
Tips for Optimizing
Test System Performance in
Linux Soft Real-Time Applications

Application Note 1465-31

Flexibility has always been a
cornerstone of the Linux oper-
ating system. The Linux kernel
can be tuned and modifi ed more
than most other operating
systems to make it fi t your ap-
plication’s requirements. With
some fairly simple techniques,
you can optimize your system’s
suitability for soft real-time
applications, which often is
desirable for simulation or
measurement sequencing with

exact timing. Tips for Optimizing
Test System Performance in
Linux Soft Real-Time Applica-
tions is part of a series of
application notes designed to
explain key aspects of using
Linux in test and measurement
applications.

Table of Contents
Introduction 2
• Real-time systems
• Soft real-time versus hard
 real-time systems
Basic tips for optimizing response times 3
Time slice values 5
Scheduling policies and priorities 5
Using preemptible kernel 7
Virtual memory and paging 8
Summary 9
Related Agilent Literature 10

2

Introduction
Effective functional testing often
requires you to simulate the
natural operating environment
of your device under test (DUT),
including realistic stimulus sig-
nals. Simulating the operating
environment can be a challenge,
especially if your DUT is a control
module designed for a real-time
application. To properly test the
DUT, your test system needs to
have real-time capabilities as
well, so it can apply the right
stimulus, based on the DUT’s
outputs, in a timely manner.

Real-time systems
What do we mean by “real-time”?
A real-time system has the ability
to react to an external event
(such as a trigger signal) within
a known amount of time. Unlike
regular operating systems, real-
time systems guarantee a certain
reaction time, no matter what
state the system is in when the
external event occurs. A real-
time system doesn’t necessarily
react quickly – but it is defi nitely
reliable.

Let’s look at some examples
where you would need at least a
degree of real-time capability in
your test system. Let’s suppose
you need to apply a sequence
of stimulus signals with exact
timing. Whenever you control
the timing in your test software
using operating system calls
such as sleep(), you rely on the
operating system to awaken
your process at the right time.
A real-time system typically
gives you more precise control
over sleep times.

Simulating sensors in a dynamic
environment is another example
where you need real-time capa-
bility. The stimulus signal often
needs to be generated on the fl y,
as a function of DUT state and
other variable parameters. For
smooth update of the stimulus
signals, your software algorithm
needs to be run at a certain
minimum rate. A real-time
system is able to guarantee
that minimum rate.

Most operating systems, including
off-the-shelf Linux and Windows®
systems, are not real-time. They
optimize the average processor
time available to the user or to a
process, but sometimes the system
will simply become unavailable
for a moment. This could happen,
for example, when the operating
system is performing a house-
keeping task.

Soft real-time versus hard
real-time systems
Depending on the nature of your
application, you may not be able
to live without hard real-time
capabilities. For example, if
you are controlling a chemical
process using software-based
closed-loop control, you will
likely need a guaranteed up-
date rate at all times. Another
example would be controlling
machinery or other moving
parts. In these examples, real-
time performance is critical
and required under all circum-
stances.

Some applications, however,
work well with what is known
as soft real-time capability. In
soft real-time, the system is
optimized for reliable timing,
but on a best-effort basis with
degradation in performance on
rare occasions. Test and mea-
surement applications are often
good candidates for soft real-
time operation because of their
non-critical nature (at least,
compared to the process control
example described above) and
the possibility of repeating
the test.

3

This application note offers
several tips for optimizing the
soft real-time performance of
regular (off-the-shelf) Linux
systems. Why would you choose
this option instead of a hard
real-time approach? Hard real-
time systems (including Linux
variants) are often proprietary
and come with a substantial
increase in system complexity.
Consequently, as long as soft
real-time is suffi cient, you may
want to avoid the cost and risk
of using a specialized hard real-
time variant.

Basic Tips for Optimizing
Response Times
First, let’s cover some tactics
that might appear to be trivial
but are important to keep in
mind, nonetheless.

Avoid the challenge if you can.
One potential solution to the
real-time challenge is to just
not play the game. For example,
in manufacturing test, some
people change the rules by load-
ing special test software into
their DUTs. This approach can
substantially simplify testing.
For example, the various pins,
channels or subfunctions of the
DUT oftentimes can be tested
sequentially, without the need
for simultaneous stimulus and
real-time synchronization be-
tween the various system

resources. The DUT test software
communicates with the test ap-
plication and supports testing by
controlling individual resources
or reporting status information.

