
InfiniBand System-Level Debugging
Application Note 1382-1

Who Should Read this
Application Note?

This application note is written
for R & D engineers developing
InfiniBand components, as well
as InfiniBand system designers
and integrators. It covers key
concepts underlying system-
level debug and validation of
InfiniBand systems. Specific
examples using logic analyzers
and protocol analyzers to debug
these systems are presented.

A huge range of technologies is
required to support InfiniBand
from the lowest physical layers
through the higher layers of its
protocol stack. For physical-layer
debug and validation you should
use tools such as wide-bandwidth
oscilloscopes, Bit Error Rate
Testers (BERTs), vector network
analyzers (VNAs), and Time
Domain Reflectometers (TDRs).

Table of Contents

Introduction . 2

System-Level Debugging 3

InfiniBand System Validation. 4
Case Study 1 . 6
Case Study 2 11
Case Study 3 13

This application note focuses
on “functional” validation of
InfiniBand systems, for which
logic analyzers and protocol
analyzers are the most useful
tools. (Figure 1).

Port Physical
Verify the 2.5 Gbit design

E2950 Series
• E2951A protocol analyzer
• E2953A traffic generator

16700 Series Logic Analysis System
• N4206A software tool
• N4207A logic analysis probe

86100A Infiniium DCA

81250 ParBERT

86130A BitAlyzer

Higher level protocol
Application & Management
software verification

Network
Test logistical switching

Port Link Level
Verify point to point connection
between two nodes

Figure 1. Test tools for InfiniBand.

Transport
Packed validation

2

The Benefits of InfiniBand

InfiniBand is an architecture and
specification for communication
between processors and I/O
devices that promises greater
bandwidth and almost unlimited
expandability in tomorrow’s com-
puter systems. This architecture
also promises increased reliabili-
ty, better sharing of data between
clustered processors, and
built-in security.

InfiniBand interconnect tech-
nology uses a switched-fabric,
point-to-point architecture to
deliver new levels of scalability,
availability, and performance.
Scalability is delivered in part by
its switched network intercon-
nect, its automatic reconfigura-
tion of the network upon addition
or removal of devices.

To improve availability,
InfiniBand technology utilizes
point-to-point interconnects,
allows for redundant paths
between devices with subsequent
failover capability, and includes
integrated error detection and
correction. Data is transferred
between InfiniBand fabric ele-
ments via copper cables or
optical fiber. Beyond the raw
data transfer rates, system-level
performance is improved by the
concept of intelligent channels,
with computing intelligence
distributed into the I/O system
to offload the task of controlling
I/O from processors.

Figure 2. A typical InfiniBand system showing interconnects to various
components and appropriate test equipment.

Introduction

An InfiniBand System

Figure 2 shows a diagram of a
typical InfiniBand system. The lid
of the box is removed to show the
CPU, chip set, and an InfiniBand
HCA (host channel adapter).
Outside the box is the InfiniBand
fabric. The arrows represent the
different links that connect the
various components. The dots
represent the different types of
test equipment you might need
to connect to those links in order
to debug the complete system,
as follows:

• OSC = Oscilloscope
• PA = Protocol Analyzer/Traffic

Generator
• LA = Logic Analyzer
• BE = Bit Error Rate Tester

3

Key Requirements for
System-Level Debugging

There are three main concepts
to keep in mind to do effective
system-level validation: broad
visibility, cross-correlation, and
stimulus diversity.

It is usually essential to have
broad visibility into your system’s
behavior. If you are fortunate
enough to already know the exact
location of a particular problem,
such as the PCI bus or a particu-
lar channel or component of the
InfiniBand fabric, then you may
be able to avoid cross-bus system
validation and use a targeted bus
tool. (This could be a protocol
analyzer and/or bus exerciser for
the PCI bus, or a protocol analyzer
and/or traffic generator for the
InfiniBand bus). However, if you
are attempting to track down
system-level problems, you must
have broad visibility across a
range of buses and links within
the system. Perhaps problems
detected on the InfiniBand fabric
may actually be generated from
incorrect traffic on the PCI bus.
You may also need to observe
behavior in your system on a
picosecond time scale, which is
especially true for InfiniBand.

