
This set of application notes shows
you how to simplify test system
integration by utilizing open connec-
tivity standards such as instrument
drivers. The collective goal of these
notes is to help you produce reliable
results, meet your throughput
requirements and stay within your
budget.

Using SCPI and Direct I/O vs. Drivers,
the fifth note in the series, outlines
the relationship between input/output
(I/O) software, application software
and the ability to maximize instrument
interchange and software reuse in
present and future systems. This
note is a companion to Application
Notes 1465-9 through 1465-12, which
address the benefits of using a LAN
interface in a test system, describe
secure topologies for LAN-based test
systems, explain how to enable
communication between a PC and
LAN-enabled instrumentation, and
summarize the use of USB in test
and measurement.

Please see page 11 for a list of the
other titles in this series.

System Developer Guide
Using SCPI and Direct I/O vs. Drivers
Application Note 1465-13

Table of contents
Deciding how to communicate 2

Sketching the big picture 2
Enabling connectivity 3

Standardizing the API 3
Expanding freedom of choice 3

Recapping Application Notes 1465-9–1465-11 3
Achieving communication 4

Standardizing direct I/O 4
Improving interchange and reuse 5

Exploring the application alternatives 5
Simplifying basic analysis tasks 5

Comparing development environments 6
Maximizing performance and flexibility 7

Microsoft® Visual Studio® 7
Visual Studio with Agilent T&M Toolkit 7
Agilent VEE Pro 8

Assessing I/O software alternatives 9
Instrument drivers vs. direct I/O 9
ADE vs. I/O API 9
ADE vs. instrument driver 9

Shaping the future of test systems 10
Glossary 10
Related literature 11

Deciding how to
communicate
Once you’ve chosen an I/O interface
for your system—GPIB, LAN, USB or a
combination—the next step is deciding
how to enable connectivity and
achieve communication between the
host computer and the instruments in
the system. Recently, the alternatives
for connectivity and communication
have been shifting: vendor-specific
commands, libraries and interfaces
are giving way to industry-standard
command sets, application program-
ming interfaces (APIs) and instrument
drivers.

In system development, the use of
standards offers two key benefits:
it accelerates development by maxi-
mizing software reuse and it enhances
system flexibility by making it easier to
use different instruments. Standards
also help you achieve your goals for
system functionality and performance
by letting you combine methods such
as direct I/O with Standardized
Commands for Programmable
Instruments (SCPI, pronounced
“skippy”) and instrument driver-
based communication within a
single application.

The best choice of I/O software
depends on factors such as the
number and type of instruments in
the system, the functionality to be
used within each instrument, the
system’s throughput requirements,
and the number of systems to be
deployed. It also depends on which
application development environment
you’re using and the current level of
your programming skills.

Sketching the big picture
The diagram in Figure 1 is our starting
point. It connects the conceptual side
of the discussion—layers of software
and hardware—with the actual test
system, which includes the computer,
I/O cable and test equipment. Within
this model, commands and information
flow from the application through the
software and hardware layers, down
the cable, to the instrumentation and
back again.

Focusing on the upper-left of the
diagram, the application is the
program—purchased, downloaded or
written by you—that controls the test
system. The I/O software layer is the
translator that enables communica-
tion between the application and the
physical I/O hardware—the GPIB, LAN,
USB or RS-232 interface in the PC.
These three elements reside within
the host PC and enable connectivity
with the test equipment.

That’s all necessary to enable connec-
tivity, but it isn’t sufficient to achieve
communication. It’s similar to the
story of placing a phone call to a
friend in another country: you pick
up the handset, hear the dial tone
and dial the number—and then your
friend’s mother answers the phone.
Your inability to speak each other’s
language prevents meaningful conver-
sation. You have a connection but you
haven’t achieved communication.

It’s the same with test systems. Even
if an application has connectivity
with an instrument, it must use the
right commands and protocols to
achieve communication, control,
data transfer and so on.

