
This application note is part of the
Test-System Development Guide
series, which is designed to help
you quickly design a test system that
produces reliable results, meets your
throughput requirements, and does
so within your budget. This applica-
tion note answers common questions
about the use of drivers and direct
I/O to send commands from a PC
application to the test instrument. It
discusses how the driver came about,
what the different software layers do
in a system to help the instrument
communicate to the PC, which drivers
are compatible with various software
languages and I/O software, and
references for further study. See the
list of additional application notes in
the series on page 13.

Test-System
Development Guide
Understanding Drivers and Direct I/O
Application Note 1465-3

Table of contents
Introduction 2
History 2

GPIB 2
SCPI 3

The I/O software, making a choice 4
SICL 4
VISA 4

PC Industry adds language independence 6
VISA-COM 6

What is a driver? 7
A driver is.. 7
Driver coverage 8
Generations of drivers 9

What is IVI? 9
IVI Classes 9

Conclusion 10
Appendix 10
Glossary 12
Related Literature 13

Introduction
In a September 2001 survey, Test &
Measurement World published a sum-
mary of engineers’ worst headaches.
Instrument drivers topped the list.
Instrument manufacturers and various
trade groups have been working on
driver standards for some time, in an
attempt to alleviate the frustrations
of engineers who need to automate
measurements and create test systems
on a deadline. As a result of these
efforts, we might expect finding and
using appropriate drivers to be dra-
matically easier, but at the moment,
complexities and incompatibilities
are still troublesome.

This application note answers common
questions about the use of drivers and
direct I/O to send commands from a
PC application to the test instrument.
It discusses how the driver came
about, what the different software
layers do in a system to help the
instrument communicate to the PC,
which drivers are compatible with
various software languages and I/O
software, and references for further
study.

With new insight into these topics, you
should be able to choose, install and
use drivers more easily and reduce
the amount of time you spend getting
your instruments and computer
applications to talk to each other.

History
By computer standards, 1970 could
be considered the mists of antiquity.
That’s when instruments were con-
nected via imaginative schemes to
devices resembling computers. One
popular I/O format involved connect-
ing a large cable to the instrument.
Each line on the cable represented a
function or range, and the line was
simply grounded at the proper time.
The device, say a voltmeter, would
return a value using binary coded
decimal (BCD) 1-2-4-8 format, or a
quainter 1-2-2-4 format. Needless
to say, the programming syntax of
instruments at this time was any-
thing but standardized. However,
since everything was hard-wired,
the process was straightforward
and immediate.

GPIB
In 1971, development began on a
standard hardware interface. The
idea was to be able to trigger multiple
instruments at once and still allow
both slow and fast instruments to
“talk” on the same bus without conflict.
The first products to use this bus were
released in 1972. The same year this
new bus was dubbed Hewlett-Packard

Interface Bus (HP-IB). In 1975, IEEE
adopted it as a standard with little
modification, and IEEE-488 was born.
A variant of the original interface is
now popularly known as General
Purpose Interface Bus (GPIB).

With GPIB and a desktop computer
(actually at the time it was called a
‘desktop calculator’), the need arose
for a common communication lan-
guage. Limited processing power in
the ‘calculators’ demanded a simple
syntax, so ASCII commands were
chosen. A DMM might be sent what
was affectionately termed “R2D2
code”. Here’s an example:

“F1R2T1”

The command means “Go to the dc
volts Function, the 1 volt Range and
Trigger a reading.” Different manufac-
turers had unique ways to interpret
the command strings, based on their
instruments’ capabilities. If you had
to replace a product with one from
another manufacturer, or even a
new-generation product from the
same manufacturer, it could mean
completely rewriting the entire
program. Later versions of IEEE 488
elevated the standard from being a
hardware-only standard to one that
also specified protocol.

2

Your computer

Your instrument

Digital lines

64-pin connector,
data & control lines

Direct interface

Figure 1. Early instrument control utilized hard-wired commands.

SCPI
In 1989, seeing a need for more
clarity and interchangeability that
was available with simple ASCII,
Hewlett-Packard introduced a pro-
gramming language known as Test
& Measurement Systems Language
(TMSL). Within less than a year,
nine T&M manufacturers had met
to generate a universal approach to
instrument control, using TMSL as
the basis. The outcome was Standard
Commands for Programmable
Instruments (SCPI).

