within the RBW will be lower than the 
total power by about ten times the log of the ratio 
of the signal bandwidth to the RBW. For example, 
an IS-95 CDMA signal with a 1.23 MHz bandwidth 
is 31 dB larger than the power in a 1 kHz RBW. 

If the indicated power with the 1 kHz RBW is 
–20 dBm at the input mixer (i.e., after the input 
attenuator), then the mixer is seeing about 
+11 dBm. Most spectrum analyzers are specified 
for –10 dBm CW signals at their input mixer; the 
level below which mixer compression is specified 
to be under 1 dB for CW signals is usually 5 dB 
or more above this –10 dBm. The mixer behavior 
with Gaussian noise is not guaranteed, especially 
because its peak-to-average ratio is much higher 
than that of CW signals. 

Keeping the mixer power below –10 dBm is a good 
practice that is unlikely to allow significant mixer 
nonlinearity. Thus, caution #1 is:  Keep the total 
power at the input mixer at or below –10 dBm.

Figure D. In its center, this graph shows three curves: the ideal log amp behavior, that of a log amp that clips 
at its maximum and minimum extremes, and the average response to noise subject to that clipping. The lower 
right plot shows, on expanded scales, the error in average noise response due to clipping at the positive 
extreme. The average level should be kept 7 dB below the clipping level for an error below 0.1 dB. The upper 
left plot shows, with an expanded vertical scale, the corresponding error for clipping against the bottom of the 
scale. The average level must be kept 14 dB above the clipping level for an error below 0.1 dB.
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Caution 2, overdriving the log amp. Often, the 
level displayed has been heavily averaged using 
trace averaging or a video bandwidth (VBW) 
much smaller than the RBW. In such a case, 
instantaneous noise peaks are well above the 
displayed average level. If the level is high enough 
that the log amp has significant errors for these 
peak levels, the average result will be in error. 
Figure D shows the error due to overdriving the 
log amp in the lower right corner, based on a 
model that has the log amp clipping at the top 
of its range. Typically, log amps are still close to 
ideal for a few dB above their specified top, 
making the error model conservative. But it is 
possible for a log amp to switch from log mode to 
linear (voltage) behavior at high levels, in which 
case larger (and of opposite sign) errors to those 
computed by the model are possible. Therefore, 
caution #2 is: Keep the displayed average log level 
at least 7 dB below the maximum calibrated level 
of the log amp.

Caution 3, underdriving the log amp. The 
opposite of the overdriven log amp problem is 
the underdriven log amp problem. With a clipping 
model for the log amp, the results in the upper 
left corner of Figure D were obtained. Caution 
#3 is: Keep the displayed average log level at 
least 14 dB above the minimum calibrated level 
of the log amp.
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In Part I, we discussed the characteristics of 
noise and its measurement. In this part, we will 
discuss three different measurements of digitally 
modulated signals, after showing why they are very 
much like noise.

The noise-like nature of digital signals
Digitally modulated signals can be created by 
clocking a Digital-to-Analog Converter (DAC) 
with the symbols (a group of bits simultaneously 
transmitted), passing the DAC output through a
pre-modulation filter (to reduce the transmitted 
bandwidth), and then modulating the carrier with 
the filtered signal. See Figure 8. The resulting signal 
is obviously not noise-like if the digital signal is a 
simple pattern. It also does not have a noise-like 
distribution if the bandwidth of observation is 
wide enough for the discrete nature of the DAC 
outputs to significantly affect the distribution of 
amplitudes.

But, under many circumstances, especially test 
conditions, the digital signal bits are random. 
And, as exemplified by the channel power 
measurements discussed below, the observation 
bandwidth is narrow. If the digital update period 
(the reciprocal of the symbol rate) is less than 
one-fifth the duration of the majority of the impulse 
response of the resolution bandwidth filter, the 
signal within the RBW is approximately Gaussian 
according to the central limit theorem.

A typical example is IS-95 CDMA. Performing 
spectrum analysis, such as the adjacent-channel 
power ratio (ACPR) test, is usually done using 
the 30 kHz RBW to observe the signal. This 
bandwidth is only one-fortieth of the symbol clock 
rate (1.23 Msymbols/s), so the signal in the RBW 
is the sum of the impulse responses to about forty 
pseudorandom digital bits. A Gaussian PDF is an 
excellent approximation to the PDF of this signal.