2

Instrument

I/O Hardware

I/O Software

Application

Figure 1. Three essential elements of instrument communication reside within the system’s host PC

Enabling connectivity
In the early days of automated testing,
system controllers—called desktop
calculators or instrument controllers—
had limited processing and sparse
memory. To keep the syntax as simple
as possible, equipment vendors used
short commands, initially in binary
and later in ASCII.

Different manufacturers defined their
own command strings and these were
typically unique to the specific capa-
bilities of each instrument. In a system,
replacing an instrument with one from
another manufacturer, or even a new-
generation product from the original
maker, could mean completely
rewriting the system software.1

Instrument commands aren’t the
whole story. It takes additional layers
of software to enable connectivity
between a controller and the system
instruments. Historically, the I/O soft-
ware layer contained libraries such
as the Standard Instrument Control
Library (SICL) or NI-488. The applica-
tion used these libraries to achieve
direct communication with an instru-
ment. Each vendor had a proprietary
application programming interface
(API) that communicated exclusively
with its own I/O interfaces. This made
it difficult for system developers who
were building mixed-vendor test
systems—and, of course, many systems
used (and continue to use) equipment
from multiple vendors.

Standardizing the API
To make it easier to create mixed-
vendor test systems, a group of
instrument vendors created the Virtual
Instrument Software Architecture
(VISA). This provided a standardized
API that allowed control of instruments
through a common interface—directly
or with drivers. From the application's
point of view, every vendor’s VISA
interface looks the same.

One important caveat goes with VISA:
Although the VISA API is standard,
each vendor employs different layers
beneath the VISA layer to control the
hardware. In addition, each vendor
may have made enhancements to
enable unique features in its applica-
tion layers. To make it all work, the
version of VISA installed on the host
computer must be compatible with the
I/O hardware. (In contrast, this points
to another advantage of PC-standard
I/O such as LAN and USB: any version
of VISA that supports those interfaces
will work because the low-level drivers
are standardized.)

Expanding freedom of choice
As I/O development was proceeding
in the test-and-measurement (T&M)
industry, the PC industry was pursuing
independence in both I/O and program-
ming languages. Microsoft created the
Component Object Model (COM),
which is a software architecture that
allows components made by different
software vendors to be combined into
a variety of applications. COM is not
dependent on any particular program-
ming language.

To incorporate the advantages of
language independence, Agilent
initiated the creation of VISA COM
as a companion to the VISA standard.
VISA COM is an object-oriented
representation of the VISA API; it
exposes the VISA API to the applica-
tion layer through use of the
Component Object Model.

The result: VISA COM gives you the
freedom to pick from the most popular
I/O configurations and also choose
from a wealth of “COM friendly”
languages such as C#, Visual Basic 6
and Visual Basic .NET. As we’ll discuss
later, the application development
environment (ADE) you choose will
influence the best choice of library
and API for your application.

3

www.agilent.com/find/systemcomponents

1 For more about the evolution of instrument control,
see pages 2-5 of Application Note 1465-3,
Understanding Drivers and Direct I/O

Recapping Application
Notes 1465-9–1465-11
Several factors can increase the
burden on the I/O connection in a test
system. Examples include the number
of instruments in the system, the num-
ber of tests being performed, and the
volume of commands, status messages
and test data being transferred. LAN
technology is one of the best ways to
handle that burden. It offers a fast,
low-cost alternative to GPIB, and it
surpasses USB with longer reach and
locking connectors.

Most current-generation PCs have
built-in LAN ports, which means the
computing portion of a test system
needs minimal physical configuration.
LAN ports are also becoming more
common in test equipment.
Additionally, devices such as the
Agilent E5810A LAN/GPIB gateway
make it easy to include older, GPIB-
only instruments in LAN-based test
systems.

The decision to use LAN for system
I/O makes it much easier for colleagues
to share data, results, reports and so
on. However, it also opens the door to
malicious threats and inadvertent risks
that can affect system performance
and integrity. Fortunately, the creation
of a private, protected LAN can shield
the test system from many of those
risks, and ensure maximum throughput.
The standard capabilities of most
Windows PCs and many low-cost
networking devices enable two viable
approaches: one is built around a LAN
router and the other is based on a PC
equipped with two LAN cards.