Once you have obtained measure-
ments from different parts of the
system, you need to be able to
correlate all this activity. Cause
and effect for a particular system-
level problem are not usually
isolated to just one part of the
system; they can often span the
entire system. An event may be
detected in one area, but the root
cause of the problem may actually
be somewhere else. So you need
to be able to correlate activity in
one part of the system with what
is going on in other parts of
the system.

Cross-Correlation

Cross-correlation takes two
forms. One is spatial correlation:
connecting what is happening at
one particular point in the system
with something else that is hap-
pening at another physical point
in the system at the same time.
System-level debug requires you
to correlate information across
two or more different points in
the system so you can see the
simultaneous behavior at all of
those points.

The other form of correlation is
temporal correlation: how some-
thing that happens in the system
at one particular moment in time
relates to what happens at
another moment. A good
example of this would be
matching a request packet with
its corresponding response.

The final requirement for system-
level validation is a variety of
stimuli. You need to test your sys-
tem in a real-world environment
because it is impossible to model
the real world perfectly or to
cover all possible conditions and
corner cases your system is
required to handle.

Real World

However, the real world can be
very hard to control. Once you
find a problem or suspect that
there are particular areas that
require extra attention, you then
need to provide a controlled stim-
ulus to your system at specific
points. By injecting controlled
stimulus into your system, you
can set up a series of tightly
controlled tests allowing you to
reproduce specific types of prob-
lems. Setting up a series of
regression tests that exercises the
whole system is a good practice.
These regression tests should
include specific test cases each
with a very specific stimulus.

Only with a well-planned variety
of stimuli can you cover all cases
and validate your system. All of
these testing and validation
requirements create a need for
highly capable tools. You need to
be able to work across the entire
system, correlate activities from
picoseconds to packets, handle
the billions of events that occur
in the real world, and also
provide very focused, directed,
and controllable stimulus to
your system.

System-Level Debugging

4

Tool Selection for InfiniBand
System Validation

As you prepare to perform sys-
tem-level validation, you must
select the appropriate tools for
your test bench. Three basic types
of test tools are most commonly
needed for effective debugging
and validation of InfiniBand sys-
tems at the higher protocol lay-
ers. You should be familiar with
what each of these tools is opti-
mized for and how they comple-
ment other available tools.

The first tool is a protocol
analyzer (PA) for InfiniBand,
the second is a logic analyzer
(LA) that has InfiniBand support,
and the third is a traffic generator
to create controlled InfiniBand
traffic for system validation.
Each of these test instruments
has different strengths.

A protocol analyzer focuses on
providing a comprehensive view
of information and data transfer
on just the InfiniBand link. This
instrument is optimized for pro-
tocol measurements, which tend
to be hierarchical in nature. For
this reason, it provides a hierar-
chical view of the protocol. For
instance, you can click on specific
packets or pieces of packets to
expand the data for greater
detail. The protocol analyzer pro-
vides a hierarchical, browser type
view of the InfiniBand protocol.

A logic analyzer is optimized for
providing cross-bus or multi-bus
correlation of information, and
provides a consistent way of dis-
playing data no matter which bus
is being monitored. It is most
useful for looking at levels of the
protocol up to the transport layer,
including subnet management
datagrams, and typically does not
display information up to the
application layer. Setting up a
logic analyzer and looking at
measurement results for an
InfiniBand system is very similar
to the way it has traditionally
been accomplished with micro-
processor buses and other kinds
of buses such as PCI.

The logic analyzer is also a very
powerful tool for being able to
“reach” inside ASICs that you
can’t probe directly. It can obtain
measurements across the entire
system and allow you to correlate
information taken in one part of
the system with information
taken in another part. This allows
you to see how, in time, events in
one part of the system affect
events in another part of the sys-
tem, and thus enables you to infer
the internal state of your system.

InfiniBand System Validation

5

Validation Plan

Once you have selected your
tools, you then need to create
a validation plan for your
InfiniBand-based system. The
published InfiniBand standard
(www.infinibandta.org) with its
specifications and checklists pro-
vides a roadmap for putting the
validation plan together. The line
items of the checklist marked
with a “C” are required for com-
pliance with the InfiniBand speci-
fications; the lines items marked
with an “O” are optional.

