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Introduction

Many of today’s digital oscillo-
scopes include a Fast Fourier
Transform (FFT) for frequency-
domain analysis. This feature is
especially valuable for oscillo-
scope users who have limited or
no access to a spectrum analyzer
yet occasionally need frequency-
domain analysis capability. An
integrated oscilloscope FFT pro-
vides a cost effective, space sav-
ing alternative to a dedicated
spectrum analyzer. Though the
latter does exhibit better dynamic
range and less distortion, the dig-
ital oscilloscope offers several
compelling benefits.1

The Agilent Technologies
Infiniium 54800 Series digital
oscilloscopes include FFT func-
tions for computing both magni-
tude and phase. Several useful
features assist in spectral analy-
sis. Controls adjust memory
depth, sampling rate, vertical
scale and horizontal scale of the
FFT. Automatic measurements
and markers measure spectral
peak frequencies and magnitudes
as well as deltas between peaks.
The Infiniium Help system pro-
vides extensive information on

FFT theory and application.
Several features designed prima-
rily for time-domain analysis are
also useful for the FFT. Display
traces can be annotated and
saved to a file. The oscilloscope
configuration can be saved and
recalled as a setup file. Func-
tions can be chained together to
perform complex tasks, such as
computing the average, maxi-
mum or minimum of several FFT
spectrums. Measurement statis-
tics are available for computing
the mean and standard deviation
of a measurement over several
acquisitions. With all this capa-
bility, the oscilloscope FFT pro-
vides a very convenient tool for
spectral analysis.

The deep-memory Infiniium
54830B family of oscilloscopes
enable an increase in the record
length of the FFT, which in turn
improves the frequency spec-
trum estimate. Longer record
lengths provide finer frequency
resolution and better dynamic
range. By upgrading the proces-
sor speed and improving the effi-
ciency of the FFT algorithm, the
Infiniium deep-memory oscillo-
scopes can perform FFTs on long
records very quickly.
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This application note begins 
with a discussion of FFT funda-
mentals and highlights those
characteristics that are important
for understanding FFT-based
spectral analysis. It goes on to
explain practical considerations
for using an oscilloscope FFT 
for spectral analysis and 
techniques that can be used to
improve dynamic range and 
accuracy. Finally, it concludes
with a specific application that
illustrates the benefits of a deep-
memory oscilloscope FFT for
making high-frequency resolution
spectral measurements.

Discrete Fourier Transform

To better understand the limita-
tions of using an oscilloscope FFT
for spectral analysis, it is impor-
tant to understand some funda-
mental properties of the Discrete
Fourier Transform (DFT) and the
effects of sampling. A brief review
is covered here. The reader is
referred to other sources for
more detailed information.

The DFT represents discrete 
samples of the continuous

Fourier transform of a finite
length sequence.2 The DFT for a
sequence, x(nT), is given by:3

Equation 1

where
N = number of samples
F = spacing of frequency 

domain samples
T = sample period in the 

time domain

The FFT is simply an efficient
algorithm for computing the DFT.
Actually, there are several FFT
algorithms. Infiniium uses a
radix-2 FFT algorithm for com-
puting the DFT. A radix-2 FFT is
computed on a number of points
equal to a power of 2. The effi-
ciency of the FFT is often
expressed in terms of the number
of complex multiplications. The
number of complex multiplica-
tions for a radix-2 FFT can be
shown to be Nlog2N. This is a big
improvement over the number of
computations for a DFT, which is
approximately N2. For example,
for a one-million-point sequence,
the FFT takes 0.002% of the DFT
computation time.2

The spacing of the frequency-
domain samples or bins in the
DFT is given by the following
equation:

Equation 2

where
Fs = sampling frequency

Thus, the frequency resolution
can be improved by increasing N
or decreasing Fs.

The DFT is symmetrical about
N/2. The magnitude of the DFT is
an even symmetric function and
the phase is an odd symmetric
function. Infiniium plots only the
first half of the FFT points since
no additional information is pro-
vided by the remaining points.
The frequency of a particular FFT
point, k, is:

Equation 3

The maximum frequency plotted
is Fs/2, where k = N/2.

FFT Fundamentals

X(kF) = ∑ x(nT)e-j2πkFnt
N-1

n = 0 F =       = 
1

NT
Fs
N

Fk = 
kFs
N



Discrete Fourier Transform continued

The DFT is a complex exponential
from which both magnitude and
phase can be computed. Infiniium
has functions for computing both
the magnitude and phase. The
phase is computed in degrees.
The magnitude is computed in
dBm.3 The voltage form for 
dBm is:

Equation 4

where

The reference voltage, VREF, is
defined as the voltage that pro-
duces 1 milliwatt of power into
50 Ω. For example, if 1 volt dc is
connected to Infiniium, then the
magnitude of the FFT result at
0 Hz frequency will be approxi-
mately 13 dBm:

3

FFT Fundamentals

P(dBm) = 20log(VRMS / VREF)

VREF = 

 √0.001 watts * 50 Ω = 0.2236 volts

20log(1.0 / 0.2236) = 13.0 dBm

The Infiniium waveform record
length captured is generally not a
power of 2. However, the radix-2
FFT requires a number of points
equal to a power of 2. Infiniium
handles this by padding the end
of the waveform with zeros to 
get to the next power of 2
sequence length.