A bit more effort is required to create
the right environment within a PC for
transparent communication with LAN-
enabled instruments. Making it work
depends on the LAN services of
Microsoft Windows XP and several
additional capabilities provided by the
Agilent IO Libraries Suite 14, which
simplifies and accelerates the
connection process.

Achieving communication
Once you’ve enabled connectivity,
it’s time to decide how to achieve
communication between the host
computer and the system instrumen-
tation. The two alternatives are direct
I/O and instrument drivers. Direct I/O
creates an explicit connection to each
instrument, which makes it faster but
limits instrument interchange and
software reuse. Most instrument
drivers utilize direct I/O and SCPI but
sometimes hide that connection. In
all, drivers trade decreased flexibility
(and possibly speed) for improved
interchange and reusability. However,
in most situations you can use both
instrument drivers and direct I/O to
achieve the best balance of speed,
flexibility and measurement
functionality.

Standardizing direct I/O
An early attempt at improving
consistency and ease of use came
in 1989 when Hewlett-Packard2 intro-
duced an instrument communication
language called the Test &
Measurement Systems Language
(TMSL). HP and eight other manufac-
turers joined forces to generate a
universal approach to instrument
control, using TMSL as the starting
point. The result was SCPI, the
Standard Commands for
Programmable Instruments.

The implementation of SCPI within an
instrument’s firmware has made the
programming syntax for direct I/O
much more robust and predictable.
The syntax defines a strict hierarchy
that specifies consistent commands,

responses and data formats across
instrument models. These commands
and responses are defined for source,
sense and switch devices. Today,
SCPI is still the most-used form of
instrument control.

4

Table 1: This block of Visual Basic 6 code uses SCPI and VISA COM I/O to communicate with a function generator

Dim Fgen As VisaComLib.FormattedIO488
‘ Code removed: Set up the connection to the instrument
With Fgen

WriteString “*RST” ‘ Reset the function generator
IO.Clear ‘ Clear errors and status registers
WriteString “FUNCtion PULSe” ‘ Select pulse waveshape

WriteString “OUTPut:LOAD 50” ‘ Set the load impedance to 50 Ohms (default)
WriteString “VOLTage:LOW 0” ‘ Low level = 0 V
WriteString “VOLTage:HIGH 0.75” ‘ High level = .75 V

WriteString “PULSe:PERiod 1e-3” ‘ 1 ms intervals
WriteString “PULSe:WIDTh 100e-6” ‘ Pulse width is 100 us
WriteString “PULSe:TRANsition 10e-9” ‘ Edge time is 10 ns (rise time = fall time)
WriteString “OUTPut ON” ‘ Turn on the instrument output

For I = 0 To 18 ‘ Vary edge by 5 nsec steps
WriteString “PULSe:TRANsition “ & (0.00000001 + I * 0.000000005)
Sleep 300 ‘ Wait 300 msec

Next I

End With

2 HP spun off its Test & Measurement businesses as
part of Agilent Technologies in 1999.

Improving interchange and
reuse
SCPI was a big improvement, but the
subsequent development of instrument
drivers has taken interchange and
reuse to new levels. An instrument
driver (or just “driver”) is a high-level,
instrument-specific (or instrument
class-specific) piece of software that
enables communication between a
PC and an instrument. For software
developers, drivers often simplify
programming and shorten develop-
ment time by guiding the program-
mer through the necessary steps and
presenting the capabilities of the
instrument within the programming
environment (rather than in a manual,
as would be the case with SCPI and
direct I/O).

First-generation drivers were vendor-
specific and typically worked only
with a specific ADE. (Numerous
legacy application programs still use
these proprietary drivers.) Today,
however, three types of standardized
instrument drivers are available.
These work with multiple ADEs
and enable communication with an
instrument through any vendor’s
I/O hardware.

• VXIplug&play: Originally developed
for modular VXI instruments, these
were later expanded to address
non-VXI instruments. Conforming
drivers always perform I/O through
the VISA library. The VXIplug&play
WIN32 driver specification works
in all popular languages and is
today’s most widely used driver
architecture.