You can use the specification to
develop a structure and put
together a checklist for the test
plan. Behind each of the checklist
items is a more detailed explana-
tion of what that item means.
Reading the fine print of the
specification will help you define
a specific test case and a specific
test procedure to validate your
system against that particular
requirement of the InfiniBand
specification.

Validation Platform

The last thing to do prior to sys-
tem validation is to put together
a validation platform. Figure 3
shows a typical validation plat-
form, which will be used for the
examples described below. One
part of this platform is a server
system with a CPU, chip set, and
InfiniBand host channel adapter
(HCA). It is representative of the
first InfiniBand implementations
available.

The other part of the platform
contains something for the server
to talk to: a switch, another HCA,
or a real-world environment for
validation purposes. If you need
a deterministic stimulus, you
can use a traffic generator for
InfiniBand and have it talk
directly to the HCA.

CPU Chipset HCAPCI IB

Logic Analyzer

CPU Chipset HCAPCI IB

Logic Analyzer Probe

... OR
Traffic Generator

Figure 3. The validation platform used for the examples.

Once you assemble the validation
platform, have a test plan, and
have the proper tools, then it’s
time to turn the power on, see if
the system works, and then start
working through the checklists.
The following section describes
three examples for debugging
InfiniBand systems with
these tools.

InfiniBand System Validation (continued)

6

Case Study 1: Link Power-Up
Negotiation Failure

The first example of how to use
these tools to debug the system
is link power-up. This is the first
task that you would typically
perform after running the
“smoke test”.

You plug all the cables together
and then attempt to power up
the system. You expect that the
InfiniBand channel will come
up, initialize itself, and the link
will be up and ready for work.
Unfortunately, you discover that
the link hangs after you power
up the system. All you know at
this point is that your system is
stuck in the link-down status.
Your problem is to figure out
why this happens and how to
prevent it from happening.

Initially you have little insight
into the root causes of the prob-
lem. Following a troubleshooting
process can help you systemati-
cally uncover the source of the
problem and develop a way to
solve it. The steps for debugging
a problem such as this are:

1) Focus on the symptom and
obtain more information
about the failure condition.

2) Develop a working theory as
to why the failure occurred.

3) Confirm or disprove your
theory by making additional
measurements.

4) Develop and implement a fix
for the problem.

5) Confirm that the fix solves
the problem.

CPU Chipset HCAPCI IB

Logic Analyzer

Inspect Tx
and Rx Traffic

Trigger on
Status Read ==
Link Down

Figure 4. Using a logic analyzer to investigate the link power-up negotiation failure.

Focus on the Symptom

These steps will be described fur-
ther for the link power-up negoti-
ation failure example. The first
step is to focus on the symptom
in an attempt to get additional
information about why the sys-
tem failed. In this example, the
only thing that you initially know
is that the link was down when it
should have been up.

The first step is to set up the logic
analyzer to look at the PCI bus
during link power-up. You should
look at traffic going to and from
the HCA and simultaneously
monitor the InfiniBand link with
the same logic analyzer for time-
correlated measurements of the
PCI bus and the InfiniBand link
(figure 4).

InfiniBand System Validation (continued)

Case Study 1

7

At some point the HCA will
return status information to the
CPU indicating that the link is
down. Knowing this, you can set
up the logic analyzer to trigger on
this “link down” status and then
look at the time-correlated
InfiniBand traffic to attempt to
discover something that might
provide a clue about the problem.

The results of this measurement
are shown in figure 5. The logic
analyzer display window on the
left shows InfiniBand traffic

Figure 5. Measurement results showing that the system is still sending TS1s while the far-end device is sending TS2s.

going out from the HCA to the
far-end device. The window on
the right shows traffic coming
back from the far-end device to
the HCA being measured.