Today, SCPI is still the most-used
form of instrument control. In SCPI,
the instrument programming syntax
became much more robust and
predictable. SCPI defined a strict
hierarchy, and every command was
associated with a concomitant
response. These were defined for
source, sense and switch devices.
Here’s an example of SCPI code:

CONF:VOLT:DC 0.3,0.003

This command tells the instrument
to configure itself to get ready to read
a 0.3 volt dc signal with 3-millivolt
resolution. It should be obvious from
this statement that SCPI commands
require some intelligence on the other
end of the wire, as not every voltmeter
has a 0.3 V range. The commands
need to be parsed by the voltmeter
and this parsing adds a small layer
of delay time to the system.

One advantage of SCPI is that the list
of commands typically covers 100%
of the instrument’s programmable
functions, no matter how arcane.
For a friendly tutorial on SCPI, go to:
http://ftp.agilent.com/pub/mpusup/pc/
iop/hpibtut/ib5_scp.html.

3

www.agilent.com/find/systemcomponents

Your instrument

Physical interface

Physical interface

SCPI parser

I/O software

PC application software

Direct I/O
(native

instrument
commands like

SCPI, ASCII)

Your computer

GPIB

Figure 2. Compared to “R2D2” code, SCPI commands standardize programming and make life easier
for the programmer. SCPI commands can access virtually any programming function in the instrument,
but the parser does add small delays to the process.

The I/O Software…
SICL and VISA
Instrument commands aren’t the
whole story. It takes more “layers”
of software to communicate with a
computer. Before you send the instru-
ment a command, you need to define
the I/O path, route the information
through the proper I/O card, find out
where the instrument is on the bus
and speak to the instrument in the
syntax of the I/O you’re using.
Assuming the GPIB I/O card in the
computer is at address 7 and the
DMM is at address 22 on the bus, the
simple BASIC command might be:

ASSIGN @Dvm to 722 !
This tells the computer where to send
the command

OUTPUT @Dvm;
“TRIG:SOURCE:INT” !
sets the trigger source to internal

The above will work with a GPIB
interface, but if you try the same
thing using RS-232, the syntax is very
different. Switching between GPIB
and RS-232 would require rewriting
some code.

SICL
That’s where Standard Instrument
Control Library (SICL) I/O software
comes in. SICL was developed by HP
to make software as I/O-independent
as possible. It adds a layer on top of
the instrument code. The layer checks
to see what I/O is used and alters the
syntax accordingly. The code looks
the same, regardless of I/O type. All
you have to do is use one line of code
to declare the I/O type at the begin-
ning of the program.

SICL is not the only I/O software
available today. AGILENT VISA,
NI-VISA and NI-488 and VISA-COM
(from Agilent) perform similar func-
tions. That’s a dizzying array of
choices, so for now let’s concentrate
on VISA. While SICL software was
created to communicate with Agilent
interfaces only, VISA was created to
work industry-wide.

VISA
In the late 1980’s, there was a move
to build standardized card cage
instruments. This movement led to

a software and hardware standard
known as VME Extensions for
Instrumentation (VXI). Based on
the VME standard, VXI made special
modifications for software, shielding,
triggering, power supplies and analog
performance. VXI was adopted by
hundreds of instrument manufactur-
ers who produced a wide variety of
plug-in cards. VXI’s interchangeability
at the card level brought about the
need for common I/O software, similar
to HP’s SICL, but implemented as an
industry-wide standard. Largely
derived from the SICL library, the
VISA syntax was born.

4

Your instrument

Physical interface

Physical interface

Internal processor

I/O software (SICL)

PC application software

Direct I/O
(native

instrument
commands like

SCPI, ASCII)

Commands sent over
GPIB, RS-232,
USB, LAN, etc.

Your computer

Figure 3. SICL I/O software reduces a test engineer’s programming burden by making it easier to
change I/O types (USB, GPIB, USB, VXI, RS-232, etc) without recoding the program. SICL adds a
software layer, which has a small effect on system speed.

Virtual Instrument Software
Architecture (VISA), was created
by the VXIplug&play Foundation
to standardize I/O software across
physical interfaces and between
various vendors. In most cases, test
systems are not solely VXI, but rather
hybrids of VXI and Rack & Stack
architectures, so it was not enough
to create I/O software exclusively
for VXI. For that reason, the
VXIplug&play specifications were
extended to include traditional
standalone instruments as well as
both types 1 of VXI instruments.

Today’s two main suppliers of
VISA are Agilent Technologies and
National Instruments. (In 2000,
the same people from HP Test &
Measurement who were involved in
instrument connectivity were split
from HP in the new venture now
known as Agilent Technologies.)