• IVI-C: IVI-C has two distinct drivers.
The term is generally applied to
drivers based on proprietary tools
from NI. With the advent of the IVI
standards, NI updated its tools to
conform with the standards, but
many systems based on the propri-
etary tools are still in use. To
enable reuse and interchangeability,
IVI-C requires additional software
to patch around its core DLL tech-
nology, which does not directly
support software interchangeability.
An application must call an inter-
mediate driver (an “IVI-C class
driver”) which then calls the
specific instrument driver to
accomplish the function.

• IVI-COM: This standard does the
most to enable interchangeability
and reuse by leveraging the COM
computer standard. IVI-COM
drivers integrate with standard PC
component architecture software
and enable control of instruments
from familiar, conventional ADEs
that provide major productivity
improvements. IVI-COM drivers that
control VXI or GPIB instruments use
VISA (either VISA COM or VISA-C).
Because many new instruments
include computer-standard I/O
such as LAN and USB, IVI-COM
drivers for non-GPIB instruments
are not required to use VISA,
although many do.

If you are unsure of which I/O tech-
nology an application or driver is
using, take a look at the connection
string or “instrument address” used
for instrument communication.
VISA-type strings look like “TCPIP:
34980A.tm.agilent.com::inst0::INSTR”
while SICL-based strings are similar to
“lan[34980A.tm.agilent.com]:inst0.”

Exploring the application
alternatives
Shrink-wrapped software often
provides convenience in measure-
ment and analysis at the expense
of performance and flexibility. Such
products are often a good fit with the
small or one-off systems used during
product development. In contrast,
custom-built software is often the
best answer for applications such as
design verification or manufacturing
test that require high performance
and maximum flexibility.

Simplifying basic analysis tasks
There are alternatives to general-
purpose development environments.
One example is “targeted applica-
tions,” which address specific
measurement or technology domains,
or specific phases or tasks in the
product development lifecycle.
These applications include software
designed to make the infrequent
measurements (manual or semi-
automated) that are typically
performed during the early phases
of product development or during
design verification.

Applications such as Agilent IntuiLink
connectivity software (free) and
Agilent BenchLink (low cost) make
it easy to perform semi-automated
measurements, collect data, and
analyze results from a wide variety
of instruments. Both applications
utilize either drivers or direct I/O—
transparently—to enable instrument
communication, control and data
transfer.

5

www.agilent.com/find/systemcomponents

• IntuiLink: This connectivity
application simplifies data transfers
by adding a toolbar to popular PC
applications such as Microsoft Word
and Excel. IntuiLink enables direct
retrieval of data and images from a
measurement instrument, letting
you remain in the PC application
and use its familiar interface.
IntuiLink also eliminates barriers
between instruments and PCs by
supporting GPIB, USB, LAN and
FireWire interfaces.

• BenchLink: This low-cost application
is available in versions that support
numerous instruments. BenchLink
is a Windows®-based application

(Figure 2) that uses a familiar
spreadsheet format to streamline
data collection, presentation and
analysis. It can communicate with
measurement instruments via LAN,
USB or GPIB using the included
I/O software.

There are higher-cost alternatives
to BenchLink, including instrument-
control software for functional testing
and domain-specific applications.
These range from general test execu-
tives to application-specific programs
such as cell phone regulatory testing
tools. All serve to further reduce the
burden of instrument programming,
connectivity and communication.

6

Figure 2. Agilent BenchLink Data Logger provides spreadsheet-like test set up and real-time
display and analysis of measurements

Comparing development
environments
The software environment you choose
will have a significant impact on the
time, effort and cost required to create
and maintain a test system.
Development environments are either
graphical or textual. Graphical environ-
ments such as Agilent VEE Pro and NI
LabVIEW use a schematic approach,
which is regarded as being easy for
engineers to learn. You manipulate
icons or objects that represent
commands or functions and connect
them with program-flow lines. This
makes it easier to visualize the paths
of execution and interaction; it also
shields you from the underlying syntax.
What’s more, T&M-specific graphical
environments have extensive I/O and
instrument drivers as well as measure-
ment-related math and graphing
capabilities. Graphical programming
is best suited to small- and medium-
sized applications—the visual interface
tends to become difficult to understand
with large programs.