Channel-power measurements 
Most modern spectrum analyzers allow the 
measurement of the power within a frequency 
range, called the channel bandwidth. The displayed 
result comes from the computation:

Pch = ( Bs–
Bn

)(1–
N )  

n2

i=n1
Σ 10(pi/10)

Pch is the power in the channel, Bs is the 
specified bandwidth (also known as the channel 
bandwidth), Bn is the equivalent noise bandwidth 
of the RBW used, N is the number of data points 
in the summation, pi is the sample of the power in 
measurement cell i in dB units (if pi  is in dBm, 
Pch is in milliwatts). n1 and n2 are the end-points 
for the index i within the channel bandwidth, thus                   
N=(n2 – n1) + 1.

Part II:  Measurements of Noise-like Signals

Figure 8. A simplified model for the generation of digital communications signals.
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The computation works well for CW signals, such 
as from sinusoidal modulation. The computation 
is a power-summing computation. Because the 
computation changes the input data points to a 
power scale before summing, there is no need to 
compensate for the difference between the log of 
the average and the average of the log as explained 
in Part I, even if the signal has a noise-like PDF 
(probability density function). But, if the signal 
starts with noise-like statistics and is averaged 
in decibel form (typically with a VBW filter on 
the log scale) before the power summation, some 
2.51 dB under-response, as explained in Part I, 
will be incurred. If we are certain that the signal 
is of noise-like statistics, and we fully average the 
signal before performing the summation, we can 
add 2.51 dB to the result and have an accurate 
measurement. Furthermore, the averaging reduces 
the variance of the result.

But if we don’t know the statistics of the signal, 
the best measurement technique is to do no 
averaging before power summation. Using a VBW 
≥ 3RBW is required for insignificant averaging, 
and is thus recommended. But the bandwidth of 
the video signal is not as obvious as it appears. 

In order to not peak-bias the measurement, the 
sample detector must be used. Spectrum analyzers 
have lower effective video bandwidths in sample 
detection than they do in peak detection mode, 
because of the limitations of the sample-and-hold 
circuit that precedes the A/D converter. Examples 
include the Agilent 8560E-Series spectrum analyzer 
family with 450 kHz effective sample-mode video 
bandwidth, and a substantially wider bandwidth 
(over 2 MHz) in the Agilent ESA-E Series spectrum 
analyzer family.

Figure 9 shows the experimentally determined 
relationship between the VBW:RBW ratio and 
the under-response of the partially averaged 
logarithmically processed noise signal.

However, the Agilent PSA is an exception to the 
relationship illustrated by Figure 9. The Agilent 
PSA allows us to directly average the signal on 
a power scale. Therefore, if we are not certain 
that our signal is of noise-like statistics, we are 
no longer prohibited from averaging before power 
summation. The measurement may be taken by 
either using VBW filtering on a power scale, or 
using the average detector on a power scale.

0
0

0.3             1              3             10            30           ∞

≈

≈
≈

–1.0

–2.0

–2.5 power summation
error

0.045 dB

1,000,000 point simulation 
experiment
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0.35 dB

Figure 9. For VBW ≥ 3 RBW, the averaging effect of the VBW filter does not significantly affect 
power-detection accuracy.
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Adjacent-Channel Power (ACP)
There are many standards for the measurement of
ACP with a spectrum analyzer. The issues involved 
in most ACP measurements are covered in detail in 
an article in Microwaves & RF, May, 1992, "Make 
Adjacent-Channel Power Measurements." A survey 
of other standards is available in "Adjacent Channel 
Power Measurements in the Digital Wireless Era" in 
Microwave Journal, July, 1994.

For digitally modulated signals, ACP and channel-
power measurements are similar, except ACP is 
easier. ACP is usually the ratio of the power in the 
main channel to the power in an adjacent channel. 
If the modulation is digital, the main channel will 
have noise-like statistics. Whether the signals in 
the adjacent channel are due to broadband noise, 
phase noise, or intermodulation of noise-like 
signals in the main channel, the adjacent channel 
will have noise-like statistics. A spurious signal in 
the adjacent channel is most likely modulated to 
appear noise-like, too, but a CW-like tone is a 
possibility.

If the main and adjacent channels are both noise-
like, then their ratio will be accurately measured 
regardless of whether their true power or log-
averaged power (or any partially averaged result 
between these extremes) is measured. Thus, unless 
discrete CW tones are found in the signals, ACP 
is not subject to the cautions regarding VBW and 
other averaging noted in the section on channel 
power above.

But some ACP standards call for the measurement 
of absolute power, rather than a power ratio. In 
such cases, the cautions about VBW and other 
averaging do apply.

Carrier power
Burst carriers, such as those used in TDMA mobile
stations, are measured differently than continuous 
carriers. The power of the transmitter during the 
time it is on is called the "carrier power."