Although zero padding increases
the number of points, it does not
change the shape of X(F). It sim-
ply extends the number of points
in the DFT. For example, if zero
padding extends the sequence
length by a factor of 2, then every
other point of the DFT of the
zero-padded sequence has the
same value as the DFT of the
unpadded sequence. Thus, zero
padding has the same effect as
interpolation: it fills in points
between frequency samples, giv-
ing a better visual image of the
continuous Fourier transform.
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FFT Fundamentals

Sampling Effects

The Fourier transform of an ana-
log signal, xa(t), is defined by:2

Equation 5

To obtain a digital representa-
tion, x(n), of an analog signal,
xa(t), a digital oscilloscope 
samples the signal at uniform
intervals, T:

Equation 6

Equation 6 assumes the sampling
process is ideal such that there is
no voltage quantization or other
distortion. The Fourier transform
of this ideal discrete time
sequence is:2

Equation 7

Equation 7 shows the relation-
ship between the Fourier trans-
form, Xa(F), of the continuous 
signal, and the Fourier transform,
X(F), of the discrete time
sequence. X(F) is the sum of an
infinite number of amplitude-
scaled, frequency-scaled, and
translated versions of Xa(F).

Figure 1 (a) shows the Fourier
transform, Xa(F), of a continuous
signal. Figure 1 (b) and (c) show
the Fourier transforms, X(F), of
two discrete-time signals
obtained by periodic sampling.
Notice in (b) and (c) that X(F) is
periodic with period 1/T or Fs.
Also notice that if Fo is greater
than Fs/2, as shown by (b), the
periodic repetitions of the con-
tinuous-time transform overlap,
and it is not possible to recover

Xa(F) from X(F). When overlap
occurs, high-frequency compo-
nents of Xa(F) fold into lower fre-
quencies in X(F). This effect is
called aliasing. The frequency at
which aliasing occurs, Fs/2, is
called the folding frequency. The
maximum frequency in Xa(F) is
called the Nyquist frequency. 
The Nyquist rate is the minimum
sampling rate required to pre-
vent aliasing and is twice the
Nyquist frequency.2

Xa(F)
1

(a)

(b)

(c)

-2Fs

Fo

X(F)

X(F)

-Fs -Fs/2 2FsFsFs/2

-Fo

-2Fs -Fs -Fs/2 2FsFsFs/2

1/T

1/T

X(F) Unknown in Overlap Regions

Figure 1. Fourier transform of (a) continuous signal, (b) discrete-time
signal with overlap, and (c) discrete-time signal without overlap

Xa(F) = ∫xa(t)e-j2πFtdt
∞

-∞

x(n) = xa(t) |t=nT

X(F) =       ∑ Xa[     (FT + k)]∞

k = -∞

1
T

1
T
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Equation 8 can be used to com-
pute the alias frequency, F', from
the original frequency, F:

Equation 8

Sampling Effects continued

It is insightful to consider aliasing
from a time-domain perspective.
Assume a sine wave signal is sam-
pled uniformly. If there are less
than two samples per period,
then it is not possible to deter-
mine the frequency of the contin-
uous sine wave signal from the
sampled version. In this case, the
sampled version will appear to be
a sine wave at a lower frequency. 

If the sampling rate is at least
twice the highest frequency con-
tent in the analog signal, no alias-
ing will occur, and the DFT of the
sampled sequence will provide a
good estimate of the Fourier
transform of the analog signal.

However, if there is frequency
content above the folding fre-
quency then these higher fre-
quency components will alias.
This effect is shown in figure 2.
Two sine waves with frequencies
of 3.3 MHz and 6.1 MHz are digi-
tized by Infiniium with a sam-
pling rate of 5 MSa/s. The FFT
magnitude of the resulting digital
waveform is shown. Because both
sine wave frequencies are above
the folding frequency of 2.5 MHz,
they are aliased to lower frequen-
cies below the folding frequency.

Figure 2. Infiniium FFT magnitude plot of 3.3 MHz and 6.1 MHz sine wave inputs

FFT Fundamentals

Using this equation, the alias 
frequency for F = 3.3 MHz is
1.7 MHz and the alias frequency
for F = 6.1 MHz is 1.1 MHz. 
Notice that the spectral lines
shown in figure 2 agree with
these calculations.