In contrast, textual programming has
a steeper learning curve because it
requires detailed knowledge of a
language’s commands and syntax.
However, because most textual lan-
guages are based on open standards,
they offer a greater selection of devel-
opment environments, software tools
and training opportunities. There also
tends to be a wider variety of available
third-party drivers, tools and add-ons.
Textual programming is often the best
choice for large, comprehensive
programs because it is easier to
navigate and comprehend.

In the past, textual programming
produced applications that had
pronounced speed advantages—at
runtime—over those created with
graphical programming. Today, however,
there is less difference in runtime
speeds between applications created
with either approach.

Maximizing performance
and flexibility
You can pick from a wide variety of
alternatives that support the creation
of custom measurement software.
These range from test automation
applications to full-featured develop-
ment environments that utilize either
graphical or textual programming.
Your preferred approach will deter-
mine the best choice for instrument
communication.

Microsoft Visual Studio
Visual Studio is a textual program-
ming solution that offers an extensive
range of developer tools and built-in
help capabilities that can accelerate
development of Windows-based appli-
cations. Its integrated development
environment provides a consistent
interface for all supported languages,
including Visual Basic, C++ and C#.

As a standardized, mainstream
development product, Visual Studio
offers several advantages:

• Open: Because Visual Studio is
based on open, pervasive standards,
it can communicate with practically
any other programming technology.
As a result, thousands of third-
party tools—software, drivers, etc.—
are available to support your
development efforts.

• COM-friendly: Visual Studio works
very well with programming
technologies that are based on
Microsoft’s COM technology. This
includes VISA COM and IVI-COM.

• On-screen help: The IntelliSense
feature and the “F1 help” capability
work with COM- and .NET-based
third-party drivers and software.
As an example, the IntelliSense
window for a driver will show all
available operations, a brief
description of each, and a summary
and description of all allowed
parameters. Depending on the
driver or component, pressing the
F1 key may open a new window
that presents an online help manual
for the driver. Using this type of
on-screen, context-sensitive help is
much faster than thumbing through
a printed programming manual.

There is one downside in test-system
applications: it can be difficult to
use C APIs with the new .NET-based
languages in Visual Studio. The latest
releases of Microsoft programming
languages utilize .NET technology to
communicate with drivers and third-
party software—and .NET is rapidly
phasing out C API technology. This
affects the C API version of the VISA
I/O library as well as IVI-C and
VXIplug&play drivers. To get around
this problem, Agilent provides a .NET
wrapper for the VISA API. The wrapper
is available as a free download from
www.agilent.com/find/iolib; it is also
included in the Agilent IO Libraries
product.

Visual Studio with
Agilent T&M Toolkit
The Agilent T&M Toolkit 2.0 with test
automation extends the .NET-enabled
versions of Visual Studio with a suite
of integrated, easy-to-use software
tools and components—project wizards,
APIs, class libraries, widgets, graphs,
drivers and more. This creates an
environment that simplifies the
process of incorporating tests and
measurements into custom applica-
tions. Using T&M Toolkit 2.0 within
the Visual Studio environment lets
you use your preferred textual
programming language and integrate
your new code with existing code
written in other languages.

T&M Toolkit 2.0 offers several other
capabilities that speed and simplify
system development:

• DirectIO class: This is the easiest
way to send commands directly
to an instrument.

• Wrapped VXIplug&play drivers: This
integrates the drivers into .NET
with full IntelliSense and F1 help
capabilities. T&M Toolkit also rec-
ognizes and uses IVI-COM drivers,
which have IntelliSense built-in.

• Instrument Explorer: This tool makes
it easy to see and edit the instru-
ment I/O configuration and initiate
communication with instruments.

7

www.agilent.com/find/systemcomponents

• IO Monitor: This utility makes it much
easier to use instrument-control
software and instrument drivers—
IVI-COM, VXIplug&play—and
diagnose problems by letting you
watch both the underlying direct
I/O commands that are sent to the
instrument and the resulting data
that is returned (Figure 3).