Carrier power is measured with the spectrum 
analyzer in zero span. In this mode, the LO of the 
analyzer does not sweep, thus the span swept is 
zero. The display then shows amplitude normally 
on the y axis, and time on the x axis. If we set the 
RBW large compared to the bandwidth of the burst 
signal, then all of the display points include all 
of the power in the channel. The carrier power is 
computed simply by averaging the power of all the 
display points that represent the times when the 
burst is on. Depending on the modulation type, 
this is often considered to be any point within 
20 dB of the highest registered amplitude. (A 
trigger and gated spectrum analysis may be used 
if the carrier power is to be measured over a 
specified portion of a burst-RF signal.)

Using a wide RBW for the carrier-power 
measurement means that the signal will not 
have noise-like statistics. It will not have CW-like 
statistics, either, so it is still wise to set the VBW 
as wide as possible. But let’s consider some 
examples to see if the sample-mode bandwidths 
of spectrum analyzers are a problem.

For PDC, NADC and TETRA, the symbol rates 
are under 25 kb/s, so a VBW set to maximum will 
work well. It will also work well for PHS and GSM, 
with symbol rates of 380 and 270 kb/s. For IS-95 
CDMA, with a modulation rate of 1.23 MHz, we 
could anticipate a problem with the 450 kHz 
effective video bandwidth discussed in the section 
on channel power above. Experimentally, an 
instrument with 450 kHz BW experienced a 0.6 dB 
error with an OQPSK (mobile) burst signal.
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Peak-detected noise and TDMA ACP 
measurements
TDMA (time-division multiple access, or burst-RF)
systems are usually measured with peak detectors, 
in order that the burst "off" events are not shown 
on the screen of the spectrum analyzer, potentially 
distracting the user. Examples include ACP mea-
surements for PDC (Personal Digital Cellular) by 
two different methods, PHS (Personal Handiphone 
System) and NADC (North American Dual-mode 
Cellular). Noise is also often peak detected in the 
measurement of rotating media, such as hard disk 
drives and VCRs.

The peak of noise will exceed its power average 
by an amount that increases (on average) with the 
length of time over which the peak is observed. 
A combination of analysis, approximation and 
experimentation leads to this equation for vpk, the 
ratio of the average power of peak measurements 
to the average power of sampled measurements:

vpk = [10 dB] log10 (2πτBWi+e)][loge

Tau (t) is the observation period, usually given 
by either the length of an RF burst, or by the 
spectrum analyzer sweep time divided by the 
number of cells in a sweep. BWi  is the impulse 
bandwidth of the RBW filter.  

For the four-pole synchronously tuned filters used 
in most spectrum analyzers, BWi is nominally 
1.62 times the –3 dB bandwidth. For ideal linear-
phase Gaussian filters, which is an excellent model 
for digitally implemented swept analyzers, BWi is 
1.499 times the –3 dB bandwidth. In either case, 
VBW filtering can substantially reduce the impulse 
bandwidth.

Note that vpk is a "power average" result; the 
average of the log of the ratio will be different.

The graph in Figure E shows a comparison of this 
equation with some experimental results. The fit 
of the experimental results would be even better if 
10.7 dB were used in place of 10 dB in the equation 
above, even though analysis does not support such 
a change.
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Figure E. The peak-detected response to noise increases with the observation time.
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The results of measuring noise-like signals are, 
not surprisingly, noisy. Reducing this noisiness is 
accomplished by three types of averaging:
• increasing the averaging within each measurement  
 cell of a spectrum analyzer by reducing the 
   VBW, or using an average detector with a longer 
   sweeptime.
• increasing the averaging within a computed 
   result like channel power by increasing the 
 number of measurement cells contributing to           
   the result.
• averaging a number of computed results.

Variance and averaging
The variance of a result is defined as the square of
its standard deviation; therefore it is symbolically 
s2. The variance is inversely proportional to the 
number of independent results averaged, thus when 
N results are combined, the variance of the final 
result is s2/N.

The variance of a channel-power result computed 
from N independent measurement cells is 
likewise s2/N where s is the variance of a single 
measurement cell. But this s2 is a very interesting 
parameter.

Part III:  Averaging and the Noisiness of Noise Measurements

If we were to measure the standard deviation 
of logged envelope noise, we would find that 
s is 5.57 dB. Thus, the s of a channel-power 
measurement that averaged log data over, for 
example, 100 measurement cells would be 
0.56 dB (5.6/√(100)). But averaging log data not 
only causes the aforementioned 2.51 dB under-
response, it also has a higher than desired 
variance. Those not-rare-enough negative spikes 
of envelope, such as –30 dB, add significantly to 
the variance of the log average even though they 
represent very little power. The variance of a 
power measurement made by averaging power 
is lower than that made by averaging the log of 
power by a factor of 1.64.