F' =        - |F modulus Fs -       |Fs
2

Fs
2

Acquisition Sampling mode real time Normal Configuration 4GSa/s
Memory depth manual Memory depth 65536pts
Sampling rate manual Sampling rate 5.00 MSa/s
Averaging off Interpolation on

Channel 1 Scale 1.00 V/div Offset 0.0 V
BW limit off Coupling DC Impedance 1 M Ohm
Attenuation 1.000 : 1 Atten units ratio Skew 0.0 s
Ext adapter None Ext coupler None
Ext gain 1.00 Ext offset 0.0

Time base Scale 2.00 ms/ Postion 0.0 s Reference center

Trigger Mode edge Sweep auto
Hysteresis normal Holdoff time 80 ns Coupling DC
Source channel 1 Trigger level 10 mV Slope rising

Function 2 FFT magnitude channel 1
Vertical scale 20.0 dBm/div Offset -13.0000 dBm
Horizontal scale 250 kHz/div Position 1.25000 MHz
Window Hanning Resolution 76.2939 Hz
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Figure 3. Infiniium FFT window functions (top) and corresponding frequency
spectrums (bottom)

Spectral Leakage and Windowing

The DFT is computed on a finite
length sequence. It attempts to
approximate the Continuous
Fourier Transform (CFT), which
integrates over all time. The DFT
is a sampled version of the CFT of
an infinite sequence formed by
replicating the finite sequence an
infinite number of times.

If the end points of the finite
sequence do not match, then the
infinite sequence will have a dis-
continuity between adjacent peri-
ods of the finite sequence. This
discontinuity in the time domain
causes spectral leakage in the
frequency domain. In general,
when a digital oscilloscope cap-
tures a signal it does not capture
an integral number of periods,
which introduces a discontinuity
in the periodically extended sig-
nal. Thus, the FFT computed by
the digital oscilloscope almost
always shows spectral leakage.
The spectral leakage causes the
fine spectral lines to spread out
into wider lobes.

Another way to explain spectral
leakage is to consider the finite
sequence as a product of two infi-
nite length sequences: the origi-
nal sequence and a window
sequence. The window sequence
is nonzero for a finite number of
samples and zero elsewhere. By
multiplying the infinite sequence
by the window sequence, the win-
dow extracts a finite chunk of the
infinite sequence. Multiplication
in the time domain corresponds
to convolution in the frequency
domain. So the resulting Fourier
transform of the finite length
sequence is just the Fourier 
transform of the infinite sequence
convolved with the Fourier trans-
form of the window sequence.

FFT Fundamentals
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Spectral Leakage and Windowing
continued

This convolution causes each
spectral line in X(F) to take on
the shape of the Fourier trans-
form of the window sequence.

The shape of the window deter-
mines the shape of the spectral
lobes in the Fourier transform.
The Fourier transform for a rec-
tangular window is a sinc func-
tion.2 The rectangular window
does nothing to reduce the dis-
continuity in the periodic exten-
sion of the finite time sequence.
However, other windows have
been defined that approach the
zero value smoothly on each end.

Infiniium provides three choices
for window functions, rectangu-
lar, Hanning, and flattop. These
windows and the corresponding
Fourier transforms are shown in
figure 3. Notice that the rectangu-
lar window has the narrowest
main lobe, but the side lobes fall
off gradually. The width between
both zeros of the main lobe is
2 bins, and the first side lobe is
13.3 dB below the main lobe.
These side lobes obscure neigh-

boring spectra. The Hanning win-
dow has a wider main lobe, but
the side lobes fall off more
sharply. The main lobe width is
4 bins, and the first side lobe is
31.5 dB below the main lobe. The
flattop window has the widest
main lobe, 8 bins, and the
sharpest side lobe fall off. The
first side lobe is 70.4 dB below
the main lobe.

The DFT represents discrete sam-
ples from the continuous Fourier
transform, X(F), of the discrete-
time sequence. The interval
between frequency bins in the
DFT is given by equation 2. When
an integral number of periods of
the continuous-time signal are
captured in the discrete-time
sequence, the center of a frequen-
cy bin in the DFT lines up with
the center of the main lobe, and
the side lobe leakage disappears.
When a sequence is extended by
zero padding, the DFT bin spac-
ing gets smaller and more of the
true window shape is revealed.
As stated earlier, zero padding
does not change the shape of
X(F), it simply provides more
samples in the DFT, revealing
more of X(F).