In all, the combination of Visual Studio
and T&M Toolkit eliminates many of
the difficulties often associated with
connecting to and controlling test
equipment from a custom application.

Agilent VEE Pro
For those who want an alternative to
textual programming, Agilent VEE
Pro 7.0 is a powerful, easy-to-use
graphical programming environment
that accelerates the process of building
and programming test systems. To
create a program, you choose high-
level graphical objects from a huge
library and connect them with lines
or “wires.” The wire connections
specify functionality and sequences
within intuitive block diagrams.

Because VEE Pro is an open, stan-
dards-friendly environment, it also
offers several advantages in test-
system development:

• Direct I/O: Through its easy and
powerful Direct I/O capability, VEE
Pro provides excellent support of
direct I/O for control of any
standard instrument and many
vendors’ PC plug-in cards.

• Instrument drivers: VEE Pro supports
industry-standard drivers such as
IVI-COM and VXIplug&play. It
includes support for nearly one
thousand drivers, supporting
popular instruments from more
than 70 different manufacturers.

• COM and .NET: No familiarity with
.NET programming languages is
required to utilize these capabilities.
VEE Pro takes care of the details,
ensuring successful interaction
with both COM and .NET software.

8

Figure 3. T&M Toolkit’s IO Monitor traces I/O layers for Agilent’s VISA, VISA COM, SICL and SICL
Detail, helping you find bottlenecks in your source code

Assessing I/O software
alternatives
Our ultimate goal is to minimize the
amount of time you have to spend
sorting out which I/O libraries or
drivers to use in your test systems.
Today, however, that effort is
unavoidable—but we can offer a few
suggestions that will simplify the
process.

Instrument drivers vs. direct I/O
When comparing drivers and direct
I/O, there are two key factors to
consider. One is a tradeoff between
speed of development and speed of
execution: drivers contribute to faster
development while direct I/O enables
faster execution.

The other factor is access to instrument
functionality. Drivers typically cover
a subset of an instrument’s total
feature set—and this is often limited
to the most commonly used functions.
In contrast, the combination of direct
I/O and SCPI commands can typically
access 100 percent of an instrument’s
programmable functions, no matter
how arcane. If you prefer the advan-
tages of drivers but need to access
unsupported features, it is possible
to use both methods within an
application.

ADE vs. I/O API
The ADE you select will affect the
best choice of I/O library and API for
your application. Table 2 shows the
various I/O APIs that Agilent supports
and, for each ADE, highlights the
recommended library as well as the
preferred and historical alternatives.

As one noteworthy example, we
recommend VISA COM over the VISA
API when using Visual Basic 6 because
VISA COM is an object-oriented, hier-
archical view of the VISA API. Using
the COM version means you don’t
have to add the .bas file to the VB
project (though the reference is
needed) and VISA COM allows for
the use of context-sensitive
IntelliSense help.

ADE vs. instrument driver
As mentioned earlier, three types of
standardized instrument drivers are
available: VXIplug&play, IVI-C and

IVI-COM. These work with multiple
ADEs and enable communication
with an instrument through any
vendor’s I/O hardware.

Reading from left to right, Table 3
shows a continuum that ranges from
least to most standardized across
three generations of drivers—
proprietary, T&M standard and
PC-industry standard. These repre-
sent the past, present and future of
driver technology.

To accelerate test-system develop-
ment, we recommend using the latest
IVI-COM drivers and VXIplug&play
WIN32 drivers for instrument control.
The IVI-COM driver technology is the
only one built on a PC-standard
architecture. A component driver
built on COM works in all popular PC
languages and most T&M languages.
What’s more, it utilizes the most
popular types of I/O and can be
used in the latest .NET technologies.