Thus, the s of a channel-power measurement is 
lower than that of a log-averaged measurement 
by a factor of the square root of this 1.64:

σ noise = 4.35 dB/√N   [power averaging]

σ noise = 5.57 dB/√N   [log processing]
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Averaging a number of computed results
If we average individual channel-power measurements 
to get a lower-variance final estimate, we do not 
have to convert dB-format answers to absolute 
power to get the advantages of avoiding log averaging. 
The individual measurements, being the results of 
many measurement cells summed together, no longer 
have a distribution like the "logged Rayleigh" but 
rather look Gaussian. Also, their distribution is 
sufficiently narrow that the log (dB) scale is linear 
enough to be a good approximation of the power scale. 
Thus, we can dB-average our intermediate results.

Swept versus FFT analysis
In the above discussion, we have assumed that the 
variance reduced by a factor of N was of independent 
results. This independence is typically the case in 
swept-spectrum analyzers, due to the time required 
to sweep from one measurement cell to the next 
under typical conditions of span, RBW and sweep 
time. FFT analyzers will usually have many fewer 
independent points in a measurement across a 
channel bandwidth, reducing, but not eliminating, 
their theoretical speed advantage for true noise 
signals.

For digital communications signals, FFT analyzers 
have an even greater speed advantage than their 
throughput predicts. Consider a constant-envelope 
modulation, such as used in GSM cellular phones. 
The constant-envelope modulation means that 
the measured power will be constant when that 
power is measured over a bandwidth wide enough 
to include all the power.  FFT analysis made in a 
wide span will allow channel power measurements 
with very low variance.

But swept analysis will typically be performed 
with an RBW much narrower than the symbol rate.  
In this case, the spectrum looks noise-like, and 
channel power measurements will have a higher 
variance that is not influenced by the constant 
amplitude nature of the modulation.

Zero span
A zero-span measurement of carrier power is 
made with a wide RBW, so the independence of 
data points is determined by the symbol rate of the 
digital modulation. Data points spaced by a time 
greater than the symbol rate will be almost 
completely independent.

Zero span is sometimes used for other noise and 
noise-like measurements where the noise bandwidth 
is much greater than the RBW, such as in the 
measurement of power spectral density. For 
example, some companies specify IS-95 CDMA 
ACPR measurements that are spot-frequency power 
spectral density specifications; zero span can be 
used to speed this kind of measurement.

Averaging with an average detector                  
With an averaging detector the amplitude of the
signal envelope is averaged during the time and 
frequency interval of a measurement cell. An 
improvement over using sample detection for 
summation, the average detector changes the 
summation over a range of cells into integration 
over the time interval representing a range of 
frequencies.  The integration thereby captures all 
power information, not just that sampled by the 
sample detector. 

The primary application of average detection 
may be seen in the channel power and ACP 
measurements, discussed in Part II.

Measuring the power of noise with a power 
envelope scale 
The averaging detector is valuable in making 
integrated power measurements. The averaging 
scale, when autocoupled, is determined by such 
parameters as the marker function, detection mode 
and display scale.  We have discussed circumstances 
that may require the use of the log-envelope and 
voltage envelope scales, now we may consider the 
power scale.

When making a power measurement, we must 
remember that traditional swept spectrum analyzers 
average the log of the envelope when the display 
is in log mode.  As previously mentioned, the log 
of the average is not equal to the average of the 
log.  Therefore, when making power measurements, 
it is important to average the power of the signal, 
or equivalently, to report the root of the mean of 
the square (r.m.s.) number of the signal.  With the 
Agilent PSA analyzer, an "Avg/VBW Type" key 
allows for manual selection, as well as automatic 
selection, of the averaging scale (log scale, voltage 
scale, or power scale).  The averaging scale and 
display scale may be completely independent of 
each other.
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The standard deviation of measurement noise 
Figure 10 summarizes the standard deviation of 
the measurement of noise. The figure represents 
the standard deviation of the measurement of a 
noise-like signal using a spectrum analyzer in zero 
span, averaging the results across the entire screen 
width, using the log scale. tINT is the integration 
time (sweep time). The curve is also useful for 
swept spectrum measurements, such as channel-
power measurements. There are three regions to 
the curve. 