VISA I/O software uses common
terminology and syntax to connect
to and control instruments. A VISA
library supports complete control of
instrument across the physical inter-
faces GPIB, RS-232, USB, LAN and VXI.

The VISA library provides the
capability of SICL, in a way that
conforms to industry standards.
A program written to work with
Agilent’s VISA library will work with
implementations of VISA from other
vendors. For those accustomed to
using SICL, Agilent’s implementation
of VISA is provided along with its
SICL libraries. (Since the introduction
of VISA, programming based on the
SICL library has gradually been
phased out in favor of the industry-
standard VISA library.)

To program a new test system, the
test engineer installs the appropriate
I/O library along with the application
programming language. VISA was
originally developed to be used with
C and C++, but can also be called from
any language that can call arbitrary
Windows dynamic-link libraries
(DLLs), including Microsoft® Visual
Basic. Agilent provides header files
to facilitate the use of VISA in Visual
Basic .NET and C#. These can be
downloaded from
http://www.agilent.com/find/iolib.

5

www.agilent.com/find/systemcomponents

Your instrument

Physical interface

Physical interface

I/O software
(VISA,SICL, VISA-COM)

PC application software

Direct I/O
(native

instrument
commands like

SCPI, ASCII)

Commands sent over
GPIB, RS-232,
USB, LAN, etc.

Your computer

1 VXI has two types of instruments, based mostly
upon their local intelligence. “Message-based”
cards” can react to a high-level message, and
usually have on-card parsing. “Register-based”
cards are just what the name implies… cards that
have directly-programmable registers. Message-
based cards do more, but are inherently slower,
since they must interpret complex commands.

Figure 4. VISA is the most popular form of I/O software. Drawing heavily on the work done for SICL,
VISA was created to serve multiple T&M suppliers and be a universal standard. VISA-COM is a new
variant of VISA.

PC industry adds language
independence
As I/O development was proceeding
in the T&M industry, the PC industry
was making big strides in I/O-indepen-
dence and language-independence.
In 1994, Microsoft stated: “The
Component Object Model (COM) is
a software architecture that allows
components made by different soft-
ware vendors to be combined into a
variety of applications. COM defines
a standard for component interoper-
ability, is not dependent on any
particular programming language,
is available on multiple platforms,
and is extensible.” 2

In February, 2001, Microsoft intro-
duced .NET, their 3rd generation of
component technology. .NET has been
applied to their integrated development
environment, Visual Studio® .NET, as
well as MS Office, other applications,
operating systems and web services.

All this is well and good, but should
the Test & Measurement industry
embrace PC Operating Systems?

Detractors point out the frequent
operating system upgrades in the PC
industry relative to T&M languages.
However, from Figure 5, it can be
seen that COM, which is integral to
.NET components, has been around
longer that most T&M standards. It
seems only logical to take advantage
of the investments Microsoft has made
to create this paradigm shift. With
3,000 engineers working for three
years on the first version of .NET,
Microsoft’s investment is twenty times
that of the leading T&M language.
Similar correlations apply to software.
Visual Basic has over 6,000,000 users
and C/Visual C++ has 1,000,000 users
worldwide. This will result in an
unprecedented body of software the
average engineer will be able to
leverage.

The most important immediate benefit
for the test engineer is that, using
Visual Studio .NET, engineers are
reporting 20-30% less development
time to create their test programs.
They are delighted in their ability to
pull in legacy code from languages
such as C, Visual C++, VEE and Visual
Basic into the .NET environment.

VISA-COM
To incorporate this programming
language independence, Agilent
initiated a VISA-COM standard as a
companion to the VISA specification.
VISA-COM software makes VISA
services available in a language-
independent COM component archi-
tecture. What does that mean? It
means not only are you free to pick
from popular I/O configurations,
but now you also have the freedom
to choose from a list of software
languages like C++, C# and VB.NET.
With Agilent’s T&M Programmer’s
Toolkit product acting as a T&M
“face” for .NET, you can access all
this from a single environment.

When using Agilent VISA-COM, you
also need to install Agilent VISA.
Agilent I/O libraries are shipped along
with Agilent software and I/O products.