9

www.agilent.com/find/systemcomponents

Table 2. ADEs and recommended I/O libraries

Application development Recommended library Supported alternatives
environment Preferred Historical

Visual Basic 6 VISA COM VISA with visa32.bas SICL

Visual C/C++ VISA with visa32.h VISA COM SICL

Visual Basic .NET, C# T&M Toolkit DirectIO VISA COM
and other .NET languages VISA with visa32.cs

VISA with visa32.vb

Table 3. ADEs and their recommended instrument drivers

Instrument driver families

Proprietary T&M Test & Measurement Component PC
(specific to one language) (based on T&M standards) (based on PC standards)

• LabVIEW Plug & Play • LabWindows/CVI Plug & Play IVI-COM
(VXIplug&play GWIN) • WIN VXIplug&play

• VEE Panel Drivers • IVI-C

Shaping the future of
test systems
Open standards such as COM and
LAN have achieved widespread
adoption in the computer world and
are now shaping the future of test-
system development. Standards
accelerate system development by
maximizing software reuse and
enhance system flexibility by making
it easier to swap out instruments—
different models and even different
brands. Standards also enhance system
functionality and performance by
letting you utilize direct I/O, SCPI and
drivers within a single application.

Your choice of development environ-
ment can make it easier to incorporate
tests and measurements into custom
applications. If you prefer textual
programming, Visual Studio with
Agilent T&M Toolkit eliminates many
of the problems associated with
connecting to and controlling test
equipment. If you prefer graphical
programming, Agilent VEE Pro is an
open, standards-friendly environment
that supports direct I/O and instru-
ment drivers as well as COM and
.NET technologies.

To discover more ways to simplify
system integration, accelerate system
development and apply the advantages
of open connectivity, please visit the
Web site at www.agilent.com/find/open.
Once you’re there, you can also
connect with our online community
of system developers and sign up for
early delivery of future application
notes in this series. Just look for the
link “Join your peers in simplifying
test-system integration.”

Glossary
ADE — application development
environment; an integrated suite of software
development programs that may include a
text editor, compiler and debugger as well
as other tools used to create, maintain and
debug application programs

API — application programming interface;
a well-defined set of software routines
through which an application program can
access the functions and services provided
by an underlying operating system or a
reusable software library

C# — pronounced “C sharp;” a recent
component-oriented programming language
that resembles C++ and combines
attributes of the C++ and Java languages

COM — Common Object Model; also called
Microsoft COM; allows software developers
to create new software components that
can be used with an existing application
program without modifying the program; an
improvement over DLLs for software reuse

Direct I/O — direct input/output; enables
communication with an instrument without
benefit (or overhead) of a driver; successful
use of direct I/O typically requires a strong
understanding of Standard Commands for
Programmable Instrumentation (SCPI)

DLL — dynamically linked library; a set
of software operations used by other appli-
cation programs; can be loaded at any time
and can serve as a container for a reusable
software library that can be shared
simultaneously by multiple applications

Driver — also called an instrument driver;
a collection of functions resident on a
computer and used to control an instrument
(e.g., DMM, oscilloscope, network analyzer);
an alternative to SICL, direct I/O and VISA

GPIB — General Purpose Interface Bus;
the dominant 8-bit parallel I/O connection
for test equipment and test systems

HP-IB — Hewlett-Packard Interface Bus;
another name for GPIB

Input/output layer — also called the I/O
layer; the software that interacts with
peripheral devices (e.g., instruments),
issuing commands and collecting data

IVI — Interchangeable Virtual Instruments;
a standard instrument driver model that
allows a consistent programming style
across instrument models and classes

IVI-COM drivers — also called IVI compo-
nent drivers; presents the IVI driver as a
COM object, preserving the full capabilities
of your preferred development environment

LAN — local area network

Library — a collection callable software
operations; reusable software functions
meant to be used by other programs

.NET Framework — a platform for
application development that provides a
large library of operations, encourages soft-
ware reuse, reduces programmer error and
simplifies application development in a
Windows environment; its two main
components are the common language
runtime and the class libraries

Plug and Play drivers — also called
universal instrument drivers; an adaptation
of VXIplug&play drivers for non-VXI
instrumentation; library functions that
can be called from user-written programs

SCPI — Standard Commands for
Programmable Instrumentation; defines a
universal set of commands for control of
programmable test equipment

SICL — Standard Instrument Control
Library; a modular instrument communica-
tions library that works with a variety of
computer architectures, I/O interfaces and
operating systems; superseded by VISA