Put the burden of real-time
control on your instruments.
Sometimes, you can avoid the
challenge on the software side by
putting the burden of real-time
control on a suitable instrument
(or set of instruments). For
example, the Agilent 34980A
multifunction switch measure
unit can be programmed to per-
form a sequence of actions with
exact timing and raise an alarm
if a given measurement channel
exceeds preset limits. Another
example: the Agilent E5818A
LXI class-B trigger unit uses
IEEE-1588 (precision time
protocol or PTP) over Ethernet
for precise time-stamping of
events and time-based triggering
of conventional (non-PTP)
instruments.

Using the real-time capabilities
built into your instruments is a
clever work-around. Obviously,
it is only feasible if your instru-
ments can be configured to
handle the real-time requirements
of your application. If your re-
quirements call for intelligent and
fl exible stimulus and response,
an implementation in software
could be the only choice.

Use a fast PC with plenty of
memory. A fast PC with ample
processing power is a great
starting point for soft real-time
applications. Among the things
that hurt you most in these ap-
plications is the housekeeping
regularly done by the operating
system, as well as the overhead
involved in the start-up of addi-
tional programs or services. You
probably cannot avoid house-
keeping activities altogether,
but a fast PC will complete such
tasks more quickly and, as a result,
there will be less of an interrup-
tion to your measurement task.

Shut down unused services.
Make sure your PC spends its
processing power on the tasks
that are really important. A de-
fault Linux installation typically
will have a number of services
enabled you don’t need. These
services often come with a
daemon that implements the
service, and that daemon pro-
cess might become active to do
its work or just to perform some
housekeeping. With regards to
real-time, such processes are
a source of uncertainty and
increased response times. It is
good practice to disable unused
(network) services anyway

4

because they could be a security
hole. The chkconfi g(8) command
allows you to list and enable/
disable the services on your
system. Some examples of ser-
vices you might want to disable:

• The cron service allows you
 to schedule programs for later
 execution. It is usually used
 for routine tasks such as back-
 up, removal of old temporary
 fi les, etc., that impact response
 times when running.

• Other services that might not
 be required include network
 fi le system (nfs, nfsserver),
 ntp (network time protocol),
 cups (printing server), as
 well as any fi rewall services
 (especially if you are using an
 isolated network with a stand-
 alone fi rewall).

• Many basic network services
 (including telnet and ftp) do
 not register as an individual
 service but are started by
 inetd, the Internet daemon.
 These services are enabled
 or disabled by editing the fi le
 /etc/inetd.conf (when using the
 original inetd) or the fi les in
 the /etc/xinetd.x directory
 (when using the newer xinetd,
 the extended Internet daemon).

• As an alternative to using
 chkconfi g(8) or editing the
 confi guration fi les directly,
 most Linux distributions
 feature interactive system
 administration tools such as
 YaST, available with openSUSE
 (see Figure 1).

Isolate the real-time part of your
application. Oftentimes, only a
small part of the application or
DUT requires real-time capabili-
ties. For example, an ECU that
requires some of its sensor inputs
to be updated in real-time usu-
ally has a load of other inputs and
outputs that are static.

It is often useful to separate the
real-time and non-real-time parts
of the application in separate
processes. Doing so allows you to
optimize each part for its special
requirements and make different
design decisions. For example,
you could implement the real-time
part using C and the rest using a
higher-level language. You
could also use different schedul-
ing policies (see Scheduling Poli-
cies and Priorities, page 5).

Figure 1. Most distributions come with administration aids such as YaST (openSUSE)

5

Time Slice Values
Multitasking presents a tradeoff
between responsiveness and
overhead. The system’s time
slice value indicates how long a
process is allowed to run before
it needs to relinquish the CPU
to the next process. If the time
slices are short, the average
waiting time is smaller and the
system will be more responsive.
At the same time, every task
switch means overhead, and the
effi ciency of the system overall
will decrease somewhat.

Larger time slices are good for
number-crunching or server ap-
plications. Smaller time slices
are better for desktop applica-
tions and interactive use. For
real-time applications, you might
want to choose even smaller
time slices.

Figure 2 shows an excerpt of
the fi le kernel/sched.c under the
kernel sources tree. This is where
the time slice values are defi ned.
As you can see, in this example
the default time slice is set to
100 ms. For real-time applica-
tions, you might want to try
setting both the minimum and
default values to 1 ms.

Again, most distributions offer
interactive system confi guration
tools that allow you to tune vari-
ous system parameters without
modifying the kernel source
fi les directly. Figure 3 shows the
corresponding window in YaST
(openSUSE). The time slice values
are defi ned under System/Kernel
in the system confi guration tool.