The left region applies whenever the integration 
time is short compared to the rate of change of 
the noise envelope. As discussed above, without 
VBW filtering, the s is 5.6 dB. When video filtering 
is applied, the standard deviation is improved by 
a factor. That factor is the square root of the ratio 
of the two noise bandwidths: that of the video 
bandwidth, to that of the detected envelope of the 
noise. The detected envelope of the noise has half 
the noise bandwidth of the undetected noise. For 
the four-pole synchronously tuned filters typical 
of most spectrum analyzers, the detected envelope 
has a noise bandwidth of (1/2) x 1.128 times the 
RBW. The noise bandwidth of a single-pole VBW 
filter is π/2 times its bandwidth. Gathering terms 
together yields the equation:

σ = (9.3 dB)√VBW/RBW

1.0            10         100      1k                 10k

center curve:
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 [left asymptote]
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                         for VBW ≤ 1/3 RBW: 9.3 dB VBW
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tINT . RBW
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Average detector, any N

s
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Figure 10. Noise measurement standard deviation for log-response (see text for power-response) spectrum analysis 
depends on the product of the sweep time and RBW, the ratio of the VBW to RBW, and the number of display cells.
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The middle region applies whenever the envelope 
of the noise can move significantly during the 
integration time, but not so rapidly that individual 
sample points become uncorrelated. In this case, the 
integration behaves as a noise filter with frequency 
response of sin (π tINT ) and an equivalent noise 
bandwidth of 1/(2 tINT ). The total noise should then 
be 5.6 dB times the square root of the ratio of the 
noise bandwidth of the integration process to the 
noise bandwidth of the detected envelope, giving

5.2 dB/√ tIN T RBW

In the right region, the sweep time of the spectrum 
analyzer is so long that individual measurement 
cells, measured with the sample detector, are 
independent of each other.  Information about the 
signal between these samples is lost, increasing 
the sigma of the result.  In this case, the standard 
deviation is reduced from that of the left-side case 
(the sigma of an individual sample) by the square 
root of the number of measurement cells in a sweep.  
But in an analyzer using a detector that averages 
continuously across a measurement cell, no 
information is lost, so the center curve extends 
across the right side of the graph indefinitely.

The noise measurement sigma graph should be 
multiplied by a factor of about 0.8 if the noise 
power is filtered and averaged, instead of the 
log power being so processed. (Sigma goes as the 
square root of the variance, which improves by 
the cited 1.64 factor.) Because channel-power and 
ACP measurements are power-scale summations, 
this factor applies.  However, when dealing with 
VBW-filtered measurements, this factor may or 
may not be valid.  Most spectrum analyzers average 
VBW-filtered measurements on a log scale in which 
case the multiplication factor would not apply.  In 
comparison, the Agilent PSA allows VBW-filtering 
on a power scale, making the multiplication factor 
applicable for such measurements.

Examples 
Let’s use the curve in Figure 10 for three examples. 
In the measurement of IS-95 CDMA ACPR, we can 
power-average a 400-point zero-span trace for a 
frame (20.2 ms) in the specified 30 kHz bandwidth.  
Power averaging can be accomplished in all analyzers 
by selecting VBW >>RBW.  For these conditions, we 
find tINT RBW = 606, and we approach the right-side 
asymptote of or 0.28 dB. But we are power averaging, 
so we multiply by 0.8 to get sigma = 0.22 dB.

In a second example, we are measuring noise in 
an adjacent channel in which the noise spectrum 
is flat. Let’s use a 600-point analyzer with a span 
of 100 kHz and a channel BW of 25 kHz, giving 150 
points in our channel. Let’s use an RBW of 300 Hz 
and a VBW = 10 Hz; this narrow VBW will prevent 
power detection and lead to about a 2.3 dB 
under-response (see Figure 9) for which we must 
manually correct. The sweep time will be 84 s. 
With the channel taking up one-fourth of the span, 
the sweep time within the channel is 21 s, so that 
is the integration time for our x-axis. Even though 
the graph is meant for zerospan analysis, if the 
noise level is flat in our channel, the analysis is 
the same for swept as zerospan. tINT RBW= 6300; 
if the center of Figure 10 applied, sigma would be 
0.066 dB. Checking the right asymptote, Ncells is 
150, so the asymptote computes to be 0.083 dB. 
This is our predicted standard deviation. If the noise 
in the adjacent channel is not flat, the averaging 
will effectively extend over many fewer samples 
and less time, giving a higher standard deviation.

In a third example, let’s measure W-CDMA channel 
power in a 3.84 MHz width. We’ll set the span to be 
the same 3.84 MHz width. Let’s use RBW=100 kHz, 
and set the sweep time long (600 ms) with 
a 600-point analyzer, using the average detector 
on a power scale. Assume that the spectrum is 
approximately flat. We are making a measurement 
that is equivalent to a 600 ms integration time with 
an unlimited number of analyzer points, because 
the average detector integrates continuously within 
the buckets. So we need only use the formula from 
the center of the graph; the cell-count-limited 
asymptote on the right does not apply.  tINT is 
600 ms, so the center formula gives sigma = 
0.021 dB.  But we are power-scale averaging, not 
log averaging, so the sigma is 20% lower, 0.017 dB.