6

PC software
industry

T&M
industry

In
cr

ea
si

ng
 s

of
tw

ar
e

in
te

rc
ha

ng
ea

bi
lit

y

1980's 1990's 2000's 2010's

Microsoft:
COM

Microsoft:
ActiveX

Microsoft:
.NET components

IVI-COM
(components)

IVI-C
VISA-COMVISA

VXIplug&playSICL

2 Dr. Dobb’s Journal, Microsoft Corp. December, 1994.

Figure 5. PC Software Overtakes T&M Software in interchangeability. The millions of people using
Visual Studio software will afford the engineer an unprecedented pool of available intellectual property.

What is a driver?
It’s about time we explained what a
driver is; after all, that’s the title of
this application note. By now, we
know this much: The computer has an
operating system, say Windows® XP,
under which there is an Application
Development Environment (ADE) like
Visual Studio.NET. Some language,
say C#, is used to program commands
for the instrument, and those com-
mands are passed to the I/O software,
which then passes them via a physical
interface to the instruments’ internal
microprocessor. The microprocessor
decodes those commands using its
internal I/O structure, and the instru-
ment carries out the commands.

To make all this practical, you need
to write some code. If you are a pro-
grammer, you must either memorize
or look up the Direct I/O SCPI
commands related to the particular
instrument being programmed. If
you intend to code in a proprietary
language, then you need to know
how those commands fit. For simple
applications, this approach works
well, but as application complexity
increases, using direct I/O quickly can
become difficult and time consuming.
Programming a direct communication
path usually requires you to know a
specialized computer programming
language and its programming envi-
ronment, and be familiar with proper
command sequences and interrela-
tionships between commands. You
also need to know how to load and
configure various I/O libraries and
parse instrument responses that may
be in the form of binary data or
screen graphics. Whether you have
these competencies or not, when
today’s product design cycles are
measured in months rather than
years, it doesn’t make sense to spend
several of those months coding a new
test system, unless very high volume
production is the goal.

The driver is...
The driver is a high-level, intelligent,
instrument-specific or instrument
class-specific piece of software
intended to make programming
simpler and shorten development
time. In the T&M world, it facilitates
communication to an instrument by

by guiding the user through the steps.
Its user interface can take many
forms. A driver could be a list that
pops up when you hit the next “dot”
in Visual Basic, or it could be as
elaborate as a “panel driver” that
displays a virtual front panel on the
screen of your computer to help you
set up the instrument.

7

www.agilent.com/find/systemcomponents

Figure 6. Agilent’s T&M Programmers Toolkit using a VXIplug&play WIN32 power supply driver in
VB .NET after being wrapped by the Driver Wizard.

Figure 7. A tiny but interesting program, written in VEE. With its intuitive interface, VEE is the
fastest T&M graphical language to learn. Fill in the boxes, and the VEE panel driver generates
code for you. See http://we.home.agilent.com/upload/cmc_upload/tmo/downloads/
E206HPVEE_TESTENGR_EVAL.pdf

Even if you have never programmed
an instrument in a test system, you
have probably used a driver. Digital
cameras, external hard drives and
printers—all require a driver to talk to
the PC. If you’ve upgraded a PC, you
may have found that the old printer
driver no longer works with the new
operating system, and you need to go
to the Microsoft website to find a new
one. Or you may find that the printer
doesn’t work exactly the same way it
did under the old operating system.
Similar issues exist in T&M equipment.

Driver coverage
A simple DMM may have only 25
commands, while a more complex
instrument may have hundreds. You
can imagine how expensive it is to
write an intelligent driver that antici-
pates all the possible permutations of
instrument setup, triggering, sourcing
and measurement. And that’s why
you’ll seldom see a driver that covers
every command in the instrument.

Instrument manufacturers take their
best guess at the commands you are

likely to use and craft the driver
accordingly. A typical IVI driver covers
about 40-60% of the instrument’s
command list. This may sound like
a small number, but consider this:
Agilent surveyed customers who used
our 3852A Data Acquisition/Switch
Unit. It was a complex instrument
with over 300 distinct commands
available. By poring over our cus-
tomers’ code, we found they rarely
used more than 5% of the available
commands. This is an extreme case,
but it tells you that 40%-60% coverage
is a good start.

8

Your instrument

Physical interface

Physical interface

Parser

I/O software (VISA)

PC application software

Driver

Your computer

GPIB, RS-232, etc.

Your instrument100%

capability

100%

instrument

capability

60%

instrument

capability

Physical interface

Physical interface

I/O software (VISA)

PC application software

Direct I/O
(native instrument

commands)

Driver

Commands sent over GPIB,
RS-232, USB, LAN, VXI or
other physical interface

Your
computer

Figure 9. If you are using a driver and need to access instrument
functions the driver doesn’t have, you can send direct SCPI or ASCII
commands, or go through the driver with pass-through commands to
control the instrument directly. This gives you the convenience of drivers,
with the 100% coverage of direct I/O. To avoid command
conflicts, this technique requires in-depth knowledge on the part of
the programmer.