Reducing the time slice values
could help your system be more
responsive overall. Note, how-
ever, that there is only an impact
on your real-time application if it
is running as a “normal” process
(with static priority zero). See
the following section for details.

Scheduling Policies and
Priorities
The Linux scheduler allocates
processor time to the various
processes based on their
scheduling policy and priority.
Most processes use the
SCHED_OTHER policy which
always goes along with a static
priority value of zero (mean-
ing, lowest priority). Within this
group of (regular) processes,
the scheduler uses additional
dynamic priority values for fair-
ness. For example, a process that
is waiting for CPU time gets an
increase in (dynamic) priority
over time.

/*
 * These are the 'tuning knobs' of the scheduler:
 *
 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
 * Timeslices get refilled after they expire.

 */

#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
#define DEF_TIMESLICE (100 * HZ / 1000)
#define ON_RUNQUEUE_WEIGHT 30
#define CHILD_PENALTY 95
#define PARENT_PENALTY 100
#define EXIT_WEIGHT 3
#define PRIO_BONUS_RATIO 25
#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
#define INTERACTIVE_DELTA 2
#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)

#define STARVATION_LIMIT (MAX_SLEEP_AVG)

#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))

Figure 2. Time slice values, as defi ned in sched.c

6

To a certain degree, you can
set up a process for preferred
treatment by manually giving it
a high (dynamic) priority using
the nice(1) command (for new
programs) or renice(8) (for exist-
ing processes). This will result in
more processor time being avail-
able to the process on average,
but is usually not suffi cient for
real-time applications. No matter
what the dynamic priority is, the
process is still preempted when
processes with non-zero static
priority are ready to run.

For time-sensitive processes, Li-
nux offers the SCHED_FIFO and
SCHED_RR policies. Processes
that use these policies just use
static priorities, usually rang-
ing from 1 to 99 (highest prior-
ity). There’s no fairness here: a
lower-priority process is always
preempted by a higher-priority
one. On the positive side, you can
usually get a decent level of soft
real-time performance by using a
high priority value.

SCHED_RR is very similar to
SCHED_FIFO but adds time slic-
ing between all processes sharing
the same priority. Using the FIFO

algorithm, a process goes to the
end of the list only if it relin-
quishes the processor voluntarily
or if it is blocked by an I/O
request (or, of course, if a higher-
priority process is ready to run).
Using the RR (round robin)
algorithm, the process loses the
processor after it has been run-
ning for a full time quantum. So,
with this policy, there is some
fairness, at least within the same
level of priority.

Figure 3. Confi guration of time slices using YaST (openSUSE)

7

The code snippet shown in
Figure 4 demonstrates how
a process can change its own
scheduling policy and priority.
Obviously, this requires root
privilege.

The graph in Figure 5 shows
what effect this change can have
on your application. The four
traces show the execution time
of a math function over time.
The yellow and turquoise traces
were taken while the system was
running idle (no CPU-intensive
processes other than the bench-
mark process). The traces show
the execution time using the
SCHED_OTHER and SCHED_FIFO
policies, respectively. As you
can see, the performance is very
similar and reasonably constant.

The picture changes dramatically
if the system is running under
load. In this example, additional
load is generated by simultan-
eously starting the OpenOffi ce
Writer application and the Firefox
Web browser. The blue trace
shows that the execution time
using the default scheduling
policy fl uctuates widely, with
peaks where the time is more
than double the idle level. Using
the FIFO policy, however, the
performance stays constant and
reliable (magenta trace).

Using Preemptible Kernel
As shown in fi gure 5, Linux uses
preemptive multitasking. This
means that the operating system
can take control away from a
process if its share of time runs
out or if a higher-priority process
is ready to run. Historically, the

Linux kernel has been an excep-
tion to that rule: code running in
kernel space was excluded from
preemption. This is an issue in
real-time systems because regular

processes can avoid preemption
by making an operating system
call (and some calls, such as
fork(2), can take a fair amount
of time to execute).