Alternatively, we could think of example 3 as 600 
individual one-measurement-cell readings that 
are then summed together. Each measurement cell 
would have an integration time of 1 ms. The center 
formula would give sigma = 0.52 dB on a log scale, 
or 0.412 dB for power averaging.  The standard 
deviation of the sum of the power in the 600 cells 
would be lower than that of one cell by the square 
root of 600, giving the same 0.017 dB result for the 
entire channel power measurement.
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The standard deviation of CW measurements
CW signals have a variance due to added noise 
within the resolution bandwidth. That noise can be 
decomposed into two components: one component 
is in phase with the CW signal, and one component 
is in quadrature.

Let’s make the assumption that the signal to noise 
ratio is large. Then the quadrature noise does not 
change the measured result for the CW signal. But 
the in-phase component adds to or subtracts from 
the signal voltage vector.

The interfering noise vector is Gaussian in both its 
in-phase and quadrature components. The power 
of the noise vector is the sum of the variances of 
the two components. Therefore, the variance of 
the in-phase component is half of the power of 
the noise signal. Let’s use a numeric example.

Let the noise power be 20 dB below the signal 
power. Then the variance of the noise is 1% of the 
signal power. The in-phase variance is 0.5% of the 
signal power. Expressed in voltage, the in-phase 
noise is 0.0707 times the CW signal. With this 
Gaussian noise of 0.0707 times as large a signal 
riding on the apparent CW voltage vector length, 
its sigma becomes 20*log(1 + 0.0707) in decibels, 
or 0.59 dB.

We can expand the log in a Taylor series and 
generalize this formula as:

   

In this equation, the units of the signal-to-noise 
ratio, S/N, and of the result, are decibels. VBW 
filtering, trace averaging, noise marker averaging 
or the average detector can all reduce the sigma.

In this equation, the units of the signal-to-noise 
ratio, S/N, and the result, σCW, are decibels.

The sigma can be reduced by filtering, such as 
VBW filtering, or averaging. The bandwidth of the 
envelope modulation noise represented by sigma 
is approximately one-half of the noise bandwidth 
of the RBW filter. The noise bandwidth of a VBW 
filter is π/2 times its bandwidth. Therefore, if 
the VBW is under about one-third of the RBW, 
the sigma is improved by the square root of the 
noise bandwidths:

 

For time averaging, such as that which occurs 
with the average detector, the noise bandwidth 
of the averaging process is 1/(2xtINT), where tINT 
is the integration time. Therefore, if the integration 
time is longer than about 1/RBW, sigma is:
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Part IV: Compensation for Instrumentation Noise

In Parts I, II and III, we discussed the measurement 
of noise and noise-like signals respectively. In this 
part, we’ll discuss measuring CW and noise-like 
signals in the presence of instrumentation noise. 
We’ll see why averaging the output of a logarithmic 
amplifier is optimum for CW measurements, and 
we’ll review compensation formulas for removing 
known noise levels from noise-plus-signal 
measurements.

CW signals and log versus power detection
When measuring a single CW tone in the presence
of noise, and using power detection, the level 
measured is equal to the sum of the power of the 
CW tone and the power of the noise within the 
RBW filter. Thus, we could improve the accuracy 
of a measurement by measuring the CW tone first 
(let’s call this the "S+N" or signal-plus-noise), then 
disconnect the signal to make the "N" measurement. 
The difference between the two, with both 
measurements in power units (for example, 
milliwatts, not dBm) would be the signal power.

But measuring with a log scale and video filtering 
or video averaging results in unexpectedly good 
results. As described in Part I, the noise will be 
measured lower than a CW signal with equal power 
within the RBW by 2.5 dB. But to the first order, 
the noise doesn’t even affect the S+N measurement! 
See "Log Scale Ideal for CW Measurements" later in 
this section.

Figure 11 demonstrates the improvement in CW 
measurement accuracy when using log averaging 
versus power averaging.

To compensate S+N measurements on a log scale 
for higher-order effects and very high noise levels, 
use this equation where all terms are in dB units:

powercw = powers+n –10.42x10–0.333(deltaSN)

powerS+N is the observed power of the signal with
noise. deltaSN is the decibel difference between 
the S+N and N-only measurements. With this 
compensation, noise-induced errors are under 
0.25 dB even for signals as small as 9 dB below 
the interfering noise. Of course, in such a situation, 
the repeatability becomes a more important 
concern than the average error. But excellent 
results can be obtained with adequate averaging. 
And the process of averaging and compensating, 
when done on a log scale, converges on the result 
much faster than when done in a power-detecting 
environment.