Figure 8. The driver is, among other things, a programming aid that works
between the PC application and the I/O software. It can save enormous
amounts of development time and prevent mistakes, but can also slow
system performance by adding another layer of software.

Generations of drivers
There are three basic generations of
drivers: Proprietary T&M drivers,
Traditional T&M drivers and
Component PC drivers (Figure 10).
These represent the past, present, and
future of driver technology. In the
past, instrument drivers were custom-
designed to function with a vendor’s
own application development envi-
ronment (ADE). A considerable body
of legacy application programs uses
these proprietary drivers, but for new
development, engineers today have
better choices.

When you need to accelerate test
system design and deployment,
Agilent recommends the new IVI-COM
driver and the VXIplug&play WIN32
driver for instrument control. The
only Component PC driver built on
PC standard architecture is the new
IVI-COM driver. This standard is being
led by Agilent and other instrument
companies. A component driver built
on COM works in all popular PC lan-
guages and most T&M languages, uses
the most popular types of I/O, can be
used in the latest .NET technologies
and is backward-compatible.

What is IVI?
Notice the word “IVI” is sprinkled
around the chart in Figure 10. In 1998,
test and measurement companies
formed the Interchangeable Virtual
Instrument (IVI) Foundation 3 to
address the high cost of developing
and maintaining test system software
and being able to evolve technology
more rapidly, by the use of better
drivers. The foundation comprises
end-user test engineers, equipment
manufacturers and system integrators
with many years of experience building
test systems.

IVI classes:
The goal of hardware interchange-
ability led IVI to the concept of
instrument classes. The idea is as
simple as it sounds: If you use a
spectrum analyzer, it certainly would
save time if you could program every
instrument in the spectrum analyzer
class the same way, no matter who
built it. Both the specification and
any specific driver that implements
it are called an IVI Class Driver
(IVI-C Class or IVI-COM Class).

As of this writing, the IVI Foundation
has defined the following instrument

classes: DC Power Supply, Digital
Multimeter (DMM), Function
Generator/Arbitrary Waveform
Generator, Oscilloscope, Power Meter,
RF Signal Generator, Spectrum
Analyzer and Switch. Others are
under development.

This work makes it much simpler for
the engineer to program instruments
from separate suppliers, when those
instruments conform to a particular
“class”.

9

www.agilent.com/find/systemcomponents

When should I use a driver?
Use an instrument driver if:

• A driver is available that works with
your development environment and I/O
software, and supports the majority of
instrument features you want to use.

• You want easy access to commonly
used instrument functions because the
instrument commands are typically
organized in a hierarchical structure

• You want to simplify the process of
developing and maintaining your code
over time, because there is a single
point of interface to update or change

• Software interchangeability is important
to you.

• You need to simplify maintaining the
system when instruments need to be
exchanged.

Use direct I/O if:

• You have instrument programming
experience or access to programming
experts

• You need to use instrument features
not supported by the available drivers
(the other 40~80% of the instrument
capability)

• You need the absolute maximum in
system throughput speed

• You need to control the exact configu-
ration of the instruments in your system

• You have a large volume of legacy
SCPI-based code.

Component PC
(based on

PC standards)

Traditional T&M
(based on T&M standards)

Proprietary T&M
(specific to one language)

Instrument driver families

IVI-COM
IVI-C

(via NI)

LabVIEW
Plug&Play

(VXIplug&play
GWN)

VEE
Panel

Drivers

WIN
VXIplug&play

LabWindows/
CVI Plug&Play

3 For additional information, you can visit the IVI
Foundation website at: www.ivifoundation.org.

Figure 10. The three generations of drivers represent varying degrees of language independence.
IVI-COM is the newest and the one supporting the widest variety of software environments.

Conclusion
If the project you are pursuing is not
complex, there are often situations
where you don’t even know you are
using a driver. Indeed, that is the
ultimate goal of T&M companies… to
keep this process entirely transparent.
In the meantime, if you do get
embroiled with issues of driver
selection, note there can be tradeoffs
between speed of development and
speed of execution. The industry is
working through these issues by
instituting faster I/O and software
aids, such as tools to keep track of
instrument states. The whole idea
is to give you both fast programming
times and fast throughput.