Figure 5. Impact of scheduling policy on execution time (example)

#include <stdio.h>
#include <sys/mman.h>
#include <sched.h>
#include <errno.h>
#include <sys/resource.h>
#include <time.h>

int MinPriority;
int MaxPriority;
struct sched_param prio;
int en;

// Get min and max priority values for SCHED_FIFO policy
MinPriority=sched_get_priority_min(SCHED_FIFO);
printf("Min priority for FIFO policy is %d\n",MinPriority);
MaxPriority=sched_get_priority_max(SCHED_FIFO);
printf("Max priority for FIFO policy is %d\n",MaxPriority);

// Set scheduling policy and priority value (maximum)
prio.sched_priority = MaxPriority;
if(sched_setscheduler(0,SCHED_FIFO,&prio)<0) {
 // There was a problem
 en=errno;
 printf("Error returned by sched_setscheduler: %s\n",strerror(en));
 exit(0);
}

Figure 4. Code example for setting the scheduling policy and priority

8

Luckily, modern Linux kernels
can be confi gured to support
preemption. Using this option,
all kernel code is considered to
be preemptible unless explicitly
marked as a critical section.
Figure 6 shows the correspond-
ing entry in the XConfi g1 kernel
configuration tool. Kernel
preemption is found under the
“Processor type and features”
subtree.

1 To use XConfi g, cd to /usr/src/linux and run
the command make xconfi g. Note that XConfi g
is based on the Qt library, so make sure all pack-
ages related to Qt are installed on your system.
XConfi g creates a kernel confi guration (.confi g)
fi le that is subsequently used by “make” when
it is building the kernel. The complete process
of building and installing a new kernel depends
on your distribution and boot manager and
is beyond the scope of this application note.
Please refer to your distribution’s documentation.

Virtual Memory and Paging
Like all modern operating
systems, Linux offers virtual
memory and paging, and can
thereby offer a much larger ad-
dress space than is physically
available in RAM. When the
system runs low on physical
memory, it swaps currently
unneeded pages out to its
swap space on the hard disk.
When the pages are accessed,
an exception occurs and the
pages are swapped back in.

Paging is one of the big issues
with real-time applications
because it introduces additional
latency and uncertainty. The
actual delays due to paging
depend on memory usage and
are usually hard to foresee.

To limit the effects of paging, at
the very least, you should lock
your real-time application’s
process and associated data in
RAM. The code snippet in Figure 7
shows how this can be done.

Figure 6. Entry for kernel preemption in XConfi g tool

#include <sys/mman.h>

// Lock all current and future memory areas associated with the current process

if(mlockall(MCL_CURRENT|MCL_FUTURE)<0) {

// There was a problem

 en=errno;

 printf("Error returned by mlockall: %s\n",strerror(en));

 exit(0);
}

// Real-time stuff goes here.

// Unlock memory (optional, done automatically when process ends)

munlockall();

Figure 7. Locking a process in RAM

9

Figure 8. Disabling paging via XConfi g

Although it is brute force, the
most effective method of avoiding
latency issues caused by paging
is to exclude that option from the
kernel altogether. You might want
to choose this option if you have
a good grasp of your application’s
current and future memory
requirements. Embedded applica-
tions, for example, usually have
well-known memory requirements
and don’t require paging. Figure 8
shows the corresponding option
in the XConfi g kernel confi g-
uration tool.

Summary
If your application requires soft
real-time operation and you
choose to implement the corre-
sponding algorithms in software,
you can benefi t from the fl exibility
offered by Linux. Using real-time
scheduling (SCHED_FIFO or
SCHED_RR policy) along with a
high static priority often makes
a dramatic difference. By com-
bining the latter three strategies
(using real-time scheduling and
preemptible kernel and avoiding
paging) you can typically get a
very decent level of soft real-time
performance from off-the-shelf
Linux distributions.

10

Related Agilent literature

The 1465 series of application
notes provides a wealth of
information about the creation
of test systems, the successful
use of LAN, WLAN and USB in
those systems, and the optimi-
zation and enhancement of
RF/microwave test systems:

• Test-System Development Guide:
 A Comprehensive Handbook
 for Test Engineers
 (pub no. 5989-5367EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-5367EN.pdf

Test System Development

• Test System Development Guide:
 Application Notes 1465-1
 through 1465-8 (pub no. 5989-2178EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-2178EN.pdf

• Using LAN in Test Systems:
 The Basics
 AN 1465-9 (pub no. 5989-1412EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems:
 Network Configuration
 AN 1465-10 (pub no. 5989-1413EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems:
 PC Configuration
 AN 1465-11 (pub no. 5989-1415EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and
 Measurement Environment
 AN 1465-12 (pub no. 5989-1417EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1417EN.pdf

• Using SCPI and Direct I/O vs. Drivers
 AN 1465-13 (pub no. 5989-1414EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1414EN.pdf

• Using LAN in Test Systems:
 Applications
 AN 1465-14 (pub no. 5989-1416EN)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-1416EN.pdf