Power-detection measurements and noise 
subtraction
If the signal to be measured has the same statistical 
distribution as the instrumentation noise— in other 
words, if the signal is noise-like—then the sum of 
the signal and instrumentation noise will be a 
simple power sum:

powerS+N = powerS  + powerN              [mW]

Note that the units of all variables must be power 
units such as milliwatts and not log units like 
dBm, nor voltage units like mV. Note also that this 
equation applies even if powerS and powerN are 
measured with log averaging.

The power equation also applies when the signal 
and the noise have different statistics (CW and 
Gaussian respectively) but power detection is used. 
The power equation would never apply if the signal 
and the noise were correlated, either in-phase 
adding or subtracting. But that will never be the 
case with noise.

Therefore, simply enough, we can subtract the 
measured noise power from any power-detected 
result to get improved accuracy. Results of interest 
are the channel-power, ACP, and carrier-power 
measurements described in Part II. The equation 
would be:

powerS = powerS+N  – powerN              [mW]

Care should be exercised that the measurement 
setups for powerS+N and powerN are as similar 
as possible.

a.)    b.)    c.)

2.54 dB
0.63 dB

2.51 dB

Figure 11.  Log averaging improves the measurement of CW signals when their amplitude is near 
that of the noise. (a) shows a noise-free signal. (b) shows an averaged trace with power-scale 
averaging and noise power 1 dB below signal power; the noise-induced error is 2.5 dB. (c) shows 
the effect with log-scale averaging—the noise falls 2.5 dB and the noise-induced error falls to 
only 0.6 dB.
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Log scale ideal for CW measurements
If one were to design a scale (such as power, voltage, 
log power, or an arbitrary polynomial) to have 
response to signal-plus-noise that is independent of 
small amounts of noise, one could end up designing 
the log scale.

Consider a signal having unity amplitude and 
arbitrary phase, as in Figure F. Consider noise 
with an amplitude much less than unity, r.m.s., 
with random phase. Let us break the noise into 
components that are in-phase and quadrature to 
the signal. Both of these components will have 
Gaussian PDFs, but for this simplified explanation, 
we can consider them to have values of ±x, where 
x << 1.

The average response to the signal plus the   
quadrature noise component is the response to a 
signal of magnitude √1+x2

The average response to the signal plus in-phase 
noise will be lower than the response to a signal 
without noise if the chosen scale is compressive. 
For example, let x be ±0.1 and the scale be 
logarithmic. The response for x = +0.1 is log (1.1); 
for x = –0.1, log (0.9). The mean of these two 
is 0.0022, also expressible as log (0.9950). The 
mean response to the quadrature components is 
log(√2(1+(0.1)2)), or log (1.0050). Thus, the log scale 
has an average deviation for in-phase noise that is 
equal and opposite to the deviation for quadrature 
noise. To first order, the log scale is noise-immune. 
Thus, an analyzer that averages (for example, by 
video filtering) the response of a log amp to the 
sum of a CW signal and a noise signal has no 
first-order dependence on the noise signal.

Q

–jx

+x

–x

+jx

I

Figure F. Noise components can be projected into in-phase and 
quadrature parts with respect to a signal of unity amplitude and 
arbitrary phase.
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Figure G shows the average error due to noise  
addition for signals measured on the log scale and, 
for comparison, for signals measured on a power 
scale.

Figure G. CW signals measured on a logarithmic scale show very little effect due to the addition of 
noise signals.
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ACP: See Adjacent Channel Power.

ACPR: Adjacent Channel Power Ratio. See Adjacent-
Channel Power; ACPR is always a ratio, whereas 
ACP may be an absolute power.

Adjacent Channel Power: The power from a 
modulated communications channel that leaks 
into an adjacent channel. This leakage is usually 
specified as a ratio to the power in the main 
channel, but is sometimes an absolute power.

Averaging: A mathematical process to reduce the 
variation in a measurement by summing the data 
points from multiple measurements and dividing 
by the number of points summed.

Burst: A signal that has been turned on and off. 
Typically, the on time is long enough for many 
communications bits to be transmitted, and the 
on/off cycle time is short enough that the associated 
delay is not distracting to telephone users.

Carrier Power: The average power in a burst carrier 
during the time it is on.

CDMA: Code Division Multiple Access or a 
communications standard (such as cdmaOne®)   
that uses CDMA. In CDMA modulation, data bits 
are xored with a code sequence, increasing their 
bandwidth. But multiple users can share a carrier 
when they use different codes, and a receiver can 
separate them using those codes.

Channel Bandwidth: The bandwidth over which power 
is measured. This is usually the bandwidth in which 
almost all of the power of a signal is contained.

Channel Power: The power contained within a 
channel bandwidth.

Clipping: Limiting a signal such that it never exceeds 
some threshold.

CW: Carrier Wave or Continuous Wave. A sinusoidal 
signal without modulation.