If you choose to use a driver, computer
industry-standard IVI COM drivers
and a Visual Studio .NET-compliant
development program such as the
Agilent T&M Programmers Toolkit
give you significant leverage. The
T&M applications you develop will
show significant hardware and soft-
ware interchangeability, while being
easily maintainable and extensible.
The intellectual property you create
during the development process will be
widely transferable to other projects.

For downloads or more information
on drivers, I/O software, connectivity
and application software, join us at
the Agilent Developer Network:
www.agilent.com/find/adn.

10

Appendix

Resources
Where do I get drivers and driver tools?
Instrument vendors typically provide
drivers on a CD with new products
and offer their most up-to-date
instrument drivers on their Web
pages. Table 1 lists some of the
primary sources.

Third-party software and systems
integration companies that support
the test-and-measurement industry
can provide driver development tools
and services. One such company is
Vektrex (www.vektrex.com).

Agilent offers its own drivers on the
Web at www.Agilent.com/find/ADN,
but it does not post drivers written
by others. Because you are at the
mercy of whoever created the driver,
it is a good idea to use a driver
supplied by the same vendor who
made the equipment.

Tools
Mixing I/O hardware and I/O
software from different suppliers
Want to use Agilent I/O cards with
NI LabVIEW software?

Want to use NI I/O cards with
Agilent VEE?

Need to install Agilent VISA and
NI-VISA side by side?

Help is available for all these
scenarios. Go to:
ftp://ftp.agilent.com/pub/mpusup/pc/
binfiles/iop/m0101/readme/trouble/
niinfo.htm

Table 1. Sources of driver software

Instrument/ Finding Driver Availability
Tools vendor

Agilent Agilent drivers are available through the Agilent Developer Network
Web site. Go to
http://www.agilent.com/find/ADN and click on “Downloads.”
Drivers are listed by type of driver, and by instrument model number.

Vektrex http://www.vektrex.com Tools for developing IVI-COM drivers

Pacific Mindworks http://www.pacificmindworks.com/Default.aspx
Tools for developing drivers

Data Translation http://www.datx.com/support/
Registration is required to download drivers.

IOtech http://www.iotech.com/ftp.html Listed by instrument type

National Instruments http://www.natinst.com/idnet
Allows you to search by instrument vendor, instrument type, etc.

Racal http://www.racalinst.com/downloads
After registering on this site, you get a listing by instrument of the
types of available drivers.

Tektronix http://www.tek.com/site/sw/search/
?wt=247&link=/site/sw/search/
Search by product category or model number
(drivers co-mingled with software and firmware)

Anritsu http://www.us.anritsu.com/downloads/
default.aspx?lc=Eng&cc=US&rc=ARO

Rohde & Schwarz http://www.rohde-schwarz.com/
Look under “Shortcuts” for “drivers”

Agilent T&M Programmer’s Toolkit
(Agilent Wll40A-TK1)
Want to use IVI-C drivers in Visual
Studio .NET? Among many other
capabilities, Agilent’s T&M
Programmer’s Toolkit (see
www.agilent.com/find/toolkit) can create
managed wrappers around your
existing IVI-C and VXIplug&play
drivers. The wrapper is a native .NET
class and fully object-oriented. The
T&M Toolkit ships with more than
one hundred pre-generated wrappers
and its powerful wizard helps you to
easily create others. As Figure 11
shows, the Toolkit wizard will:

• Automatically find all your
installed drivers

• Find the installed drivers for your
instruments, or allow you to down-
load a driver from the Web

• Create a managed wrapper around
the raw C-language DLL

• Add the appropriate Project
Reference into the project

• Insert sample code to create the
driver for your instrument at the
proper hardware address

The Wrapper Wizard makes the test
engineer’s life easier:

• An example of how to call a method
on the driver

• IntelliSense help supports all the
driver’s properties and methods,
including help on each method
parameter

• Driver call errors are automatically
translated into standard .NET
exceptions

• Automatic translation of parameters
that have only a small range of pos-
sible values into a true enumeration,
including IntelliSense help on each
possible value

• Fully object-oriented implementation
of the wrapper makes it intuitive
to use

11

www.agilent.com/find/systemcomponents

Figure 12. Toolkit saves time. It searches for instruments, talks to them regardless of I/O type,
shows all choices for the next function call, writes the VB .NET or C# commands for that function,
and gives you context-sensitive help—all in one environment.

Figure 11. Agilent’s IVI-C Driver Wrapper Wizard makes it easy to use IVI-C compliant drivers in VS .NET.