FFT Fundamentals
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Frequency Span and Resolution

The previous sections described
several properties and character-
istics of the FFT and sampling
that effect the accuracy of the fre-
quency spectral estimate. This
section  focuses on the practical
aspects of using an Infiniium
deep-memory oscilloscope for
spectral analysis. The benefits of
deep memory on FFT resolution
and dynamic range are described
in detail. Several characteristics
of the oscilloscope effect the
dynamic range. These factors and
using averaging to improve the
dynamic range are described, as
well as methods for selecting the
proper window function for par-
ticular types of analysis. Also,
this section explains how to con-
figure the oscilloscope time
range, sampling rate and memory
depth to get the desired FFT fre-
quency span, resolution and
update rate.

The maximum sampling rate 
currently available from the
Infiniium deep-memory oscillo-
scopes is 4 GSa/s, which allows
for FFT-based spectral analysis
up to 2 GHz. The maximum mem-
ory depth currently available is
16 MSa. When the full sampling
rate and memory depth are
employed, Infiniium can provide
a frequency span of 2 GHz with a
frequency resolution of 250 Hz.

It is important to realize that
Infiniium computes the FFT for
those time-domain samples that
fall onscreen only. Offscreen 

samples are ignored. To get all the
time-domain samples onscreen
for a manual sampling rate set-
ting, the user simply adjusts the
horizontal scale for a longer 
time range.

Both sampling rate and memory
depth can be controlled manually.
In automatic mode, the memory
depth is adjusted to get the maxi-
mum sampling rate possible for
the current time range. Although
this is a convenient feature for
time-domain analysis, it is not
always what the user wants for
frequency-domain analysis. In
many cases, the user will pur-
posely reduce the sampling rate
to improve the frequency resolu-
tion. The user may also reduce
the memory depth to improve the
FFT update rate.

The frequency resolution of the
FFT depends on both the sam-
pling rate and the number of
points, as shown by equation 2.
The resolution can be improved
by either increasing the number
of points or decreasing the sam-
pling rate. However, decreasing
the sampling rate reduces the
maximum frequency computed
and opens the door to additional
aliasing. The FFT frequency reso-
lution can be easily determined
from the time range setting of the
oscilloscope, as shown by the 
following equation:

Equation 9

From the information presented
earlier, it is now possible to deter-
mine the frequency resolution
and span of the Infiniium FFT for
a particular sampling rate and
record length.

For example, assume the sam-
pling rate is set to 4 GSa/s and
the memory depth is set to
100,000 points. In this case,
Infiniium will zero-pad the num-
ber of points to the next power of
2 or 131,072 points. The frequen-
cy span displayed will cover half
the sampling frequency or 2 GHz.
The frequency resolution will be
4 GSa/s divided by 131,072 or
30.5176 kHz. Since the FFT is
computed only for those points
that fall onscreen, to get all the
points onscreen, the horizontal
scale must be set to 2.5 µs/div or
slower. The horizontal scale set-
ting required to get all the data
onscreen for a particular sam-
pling rate and memory depth is
shown by the following equation:

Equation 10

Generally, it is not necessary to
apply this equation in practice.
The user simply adjusts the time
range until all the data is
onscreen. The memory bar dis-
played at the top of the screen
simplifies this adjustment.

Practical Considerations

F =        = 
1

NT
1

Time Range

Horizontal Scale ≥          s / div
N

10Fs
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Figure 4. Infiniium FFT spectrum showing the impact of deep memory on
improved FFT resolution

Practical Considerations

Frequency Span and Resolution 
continued

Figure 4 shows the impact of
deep memory on the resolution of
the FFT spectrum. The spectrum
shown is produced from a signal
containing two sine waves of
nearly identical frequencies, F1
and F2. F1 is 75.000273 MHz and
F2 is 75.001546 MHz. The fre-
quency delta between F1 and F2
is 1.273 kHz.

The sampling rate is set at
200 MSa/s, which is more than the
Nyquist rate of 150.003092 MHz.
The sampling rate is selected as
low as possible to improve the
FFT resolution, but high enough
to prevent aliasing. The Hanning
window function is used to
reduce side lobe interference.

With 256 kPts, the FFT resolution
is 762.9 Hz, which, because of
spectral leakage, is not enough to
differentiate the two signals.
However, with a memory depth 
of 4 MPts, the FFT resolution is
47.7 Hz, and the spectra from
both signals are clearly visible.

Deep memory doesn’t come for
free. Increasing the memory
depth slows down the FFT update
rate. As stated previously, the
number of complex multiplica-
tions required to compute an 
N-point FFT is Nlog2(N). This
dominates the computation time.