• Using LAN in Test Systems:
 Setting Up System I/O
 AN 1465-15 (pub no. 5989-2409)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-2409EN.pdf

• Next-Generation Test Systems:
 Advancing the Vision with LXI
 AN 1465-16 (pub no. 5989-2802)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-2802EN.pdf

RF and Microwave Test Systems

• Optimizing the Elements of an
 RF/Microwave Test System
 AN 1465-17 (pub no. 5989-3321)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-3321EN.pdf

• 6 Hints for Enhancing
 Measurement Integrity in
 RF/Microwave Test Systems
 AN 1465-18 (pub no. 5989-3322)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-3322EN.pdf

• Calibrating Signal Paths in
 RF/Microwave Test Systems
 AN 1465-19 (pub no. 5989-3323)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-3323EN.pdf

LAN eXtensions for
Instrumentation(LXI)

• LXI: Going Beyond GPIB, PXI and VXI
 AN 1465-20 (pub no. 5989-4371)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4371EN.pdf

• 10 Good Reasons to Switch to LXI
 AN 1465-21 (pub no. 5989-4372)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4372EN.pdf

• Transitioning from GPIB to LXI
 AN 1465-22 (pub no. 5989-4373)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4373EN.pdf

• Creating Hybrid Systems
 with PXI, VXI and LXI
 AN 1465-23 (pub no. 5989-4374)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4374EN.pdf

• Using Synthetic Instruments
 in Your Test System
 AN 1465-24 (pub no. 5989-4375)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4375EN.pdf

• Migrating System Software
 from GPIB to LAN/LXI
 AN 1465-25 (pub no. 5989-4376)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-4376EN.pdf

• Modifying a GPIB System to
 Include LAN/LXI
 AN 1465-26 (pub no. 5989-6824)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6824EN.pdf

Using Linux in Your Test Systems

Example code is available for download at
http://www.agilent.com/fi nd/linux

• Using Linux in Your Test
 Systems: Linux Basics
 AN 1465-27 (pub no. 5989-6715)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6715EN.pdf

• Using Linux to Control LXI
 Instruments Through VXI-11
 AN 1465-28 (pub no. 5989-6716)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6716EN.pdf

• Using Linux to Control LXI
 Instruments Through TCP
 AN 1465-29 (pub no. 5989-6717)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6717EN.pdf

• Using Linux to Control
 USB Instruments
 AN 1465-30 (pub no. 5989-6718)
 http://cp.literature.agilent.com/
 litweb/pdf/5989-6718EN.pdf

www.agilent.com/find/open

www.agilent.com
For more information on Agilent Technologies’
products, applications or services, please
contact your local Agilent office. The complete
list is available at:

www.agilent.com/find/contactus

Americas
Canada (877) 894-4414
Latin America 305 269 7500
United States (800) 829-4444

Asia Pacific
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 0120 (421) 345
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 € fixed network rates
Germany 01805 24 6333**
 **0.14 €/minute
Ireland 1890 924 204
Israel 972-3-9288-504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 41 (21) 8113811(Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/find/contactus
Revised: October 24, 2007

Product specifications and descriptions
in this document subject to change
without notice.
Microsoft is a U.S registered trademark
of Microsoft Corporation.

© Agilent Technologies, Inc. 2008
Printed in USA, February 19, 2008
5989-6719EN

www.agilent.com/find/emailupdates
Get the latest information on the
products and applications you select.

www.agilent.com/find/agilentdirect
Quickly choose and use your test
equipment solutions with confidence.

www.agilent.com/find/open
Agilent Open simplifies the process
of connecting and programming
test systems to help engineers
design, validate and manufacture
electronic products. Agilent offers
open connectivity for a broad range
of system-ready instruments, open
industry software, PC-standard I/O
and global support, which are
combined to more easily integrate
test system development.

www.lxistandard.org
LXI is the LAN-based successor to
GPIB, providing faster, more efficient
connectivity. Agilent is a founding
member of the LXI consortium.

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when prom-
ised. You will get full value out of
your Agilent equipment through-
out its lifetime. Your equipment
will be serviced by Agilent-trained
technicians using the latest factory
calibration procedures, automated
repair diagnostics and genuine parts.
You will always have the utmost
confidence in your measurements.

Agilent offers a wide range of ad-
ditional expert test and measure-
ment services for your equipment,
including initial start-up assistance
onsite education and training, as
well as design, system integration,
and project management.

For more information on repair and
calibration services, go to:

www.agilent.com/find/removealldoubt