Agilent Test Automation Kit
(Agilent N1908A)
www.agilent.com/find/kit
The average test system takes 360
hours to configure, test and verify.
The Test Automation Kit can save
up to 100 of those hours by:

• A USB-to-GPIB converter to simplify
installation

• loading all the Instrument
Drivers/I/O libraries (included)

• providing a real device and wiring
harness for independent verification

• stepping the engineer through the
setup process, using Test Express
software

• calling any familiar programming
language and automatically
installing the proper drivers for
the instruments present

• a library of over 200 examples in
various languages, to use as a head
start

• and providing two hours of expert
test consulting

Agilent N1908A Test Automation Kit
Lit # 5989-0000EN.

Agilent Developer Network
www.agilent.com/find/adn
The Agilent Developer Network is
the place to go for

• Drivers

• Downloads

• Discussions

…Instrument Connectivity from
Agilent… It simply works.

Glossary
ADE (application development
environment) — An integrated suite
of software development programs. ADEs
may include a text editor, compiler, and
debugger, as well as other tools used in
creating, maintaining, and debugging
application programs. Example: Microsoft
Visual Studio.

API (application programming interface) —
An API is a well-defined set of set of soft-
ware routines through which application
program can access the functions and
services provided by an underlying operating
system or library. Example: IVI Drivers

C# (pronounced “C sharp”) — new C-like,
component-oriented language that eliminates
much of the difficulty associated with
C/C++.

Direct I/O — commands sent directly to
an instrument, without the benefit of, or
interference from a driver. SCPI Example:
SENSe:VOLTage:RANGe:AUTO

Driver (or device driver) — a collection of
functions resident on a computer and used
to control a peripheral device.

DLL (dynamic link library) — An executable
program or data file bound to an application
program and loaded only when needed,
thereby reducing memory requirements.
The functions or data in a DLL can be simul-
taneously shared by several applications.

Input/Output (I/O) layer — The software
that collects data from and issues commands
to peripheral devices. The VISA function
library is an example of an I/O layer that
allows application programs and drivers
to access peripheral instrumentation.

IVI (Interchangeable Virtual
Instruments)— a standard instrument driver
model defined by the IVI Foundation that
enables engineers to exchange instruments
made by different manufacturers without
rewriting their code.
www.ivifoundation.org.

IVI COM drivers (also known as IVI
Component drivers) — IVI COM presents
the IVI driver as a COM object in Visual
Basic. You get all the intelligence and all
the benefits of the development environ-
ment because IVI COM does things in a
smart way and presents an easier, more
consistent way to send commands to an
instrument. It is similar across multiple
instruments.

Microsoft COM (Component Object
Model) — The concept of software
components is analogous to that of hard-
ware components: as long as components
present the same interface and perform the
same functions, they are interchangeable.
Software components are the natural exten-
sion of DLLs. Microsoft developed the COM
standard to allow software manufacturers
to create new software components that
can be used with an existing application
program, without requiring that the applica-
tion be rebuilt. It is this capability that allows
T&M instruments and their COM-based
IVI-Component drivers to be interchanged.

.NET Framework — The .NET Framework
is an object-oriented API that simplifies
application development in a Windows
environment. The .NET Framework has two
main components: the common language
runtime and the .NET Framework class
library.

Plug and Play drivers — (also known as
universal instrument drivers) are an
important category of proprietary drivers.
Plug and Play driver standards were origi-
nally developed for VXI instruments, and
were known as VXIplug&play standards.
When these standards were adapted for
non-VXI instruments they became known
simply as “Plug and Play” drivers. Library
functions are in accessible C-language
source and you can call them from programs
written in VEE, BASIC, LabVIEW or
LabWindows/CVI.

SCPI (Standard Commands for
Programmable Instrumentation) —
SCPI defines a standard set of commands to
control programmable test and measurement
devices in instrumentation systems. Learn
more at http://www.scpiconsortium.org.
See “Direct I/O” for example.

12

SICL — Standard Instrument Control
Library (SICL) is a library of I/O function
calls primarily implemented and supported
by Agilent. Some of these are core functions
that are common across all physical inter-
faces (GPIB, RS-232, etc.), while others are
specific to the interface. The SICL library
provides very complete and flexible control of
instruments. SICL is optimized for use from
C-language and C++ application programs,
but can also be used from Visual Basic and
other environments that can call arbitrary
Windows DLLs. SICL provides complete
access to GPIB, RS-232, LAN, VXI message-
based, and VXI register-based products.