These displays show that the
system is still sending “Training
Sequence 1s” (TS1s) while the
far-end device is sending
“Training Sequence 2s” (TS2s).
When an HCA has completed its
configuration and is ready to
actually do something using the
InfiniBand protocol, it will

return TS2s, so you know at this
point that the far-end device
has completed configuration.
However, your system is still
sending TS1s, indicating that it
hasn’t completed configuration
yet and is locked in a link-down
status. This information shows
that the channel is functioning
on an electrical level, but there
is some reason why the system
doesn’t complete its configura-
tion even though the far-end
device does complete the config-
uration process.

InfiniBand System Validation (continued)

Case Study 1 (continued)

8

Develop a Working Theory

To determine why this is happen-
ing, you must make additional
measurements to gain sufficient
insight to put together a theory.
You should now focus on all sta-
tus reads going from the HCA to
the CPU. (The HCA sends an
interrupt to the CPU giving its
current status as it goes through
the link power-up negotiation
process.) You should still trigger
the logic analyzer’s acquisition on
the link-down status, but instead
of looking at all PCI traffic, you
should now focus on status reads.
You should continue to monitor

Config. Debounce

TxCMD =
RxCMD = WaitTS1

Delay TimeOut
(100 ms)

Config. RcvrCfg

TxCMD = SendTS1
RxCMD = EnConfig

RxTrained

Config. WaitRmt

TxCMD =
RxCMD = WaitTS2

Config. TxRevLanes

TxCMD = SendTS2
TxCMD = RevLanes
RxCMD = WaitTS2

Config. Idle

TxCMD = SendIdle
RxCMD = WaitIdle

Delay TimeOut 10 ms
& Option RevLanes

RcvdTS2

RcvdIdle

Delay TimeOut
(150 ms)

RxCMD = WaitTS1

Delay TimeOut
(100 ms)

Config. RcvrCfg

TxCMD = SendTS1
RxCMD = EnConfig

RxTrained

Config. WaitRmt

TxCMD = Send

(From Polling or Sleeping States)

(To LinkUp State)

(To LinkDown Default State)
(Polling or Sleeping)

Figure 6. The InfiniBand standard showing where the system may be getting stuck in the link configuration state.

the InfiniBand traffic to see how
the status of the HCA over time
correlates with the InfiniBand
traffic over this same period
of time.

For this measurement, the dis-
play of the InfiniBand transmit
link shows that the HCA contin-
ues to transmit TS1s during the
measurement time period. TS1s
were coming into the HCA from
the InfiniBand receive link at the
beginning of the time period, but
by the end, TS2s were being
received. The trace of the PCI bus
shows that the HCA was sending
the CPU a time-out status.

This leads to a working theory:
If TS2s start coming in while the
system is still in a receiver-
configuration state, something
gets confused and the HCA
never leaves link configuration.
Figure 6, taken from the pub-
lished InfiniBand standard,
shows graphically what the
working theory predicts. First,
the HCA goes into the receiver-
configuration state and sends
out TS1s. When the link is estab-
lished, it should then start send-
ing out TS2s. The working theory
is that for some reason the
switch to receiving TS2s instead
of TS1s confuses the HCA, and
after 150 ms it times out.

InfiniBand System Validation (continued)

Case Study 1 (continued)

9

Confirm Your Theory

You would like to know whether
the system comes in at the top of
this state machine and then
immediately goes to the timeout,
or goes through some other path.
(There are three other time-out
conditions that can occur, each
2 ms long.) Knowing this will help
you figure out where in the state
machine the problem is located.

To determine this, you need to set
up four logic analyzer measure-
ments, each of which requires
monitoring activity in several
parts of the system at the same
time. You need to set up a logic
analyzer trigger condition that
looks for a timeout greater than
150 ms while the system is receiv-
ing TS2s and still transmitting
only TS1s. If the analyzer triggers,
then you know that the bold path
in figure 5 was the path that was
followed. If the logic analyzer
does not trigger, then a different
path was followed.

To verify that none of the other
paths was followed, you can set
up the logic analyzer to trigger on
one of the other three possible
conditions. If the working theory
is correct, none of them should
cause the logic analyzer to trigger.
But if one of them does, then you
know something is wrong with
the working theory and you need
to look somewhere else.