Currently, the Infiniium deep-
memory oscilloscope can compute
and display a one-million-point
FFT in one second. A 16-million-
point FFT, however, takes 20 sec-
onds. In automatic memory-depth
mode, Infiniium limits the num-
ber of points for an FFT function
to one million so that the update
rate is no slower than one update
per second. To optimize the mem-
ory depth for a particular situa-
tion, the manual memory control
should be selected.
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470 MHz

Sampling Rate = 4 GSa/s
Memory Depth = 8 MPts
X Scale  =  200 MHz/div
Y Scale  =  20 dBm/div

125 MHz
1410 MHz

1650 MHz
1880 MHz

940 MHz

Figure 5. Infiniium FFT spectrum with 470 MHz pure sine wave input

Practical Considerations

Dynamic Range

The dynamic range of a frequency-
domain measurement is an indi-
cation of the smallest signal that
can be viewed in the presence of
a larger signal. It indicates the
magnitude delta between the fun-
damental spectra of a full-scale
input and the noise floor.

The dynamic range of an FFT
spectrum, produced by a digital
oscilloscope, is limited by analog-
to-digital converter (ADC) quanti-
zation and other internal oscillo-
scope noise sources. Also, nonlin-
ear responses from the front-end
amplifiers and the ADC produce
harmonic distortions that show
up as artifacts in the FFT spec-
trum.3 These factors limit the
user’s ability to detect spectral
information in the signal and dif-
ferentiate it from the oscillo-
scope. The next section will show
how averaging can improve the
dynamic range.

Figure 5 shows the frequency
spectrum produced by the
Infiniium FFT for a pure 470 MHz
sine wave input. Notice all the
spectral lines showing up at fre-
quencies other than the funda-
mental 470 MHz. Harmonics of
470 MHz at 940 MHz, 1410 MHz,
and 1880 MHz can be seen, as
well as harmonics above the fold-
ing frequency of 2 GHz, which
alias to lower frequencies in the
spectrum. The 1650-MHz spectral
line is one such aliased harmonic
of the 470-MHz input. Spectral
artifacts from an internal
125-MHz clock also show up in
the spectrum. The dynamic range
between the 470-MHz fundamen-
tal and the largest spectral arti-
fact is 51 dB.

Increasing the memory depth
reduces the noise floor of asyn-
chronous noise sources and
improves the dynamic range. 
This improvement occurs because
increasing the number of FFT
points does not change the total
noise power.

For example, doubling the num-
ber of FFT points drops the mag-
nitude of the asynchronous noise
components by a factor of 2 so
that the total noise sum remains
constant. On a log scale, doubling
the number of FFT points reduces
the noise floor by 3 dB. This
expected improvement drops off
somewhat for large record lengths
because of round-off errors in
computing the FFT.
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Practical Considerations

250 MHz

Sampling Rate = 4 GSa/s
Vertical Scale  =  20 dBm/div

Memory Depth  =  1024 pts
Memory Depth  =  16,400,000 pts

Figure 6. Infiniium FFT spectrum showing how deep memory reduces the
noise level

Dynamic Range continued

Figure 6 shows the effect of
increasing the FFT record length
on dynamic range. The blue FFT
trace is acquired on an Infiniium
with a memory depth of 1024
points. The green FFT trace is
acquired with a memory depth of
16,400,000 points. Both are
acquired at 4 GSa/s. Notice that
the noise floor drops about 30 dB
for the deep-memory FFT, reveal-
ing spectral data that are masked
with only 1024 points. Unfor-
tunately, some of the additional
spectral lines that become visible
with deep memory are due to the
oscilloscope and are not actually
present in the signal.

Digital oscilloscopes sometimes
include effective bits in their
specifications. Effective bits is a
measure of the signal-to-noise
ratio (SNR). SNR is the ratio of
the signal power to the total noise
power. It is typically computed in
the time domain using sine wave
curve fitting.4 SNR can be calcu-
lated from effective bits using the
following equation:5

Equation 11

The effective bits measurement is
typically worse with fast-slewing
inputs, so it is often specified at
both high and low frequencies.
Infiniium uses an 8-bit ADC.
Using equation 11, an ideal 8-bit
ADC has an SNR of 50 dB.

SNR = Eff Bits * 6.02 + 1.8 dB
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Figure 7. Compare this 1024-point FFT spectrum for an ideal 8-bit ADC with
the 1024-point FFT in figure 6

Practical Considerations

Dynamic Range continued

Figure 7 shows a 1024-point FFT
spectrum for an ideal 8-bit ADC
with a full-scale input. Notice
with 1024 points an SNR of 
50 dB provides a dynamic range
of about 70 dB. In contrast, as
shown by the 1024-point FFT in
figure 6, Infiniium has a dynamic
range of about 50 dB for a
250 MHz, full-scale sine wave
input. This reduction of 20 dB
from the ideal is caused by 
oscilloscope noise sources and
nonlinear effects.
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Memory Depth = 64 kPts
Sample Rate = 4 GSa/s

No Averaging

256 Averages

Figure 8. Infiniium FFT spectrum showing the impact of averaging
time-domain waveforms for increasing dynamic range

Practical Considerations

Averaging

This section describes two types
of averaging that Infiniium can
perform. One type of averaging is
applied to time-domain wave-
forms prior to computing the 
FFT. It is useful for reducing
noise to improve the dynamic
range. The other type of averaging
is applied to the FFT magnitude
to reduce the variance of the
spectrum estimate.