Universal drivers — another name for
Plug and Play drivers

VISA (Virtual Instrument Software
Architecture) — The VISA standard was
created by the VXIplug&play Foundation.
Drivers that conform to the VXIplug&play
standards always perform I/O through the
VISA library. Therefore if you are using Plug
and Play drivers, you will need the VISA I/O
library. The VISA standard was intended to
provide a common set of function calls that
are similar across physical interfaces. In
practice, VISA libraries tend to be specific
to the vendor’s interface.

VISA-COM — The VISA-COM library is a
COM interface for I/O that was developed
as a companion to the VISA specification.
VISA-COM I/O provides the services of VISA
in a COM-based API. VISA-COM includes
some higher-level services that are not
available in VISA, but in terms of low-level
I/O communication capabilities, VISA-COM
is a subset of VISA. Agilent VISA-COM is
used by its IVI-Component drivers and
requires that Agilent VISA also be installed.

VXIplug&play — A hardware and software
standard that allows interoperability
between VXI instruments made by different
manufacturers. Learn more at
http://www.vxipnp.org

Related literature

Data sheets
• W1140A Software and Connectivity,

pub. no. 5988-5756EN

• N1908A Test Automation Kit,
pub. no. 5989-0000EN

Application notes

Test-System Development Guide:

• Introduction to Test-System Design
(AN 1465-1) pub. no. 5988-9747EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9747EN.pdf

• Computer I/O Considerations
(AN 1465-2) pub. no. 5988-9818EN,
http://cp.literature.agilent.com/
litweb/pdf/5988-9818EN.pdf

• Understanding Drivers and Direct I/O
(AN 1465-3) pub. no. 5989-0110EN
http://cp.literature.agilent.com/
litweb/pdf/5989-0110EN.pdf

• Choosing Your Test-System Software
Architecture (AN 1465-4)
pub. no. 5988-9819EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9819EN.pdf

• Choosing Your Test-System Hardware
Architecture and Instrumentation
(AN 1465-5) pub. no. 5988-9820EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9820EN.pdf

• Understanding the Effects of Racking
and System Interconnections
(AN 1465-6) pub. no. 5988-9821EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9821EN.pdf

• Maximizing System Throughput and
Optimizing Deployment
(AN 1465-7) pub. no. 5988-9822EN
http://cp.literature.agilent.com/
litweb/pdf/5988-9822EN.pdf

• Operational Maintenance
(AN 1465-8) pub. no. 5988-9823EN
http://cp.literature.agilent.com/litweb/
pdf/5988-9823EN.pdf

• Using LAN in Test Systems: The Basics
(AN 1465-9) pub no. 5989-1412EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems: Network
Configuration
(AN 1465-10) pub no. 5989-1413EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems: PC
Configuration
(AN 1465-11) pub no. 5989-1415EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and Measurement
Environment
(AN 1465-12) pub no. 5989-1417EN
http://cp.literature.agilent.com/
litweb/pdf/5989-1417EN.pdf

• Using LAN in Test Systems: Applications,
AN 1465-14 (available in February 2005)

• The IVI Open-Architecture Driver
Specifications: An Overview for System
Designers,
(AN 1409-4) pub. no. 5988-7939EN

13

www.agilent.com/find/systemcomponents

www.agilent.com

By internet, phone, or fax, get assistance with all your
test & measurement needs

Online assistance: www.agilent.com/find/assist
Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) (31 20) 547 2111
(fax) (31 20) 547 2390

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (82 2) 2004 5004
(fax) (82 2) 2004 5115

Latin America:
(tel) (650) 752 5000

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6836 0252
(e-mail) tm_asia@agilent.com

Microsoft, Windows, Windows NT and
Visual Studio are U.S. registered trademarks
of Microsoft Corporation.

MATLAB is a U.S. registered trademark of
The Math Works, Inc.

Product specifications and descriptions in this
document subject to change without notice.

© Agilent Technologies, Inc. 2004
Printed in the USA December 21, 2004
5989-0110EN

www.agilent.com/find/emailupdates
Get the latest information on the products and
applications you select.

Agilent Open Connectivity
Agilent simplifies the process of connecting and
programming test systems to help engineers design,
validate and manufacture electronic products.
Agilent’s broad range of system-ready instruments,
open industry software, PC-standard I/O and global
support combine to accelerate test system
development. More information is available at
www.agilent.com/find/openconnect.