To set up a measurement that
triggers on the link power-up
failure, you need to look at the
receive and transmit traffic on
the InfiniBand channel, and the
PCI bus, so cross-bus triggering is
essential. You need to look for the
point in time when the system
starts receiving TS2s instead of
TS1s, so the logic analyzer is
going to monitor the receive
channel. When the system begins
to receive TS2s, the logic analyzer
will set a global flag, allowing
every other analyzer to know that
the transition from TS1s to TS2s
has occurred.

When it detects the flag, the ana-
lyzer that is monitoring the PCI
bus will start a timer and begin
looking for timeout status. In
other words, it is looking for a
time-out status that occurs more
than 150 ms after the switch from
TS1s to TS2s. If this happens, the
PCI bus analyzer will set a flag
indicating that the 150-ms time
out has occurred. In the mean-
time, another analyzer is looking
at the InfiniBand transmit link.
When it detects the second flag, it
verifies that TS1s are still being
transmitted. If so, then all three
conditions are satisfied and the
analyzer will trigger. This process
is diagrammed in figure 7.

Trigger

Rx == TS1 then
Rx == TS2

PCI Event &&
Tx == TS1 only

Rx Event ≥ Timer Start
 then
Status ≤ Timeout &&
Timer > 150 ms

InfiniBand Receive Analyzer

InfiniBand Transmit Analyzer

PCI Bus Analyzer
Flag 1

Flag 2

Figure 7. Method to trigger on the link power-up negotiation failure.

InfiniBand System Validation (continued)

Case Study 1 (continued)

10

Figure 8 shows the logic analyzer
output from all three locations
(PCI bus, transmit channel, and
receive channel) when the trigger
is set up as described. You need
to carefully examine the output
and make sure that it is what is
expected to support your work-
ing theory. By looking at this
data, you can have confidence
that the system is really behaving
the way you expect it would,
given its problem.

Fix the Problem

The final steps are to fix the prob-
lem and confirm that the fix is
correct. It often happens, espe-
cially when you are debugging
ASICs, that in order to fix the
problem you need to go back to
simulation. You should set up an
environment that reproduces the
problem in simulation so that
when you develop a fix, you can
prove that the fix really works.
You can close the loop by taking
real-world data, adding it to the
simulation environment, imple-
menting your fix, and then run-
ning the simulation to confirm
that the fix solves the problem.

InfiniBand System Validation (continued)

Case Study 1 (continued)

Figure 8. The logic analyzer output from the PCI bus (a), transmit channel (b), and receive channel (c).

11

Memory

CPU Chipset HCAPCI IB

Store MMU
Config

RDMA
Trigger

Trigger on
data pattern

Trigger on
data pattern

Figure 9. Logic analyzer setup to investigate the RDMA transfer failure.

Case Study 2: RDMA Failure

A second example, further up the
stack of protocol layers, is the
failure of a remote direct memory
access (RDMA) transfer. Again,
you start out with very little
information. An RDMA transfer
is set up, but for some reason the
data never arrives at its destina-
tion. When you run into a prob-
lem like this, it’s a good idea to
go back to the specification. In
this case, there are two parts of
the specification that govern this
type of RDMA transfer: how to
do the Write requests and how
to set up the memory to receive
the requests.

The fine print specifies that for
InfiniBand, all DMAs occur in the
virtual address space; they aren’t
specified in terms of physical
addresses as are traditional DMA
transfers. When you are doing a
DMA, you need to give the desti-
nation a key that says where you
want this DMA transfer to go
and that the key refers to a
virtual address.

To accomplish this, you request
permission to access a remote
area of memory in the virtual
address space at the far side of
the channel. If it returns a key to
access that part, it has granted
your request. You use that key
whenever you make a DMA
transfer to specify where you
want it to go.

One way to debug a problem like
this RDMA failure is to use the
old tried-and-true mechanism of
signal tracing. This is a different
strategy than was used in the
previous example, in which dif-
ferent parts of the system were
examined to make an inference
about what was going on inside
the HCA.