Time-domain averaging attenu-
ates asynchronous noise sources
by averaging time-domain wave-
forms from multiple triggers.
Signal bandwidth is not effected.
The signal must be periodic to
take advantage of this type of
averaging. Noise variance is
reduced by a factor equal to the
number of averages. In terms of
decibels, time-domain averaging
reduces the noise floor by:

Equation 12

where
Navg is the number of averages

For Infiniium, the number of
averages is selectable from 2 to
4096. The maximum memory
depth available, with averaging
enabled, is 64 kPts. If larger mem-
ory depth is required, the average
function can be applied to the
time-domain waveform, but it
runs much slower.

Time-domain averaging is useful,
not only for reducing signal noise,
but also for reducing internal,
asynchronous noise sources from
the oscilloscope. Figure 8 shows
the impact of time-domain aver-
aging on dynamic range. The blue
trace is the FFT spectrum with no
averaging and the green trace is
the FFT spectrum with 256 aver-
ages. The black regions indicate
where the two traces overlap. For
both spectra, the sampling rate is
4 GSa/s and the memory depth 
is 64 kPts. The vertical scale is
20 dB/div.

Notice that 256 averages reduce
the noise floor by about 24 dB, 
as expected from equation 12. 
No signal is input to the oscillo-
scope, so what is shown results
from internal noise sources in 
the oscilloscope.

Noise Floor Drop = 
                             3 dB * log2(Navg)

The average value for the DFT
spectrum converges to the true
value as the number of points
increases. However, the variance
remains constant.6 To improve
the variance, multiple DFT 
spectrums can be averaged
together. The variance is reduced
by a factor equal to the number 
of averages.

By chaining the average function
to the FFT magnitude function,
Infiniium provides a way to aver-
age FFT spectrums. The averaging
is performed on the decibel mag-
nitude values. The number of
averages can be set from 2 to 4096.
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Practical Considerations

Memory Depth = 32 kPts

Non-averaged FFT Magnitude

Averaged FFT Magnitude, 16 Averages

Figure 9. Averaged FFT spectrums reduce variance

Averaging continued

Figure 9 shows the effect of aver-
aging FFT spectrums. The green
spectrum trace, function 2, is not
averaged. The purple spectrum
trace, function 3, results from
averaging function 2 sixteen

times. The black regions indicate
where function 2 and function 3
overlap. It is clear from figure 9
that this type of averaging
reduces the variance of the FFT
spectrum but does not improve
dynamic range.
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Window Selection

Infiniium provides three window
functions to choose from, rectan-
gular, Hanning, and flattop (refer
to figure 3). By selecting the prop-
er window function, more useful
information can be obtained from
the FFT spectrum.

Although the rectangular window
has the narrowest main lobe, it is
not generally used because the
side lobes fall off gradually,
obscuring neighboring spectra.
The Hanning window is the most
common window used for viewing
spectral content. The main lobe
width is twice that of the rectan-
gular window, but the side lobes
fall off sharply.

When making magnitude meas-
urements on spectral data, the
flattop window is the best choice.
Because of the broad flat top it
exhibits in the frequency domain,
the amplitude of a spectral peak
is very accurate. The maximum
amplitude error due to spectral
leakage, using the flattop window,
is 0.1 dB. This is much better

Practical Considerations

than the maximum error for the
Hanning window, which is
1.5 dB.3 The maximum error
occurs when the center of the
main lobe falls exactly halfway
between two frequency bins.
However, the flattop window is
not always a good choice when
trying to resolve closely-spaced
spectral lines because of the
broad main lobe. 

Increasing the memory depth
improves the frequency resolu-
tion of the FFT without reducing
the frequency span (refer to equa-
tion 2). In terms of frequency
bins, the window function lobe
width is constant. But the fre-
quency width of each bin is
inversely proportional to the
number of points. So increasing
the number of points decreases
the spectral line lobe widths and
improves the ability to resolve
closely-spaced spectral lines. For
example, by doubling the memory
depth, the flattop window
resolves as well as the Hanning
window does with half the 
memory depth.
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Equivalent Time Sampling

Aliasing is always a potential
issue for a digital oscilloscope.
The oscilloscope passes all fre-
quencies out to the specified 
analog bandwidth. The rolloff is
not necessarily sharp, so that
even frequencies beyond the
bandwidth can be passed on to
the ADC.