DAC: Digital to Analog Converter.

Digital: Signals that can take on only a prescribed 
list of values, such as 0 and 1.

Display detector: That circuit in a spectrum analyzer 
that converts a continuous-time signal into sampled 
data points for displaying. The bandwidth of the 
continuous-time signal often exceeds the sample 
rate of the display, so display detectors implement 
rules, such as peak detection, for sampling.

Envelope Detector: The circuit that derives an 
instantaneous estimate of the magnitude (in volts) 
of the IF (intermediate frequency) signal. The 
magnitude is often called the envelope. 

Equivalent Noise Bandwidth: The width of an ideal 
filter with the same average gain to a white noise 
signal as the described filter. The ideal filter has the 
same gain as the maximum gain of the described 
filter across the equivalent noise bandwidth, and 
zero gain outside that bandwidth.

Gaussian and Gaussian PDF: A bell-shaped PDF 
which is typical of complex random processes. It 
is characterized by its mean (center) and sigma 
(width).

I and Q: In-phase and Quadrature parts of a complex 
signal. I and Q, like x and y, are rectangular      
coordinates; alternatively, a complex signal can 
be described by its magnitude and phase, also 
known as polar coordinates.

Linear scale: The vertical display of a spectrum 
analyzer in which the y axis is linearly proportional 
to the voltage envelope of the signal. 

Glossary of Terms
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NADC: North American Dual mode (or Digital) 
Cellular. A communications system standard, 
designed for North American use, characterized 
by TDMA digital modulation.

Near-noise Correction: The action of subtracting the 
measured amount of instrumentation noise power 
from the total system noise power to calculate that 
part from the device under test.

Noise Bandwidth: See Equivalent Noise Bandwidth.

Noise Density: The amount of noise within a defined 
bandwidth, usually normalized to 1 Hz.

Noise Marker: A feature of spectrum analyzers that 
allows the user to read out the results in one region 
of a trace based on the assumption that the signal 
is noise-like. The marker reads out the noise density 
that would cause the indicated level.

OQPSK: Offset Quadrature-Phase Shift Keying. 
A digital modulation technique in which symbols 
(two bits) are represented by one of four phases. In 
OQPSK, the I and Q transitions are offset by half a 
symbol period.

PDC: Personal Digital Cellular (originally called 
Japanese Digital Cellular). A cellular radio standard 
much like NADC, originally designed for use in 
Japan.

PDF: See Probability Density Function.

Peak Detect: Measure the highest response within an 
observation period.

PHS: Personal Handy-Phone. A communications 
standard for cordless phones.

Power Detection: A measurement technique in which 
the response is proportional to the power in the  
signal, or proportional to the square of the voltage.

Power Spectral Density: The power within each unit 
of frequency, usually normalized to 1 Hz.

Probability Density Function: A mathematical function 
that describes the probability that a variable can 
take on any particular x-axis value. The PDF is a 
continuous version of a histogram.

Q: See I and Q.

Rayleigh: A well-known PDF which is zero at x=0 
and approaches zero as x approaches infinity.

RBW filter: The resolution bandwidth filter of 
a spectrum analyzer. This is the filter whose 
selectivity determines the analyzer’s ability to 
resolve (indicate separately) closely spaced signals.

Reference Bandwidth: See Specified Bandwidth.

RF: Radio Frequency. Frequencies that are used for 
radio communications.

Sigma: The symbol and name for standard deviation.

Sinc: A mathematical function. Sinc(x) = (sin(x))/x.

Specified Bandwidth: The channel bandwidth 
specified in a standard measurement technique.

Standard Deviation: A measure of the width of the 
distribution of a random variable.

Symbol: A combination of bits (often two) that are 
transmitted simultaneously.

Symbol Rate: The rate at which symbols are 
transmitted.

Synchronously Tuned Filter: The filter alignment most 
commonly used in analog spectrum analyzers. A 
sync-tuned filter has all its poles in the same place. 
It has an excellent tradeoff between selectivity and 
time-domain performance (delay and step-response 
settling).

TDMA: Time Division Multiple Access. A method 
of sharing a communications carrier by assigning 
separate time slots to individual users. A channel  
is defined by a carrier frequency and time slot.

TETRA: Trans-European Trunked Radio. A         
communications system standard.

Variance: A measure of the width of a distribution, 
equal to the square of the standard deviation.

VBW Filter: The Video Bandwidth filter, a low-pass 
filter that smoothes the output of the detected IF 
signal, or the log of that detected signal.

Zero Span: A mode of a spectrum analyzer in which 
the local oscillator does not sweep. Thus, the display  
represents amplitude versus time, instead of   
amplitude versus frequency. This is sometimes 
called fixed-tuned mode.
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