USB — Universal Serial Bus; designed to
replace the RS-232 and RS-422 serial buses
used in PCs

UPnP — Universal Plug and Play; a
networking architecture that ensures
compatibility of devices, software and
peripherals; not the same as Plug and Play
or VXIplug&play drivers

10

VISA — Virtual Instrument Software
Architecture; sometimes called VISA-C;
a common foundation for system software
components, including instrument drivers,
virtual front panels and application software;
consists of a vendor-independent set of
instrument communication operations that
work across different I/O interface
technologies

VISA COM — provides the services of
VISA in a COM-based API; a subset of VISA
in terms of I/O capabilities but includes
some services not available in VISA

VXI — VME extensions for instrumentation;
a standard, open architecture for modular
test instrumentation and systems

VXIplug&play — the most popular driver
technology for all types of instrumentation;
provides a consistent programming style
across instruments; includes virtual front
panel technology that allows development
environments to provide extra help and
visual guidance for operating an instrument

Wrap — the process of adding interface
software that creates compatibility between
the enclosed (wrapped) software module
and other programs or modules

Wrapper — additional software that acts
as an interface between an enclosed
(wrapped) software module and other
programs or modules

Related literature
The other notes in this series provide
additional information about the suc-
cessful use of LAN in test systems:

• Using LAN in Test Systems: The Basics,
AN 1465-9 (pub no. 5989-1412EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems: Network
Configuration,
AN 1465-10 (pub no. 5989-1413EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems: PC
Configuration,
AN 1465-11 (pub no. 5989-1415EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and Measurement
Environment,
AN 1465-12 (pub no. 5989-1417EN)
http://cp.literature.agilent.com/
litweb/pdf/5989-1417EN.pdf

• Using LAN in Test Systems: Applications,
AN 1465-14 (available in March 2005)

Other Agilent application notes provide
additional hints that can help you develop
effective test systems:

• Creating a Wireless LAN Connection
to a Measurement System
(AN 1409-3) pub no. 5988-7688EN
http://cp.literature.agilent.com/
litweb/pdf/5988-7688EN.pdf

• Introduction to Test System Design
(AN 1465-1) pub no. 5988-9747EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9747EN.pdf

• Computer I/O Considerations
(AN 1465-2) pub no. 5988-9818EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9818EN.pdf

• Understanding Drivers and Direct I/O
(AN 1465-3) pub no. 5989-0110EN
http://cp.literature.agilent.com/
litweb/pdf/5989-0110EN.pdf

• Choosing Your Test-System Software
Architecture
(AN 1465-4) pub no. 5988-9819EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9819EN.pdf

• Choosing Your Test-System Hardware
Architecture and Instrumentation
(AN 1465-5) pub no. 5988-9820EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9820EN.pdf

• Understanding the Effects of Racking and
System Interconnections
(AN 1465-6) pub no. 5988-9821EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9821EN.pdf

• Maximizing System Throughput and
Optimizing System Deployment
(AN 1465-7) pub no. 5988-9822EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9822EN

• Operational Maintenance
(AN 1465-8) pub no. 5988-9823EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9823EN

11

www.agilent.com/find/systemcomponents

By internet, phone, or fax, get assistance with all
your test & measurement needs

Online assistance:
www.agilent.com/find/assist
Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2111
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (650) 752 5000

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
(e-mail) tm_asia@agilent.com

Product specifications and descriptions in this
document subject to change without notice.

Microsoft, Windows and Visual Studio are U.S.
registered trademarks of Microsoft Corporation.

© Agilent Technologies, Inc. 2004
Printed in the USA December 13, 2004
5989-1414EN

www.agilent.com/find/emailupdates
Get the latest information on the products and
applications you select.

Agilent Open Connectivity
Agilent simplifies the process of connecting and
programming test systems to help engineers design,
validate and manufacture electronic products.
Agilent’s broad range of system-ready instruments,
open industry software, PC-standard I/O and global
support combine to accelerate test system
development. More information is available at
www.agilent.com/find/openconnect.

www.agilent.com