Without a low-pass cutoff filter,
frequencies above the folding fre-
quency are allowed to alias into
the frequency spectrum. The
problem is more severe when the
sampling rate is reduced. Ideally,
for spectral analysis, a low-pass
analog filter would be injected to
attenuate all frequencies above
the folding frequency. This, 
however, is not practical for a 
digital oscilloscope.

Equivalent time sampling can be
used to increase the effective
sampling rate and reduce alias-
ing. Infiniium uses a form of
equivalent time sampling referred
to as random repetitive sam-
pling. The signal must be periodic
for this sampling technique to
work properly. A random repeti-
tive record is built up over several
acquisitions. The time between
the sample clock and the trigger
event is carefully measured and
used to place the samples from
each acquisition. The accuracy of
measuring this time dictates how
closely the samples can be spaced.
The inverse of the sample spacing
is the effective sampling rate.

For the Infiniium deep-memory
oscilloscope, the minimum sam-
ple spacing in equivalent time is
4 ps, providing a maximum effec-
tive sampling rate of 250 GSa/s.

470 MHz

Equivalent Time FFT
Effective Sampling Rate = 250 GSa/s
Memory Depth = 32768 Pts
Frequency Resolution = 7.63 MHz
Freq Span = 2 GHz
Y Scale = 20 dBm/div

Figure 10. Infiniium FFT spectrum for 470 MHz sine wave input using equivalent time
sampling to increase the effective sampling rate and reduce aliasing

There are several aspects to
equivalent time sampling in
Infiniium that limit its usefulness
for spectral analysis. First, the
user has no direct control over
the effective sampling rate. Also,
the maximum memory depth is
limited to 32 kPts. Finally, the
sample interval is not uniform,
which introduces additional noise
to the frequency spectrum.
Samples can fall anywhere within
one time bucket, but for purposes
of computing the FFT they are
assumed to be evenly spaced.

Figure 10 shows the FFT spec-
trum for a pure 470-MHz sine
wave input using equivalent time
sampling. Because of the high
effective sampling rate and limit-
ed memory depth, the frequency
resolution of 7.63 MHz is too large
to resolve closely-spaced spectral

lines. Also, the dynamic range
between the fundamental and 
the highest spectral harmonic is
only 38 dB.

Comparing this FFT spectrum to
that achieved with real-time 
sampling, figure 5, it is clear 
that real-time sampling provides
better dynamic range and 
frequency resolution. 

To improve the frequency resolu-
tion for equivalent time, the 
effective sample period can be
increased by increasing the time
range. However, because the sam-
pling is not uniform, additional
jitter is introduced between sam-
ples, further eroding the useful
dynamic range. Time-domain
averaging can be used to reduce
this jitter and improve the
dynamic range.
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Characterizing an AM Signal

This section describes a real-
world application for a deep-
memory oscilloscope FFT. The
application involves measuring
the characteristics of an ampli-
tude-modulated (AM) signal. The
characteristics of interest are the
carrier frequency, fo, modulation
frequency, fm, and modulation
index, a.3

The spectrum of an AM signal
contains all the information nec-
essary to compute these parame-
ters. Figure 11 shows the spec-
trum of a typical AM signal with
sinusoidal modulation. The cen-
ter spectral line represents the
carrier and the sidebands result
from the modulation. The modu-
lation frequency is the difference
between the carrier frequency
and one of the sidebands. The
modulation index is a measure of
the amplitude difference between
the carrier signal and the modula-
tion signal. It can be computed
from the magnitude delta, AdB,
between the carrier and modula-
tion sidebands, and is given by
the following equation:

Equation 13

When the modulation frequency
is a small percentage of the carri-
er frequency, a high resolution
FFT spectrum is necessary to dis-
tinguish the sidebands from 
the carrier.

For this example, an Agilent
Technologies 33250A function
generator is used to generate an
AM signal with the following
parameters:

• Carrier frequency  = 77 MHz
• Modulation frequency = 1 kHz
• AM depth = 2%
• Shape = Sine

where the AM depth is equal to
the modulation index. Notice 
that the modulation frequency 
is 0.0013% of the carrier 
frequency. Differentiating the
modulation from the carrier 
will require a high-resolution 
frequency spectrum.

AM Signal Spectrum

fo-fm fo fo+fm
f

Figure 11. The spectrum of an AM signal with sinusoidal modulation

a = 2x10(AdB / 20)
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Selecting Sampling Rate and 
Memory Depth

The first task in setting up the
oscilloscope to make this meas-
urement is to select the sampling
rate and memory depth. To pre-
vent aliasing, the sampling rate,
Fs, is set to a value greater than
twice the Nyquist frequency of
77 MHz + 1 kHz. Also, for better
resolution, the minimum avail-
able sampling rate that meets this
criteria is selected. For Infiniium,
the next available sampling rate,
which is greater than twice the
Nyquist frequency, is 200 MSa/s.