Signal tracing is a more straight-
forward approach when you are
starting out with a DMA transfer
that does not show up where it is
supposed to. The easiest way to
debug a problem like this is to fol-
low the data through the system,
similar to moving your scope
probe from point to point through
a circuit. Figure 9 shows how to
set up the logic analyzer to look
at the InfiniBand traffic and trig-
ger on the RDMA operation. You
want to follow the data as it goes
through the PCI bus and into the
memory system. Since InfiniBand
DMA transfers are in the virtual
memory space the memory
management units (MMUs) are
involved. Therefore, you also
want to look at the CPU-to-
chipset communication as that is
probably how the MMUs become
configured and programmed.

InfiniBand System Validation (continued)

Case Study 2

12

If you have a traffic generator,
you can generate the RDMA
request and tell the traffic gener-
ator to use a unique data pattern
in the DMA buffer: a “signature”
pattern that is easy to follow as it
flows through the system.

Set the logic analyzer to trigger
on the DMA request and set the
PCI and memory analyzers to
trigger on the signature data
pattern. This enables you to see
the DMA as it passes through
each part of the system. You also
want to look at the CPU bus to
gain insight into how the MMU
is programmed.

For this example, the measure-
ment shows that the data buffer
actually makes it all the way
through into memory, but that it
was sent to the wrong physical
memory location. This points to a
potential problem with how the
MMU tables were set up.

By making this measurement, you
find out that the data buffer actu-
ally did get transferred after all.
You can figure out where it went
because you triggered on the data
pattern and were able to look at
the addresses that the signature
data pattern was written to. You
can then compare these address-
es to the expected addresses to
determine what the MMU pro-
gramming error might be.

These measurements give you
enough information to establish
a working theory as to the root
cause of the problem, and then
you can follow through the rest
of the troubleshooting process.

InfiniBand System Validation (continued)

Case Study 2 (continued)

13

Case Study 3: Switch Failure

A third example, moving still fur-
ther up the protocol-layer stack,
is a switch failure problem.

InfiniBand switches can be con-
figured to filter out raw packets:
If a raw packet comes in on one
port, you can configure that port
to “drop it in the bit bucket” and
not send it out. The observed
symptom of the problem is that
raw packets are not being
filtered properly.

Virtual port 0 is where all config-
uration information for switches
is sent. Perhaps virtual port 0
never received the switch config-
uration command, or maybe it
configured the wrong port on
the switch.

This is a fabric interconnect prob-
lem, with packets going through
the fabric, coming in one port of
the switch, going out another
port, and possibly also going
through routers and other
devices. For this kind of problem,
you want to set up a validation
platform for fabrics as shown in
figure 10. This is an area where
protocol analyzers and traffic
generators really shine, because
they are optimized for looking at
InfiniBand traffic at higher layers
of the protocol. There is a switch,
a protocol analyzer on various
ports to the switch, and traffic
generators creating very specific
traffic to make it easy to repro-
duce the problem.

This validation platform may also
require a logic analyzer because
for switches, virtual port 0 often

doesn’t exist physically. It is
called virtual port 0 because
semantically it is port 0 of the
switch, but physically it may not
actually have an InfiniBand con-
nector. It may be implemented as
a PCI or other kind of side chan-
nel from the controlling CPU into
the switch circuitry itself. You
might need to have a coordinated
measurement between the differ-
ent protocol analyzers and logic
analyzers so that you probe
enough parts of the system.

With a validation platform like
this, you can generate raw pack-
ets going in, determine if the raw
packets are coming out, or find
out which port they should be
coming out of. You can also look
inside the switch to attempt to
determine what part of the
switch programming is causing
the problem.

Protocol Analyzer Protocol Analyzer

IBIB

CPU

PCI
IB

IB

Logic Analyzer

Traffic Generator Traffic Generator

Traffic Generator

Figure 10. Fabric validation platform.

InfiniBand System Validation (continued)

Case Study 3

14

Additional Applications

There are countless possible
problems when debugging and
validating InfiniBand systems
that require a system-level view
and the ability to look at many
different parts of the system.
Even for something as simple as
getting endian-ness (bit order of
data) wrong, you probably need
to look at the InfiniBand channel,
a PCI bus, DRAM channels, and
the CPU bus.