To obtain the most accurate
measurement of the modulation
index, a flattop window is used.
The flattop window is 8 bins
wide, so to clearly distinguish the
modulation sidebands requires a
frequency resolution of 1 kHz
divided by 8. Using this fact and
referring to equation 2 for com-
puting the frequency resolution,
the following equation for com-
puting the minimum number of
points is derived: 

Equation 14

where
F is the frequency resolution
and W is the window main-
lobe-width in bins

For this example, since the FFT
update rate is not an issue, the
memory depth is set to 8 MPts,
which exceeds the minimum
requirement and provides a fre-
quency resolution of 23.8 Hz.

Scaling Time and Frequency

The next task is to scale the oscil-
loscope time and frequency axes.
Recalling that the FFT is only
computed for onscreen points,
the memory bar at the top of the
screen is used to set the time
range so that all the captured
data is onscreen. Using equation
10, the time/div must be set to 
a value greater than or equal 
to 4 ms/div.

In this example, the time/div is
set to 5 ms/div. The frequency
axis is scaled so that the carrier
frequency is centered and the
sidebands are separated from the
carrier by one division.

N ≥       = 
Fs
F

=                   = 1.6 MPts
Fs

ƒm

W

200 MSa/s
1 kHz

8

Horizontal Scale ≥

                          = 4ms / div
8 MPts

10 x 200 MSa/s
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Resulting FFT Spectrum

Figure 12 shows the FFT spec-
trum for the AM signal captured
by Infiniium. Notice that the side-
bands are clearly distinguishable
from the carrier. Also notice that
the dynamic range is adequate to
distinguish the sidebands from
the noise floor, even with a modu-
lation index as small as 2%. The
listing below the screen image
shows all the setup information
and measurement results. A delta
peak frequency measurement is
used to find the modulation fre-
quency. The carrier frequency
can be read directly from the cen-
ter peak marker. A delta peak
magnitude measurement is used
to find the magnitude delta
between the carrier peak and the
right sideband. The measurement
result is -40.17 dB. Plugging this
value into equation 13 gives the
modulation index: 

The AM signal parameters meas-
ured from the FFT spectrum are
summarized as follows:

• Carrier frequency =
77.0002 MHz

• Modulation frequency =
1.001 kHz

• Modulation Index = 1.96%

AM Signal
Carrier Freq = 77 MHz
Modulating Freq = 1 kHz
AM Depth = 2%

a = 2x10(-40.17 dB / 20) = 1.96%

Comparing these results with the
signal generator setup given earli-
er shows that the measurement
error is small and the results are
excellent. In this example, a sin-
gle acquisition is used to make

the measurements. Because
Infiniium keeps track of the mean
and standard deviation for meas-
urements, the measurement
results can be improved by run-
ning several acquisitions.

Acquisition Sampling mode real time Normal Configuration 4GSa/s
Memory depth manual Memory depth 8200000pts
Sampling rate manual Sampling rate 200 MSa/s
Averaging off Interpolation on

Channel 1 Scale 20 mV/div Offset 2 mV
BW limit off Coupling DC Impedance 50 Ohms
Attenuation 1.000 : 1 Atten units ratio Skew 0.0 s
Ext adapter None Ext coupler None
Ext gain 1.00 Ext offset 0.0

Time base Scale 5.00 ms/ Postion 0.0 s Reference center

Trigger Mode edge Sweep auto
Hysteresis normal Holdoff time 80 ns Coupling DC
Source channel 1 Trigger level 1.6 mV Slope rising

Function 2 FFT magnitude channel 1
Vertical scale 20.0 dBm/div Offset -51.0000 dBm
Horizontal scale 1.00 kHz/div Position 77.0000 MHz
Window flattop Resolution 23.8419 Hz

Measure current mean std dev min max
FFT ∆freq(f2) 1.001 kHz 1.001 kHz 0 Hz 1.001 kHz 1.001 kHz
FFT ∆mag(f2) -40.17 dB -40.17 dB 0.0 dB -40.17 dB -40.17 dB

Marker current mean X Y
FFT ∆freq(f2) 1.001 kHz 1.001 kHz A––(f2) = 77.000189 MHz -13.27 dBm
FFT ∆mag(f2) -40.17 dB -40.17 dB B---(f2) = 77.001191 MHz -53.44 dBm

∆ = 1.001 kHz -40.17 dB
1/∆X = 999 µs

Figure 12. Infiniium FFT spectrum of an AM signal with sinusoidal modulation
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