Another problem that can occur
is when you have many traffic
generators hooked up to the fab-
ric to stress the system and the
whole fabric suddenly seizes up.
That’s often a very hard problem
to diagnose. You might want to
use the protocol analyzer to make
statistical measurements of how
much traffic is going through
different ports so you can get a
view of traffic flow through the
system. If you want a single time-
correlated view of traffic across
the entire fabric, then the logic
analyzer can provide that for as
many as 80 InfiniBand links at
one time.

InfiniBand System Validation (continued)

Summary

When you are debugging and vali-
dating InfiniBand-based systems,
you need to take a system-level
approach. In general, you must
look at many locations in the sys-
tem and correlate activity in one
part with activity in other parts.
You should use the InfiniBand
specification to help with devel-
oping the validation plan. The
specification outlines all the
requirements and also organizes
the requirements into checklists.
You can use the checklists to help
organize your validation plan,
and use the details in the specifi-
cation to produce focused
test descriptions.

Related Literature

Publication Title Publication Type Publication Number

Test Tools for InfiniBand Color brochure 5988-2424EN

Passively Probing an InfiniBand System with Product note 5988-2857EN
an Agilent 16700 Series Logic Analysis System

Agilent can help you understand
the strengths of various test tools
for InfiniBand, and which ones
to select for a particular task. As
a member of the InfiniBand
Trade Association, Agilent pro-
vides equipment to support com-
pliance tests that cover several
parts of the InfiniBand specifica-
tions. These range from physical
to transport layers of the proto-
col, and include TDR scopes,
logic analyzers, protocol analyz-
ers and traffic generators.
Agilent also offers extensive
training in both InfiniBand
design technology basics, and
high-frequency test and system
verification.

Agilent Technologies’ Test and Measurement Support, Services, and Assistance
Agilent Technologies aims to maximize the value you receive, while minimizing your risk and
problems. We strive to ensure that you get the test and measurement capabilities you paid
for and obtain the support you need. Our extensive support resources and services can help
you choose the right Agilent products for your applications and apply them successfully.
Every instrument and system we sell has a global warranty. Support is available for at least
five years beyond the production life of the product. Two concepts underlie Agilent’s overall
support policy: "Our Promise" and "Your Advantage."

Our Promise
Our Promise means your Agilent test and measurement equipment will meet its advertised
performance and functionality. When you are choosing new equipment, we will help you
with product information, including realistic performance specifications and practical rec-
ommendations from experienced test engineers. When you use Agilent equipment, we can
verify that it works properly, help with product operation, and provide basic measurement
assistance for the use of specified capabilities, at no extra cost upon request. Many self-
help tools are available.

Your Advantage
Your Advantage means that Agilent offers a wide range of additional expert test and meas-
urement services, which you can purchase according to your unique technical and business
needs. Solve problems efficiently and gain a competitive edge by contracting with us for cal-
ibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as
well as design, system integration, project management, and other professional engineering
services. Experienced Agilent engineers and technicians worldwide can help you maximize
your productivity, optimize the return on investment of your Agilent instruments and sys-
tems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with
all your test & measurement needs

Online assistance:
www.agilent.com/find/assist

Phone or Fax
United States:
(tel) 800 829 4444

Canada:
(tel) 877 894 4414
(fax) 905 282 6495

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2323
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (305) 269 7500
(fax) (305) 269 7599

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
Email: tm_asia@agilent.com

Product specifications and descriptions in this
document subject to change without notice.

© Agilent Technologies, Inc. 2004
Printed in USA March 17, 2004

5988-4225EN

www.agilent.com

www.agilent.com/find/emailupdates
Get the latest information on the products and applications you select.

Agilent T&M Software and Connectivity
Agilent's Test and Measurement software and connectivity products, solutions and
developer network allows you to take time out of connecting your instruments to your
computer with tools based on PC standards, so you can focus on your tasks, not on your
connections. Visit www.agilent.com/find/connectivity for more information.

www.agilent.com/find/agilentdirect
Quickly choose and use your test equipment solutions with confidence.

Agilent Email Updates

Agilent Direct

