
In the 1990s, GPIB- and VXI-based
systems dominated test system
architectures. With the introduction
of PXI in the mid ’90s and LXI in
2005, it’s likely that your inventory
of test equipment now consists of
multiple architectures. Looking
forward, one question may come to
mind: When it comes time to build a
new test system, which architecture
will work best?

Building Hybrid
Test Systems, Part 1
Laying the groundwork for
a successful transition

If we compare and consider the
alternatives, the “best” answer is
probably a hybrid of two (or maybe
three) test architectures. There are at
least four good reasons to consider
this alternative:

• All of the functions you need
are not available in a single
architecture

• You can’t meet every physical,
wiring or performance need with
a single architecture

• Certain functions are much more
cost-effective in one architecture
versus another

• You would like to reuse existing
equipment that may not be in your
preferred architecture

As an analogy, think of home
audio/visual (A/V) systems. If you
are setting up a home theater—or
building a new entertainment
room—you might choose to purchase

Application Note 1465-32

the entire system at one time. The
simplest approach is to select a set of
components from one manufacturer.
This maximizes the chances of all
parts working together fl awlessly—
perhaps with one remote control—
and providing the best overall
“system” performance. Of course, you
will need to buy cables, cabinetry
and so on from other manufacturers,
but the core components should work
together very nicely.

Contrast this with what may be the
more common situation: You have
an existing A/V system and decide
to add a new capability. You don’t
want to throw away your existing
equipment, but still want everything
to work well together. This may lead
you to replace several components
and make a number of modifi cations.
The total cost is less than buying a
new system, but operating the system
may be more diffi cult than with new,
compatible, state-of-the-art compo-
nents guaranteed to work together.

2

Comparing approaches
in test systems
Test systems follow a similar model.
It can be much easier to assemble
and program a system of the newest
components from one architecture;
however, this is not always a cost-
effective path. A hybrid architecture
is often chosen because either
existing equipment must be used or
a core capability is not available in
the preferred architecture.

Building your system in a single
architecture can have clear benefi ts:

• A simpler programming interface
with consistent instrument driver
types and debugging methods

• Greater simplicity in cabling
and connecting of instruments,
switches and test devices

• Consistency in packaging, racking
and human interface

• The potential for enhanced
performance

There will also be architecture-
specifi c benefi ts because each one
offers unique functions, capabilities
and performance points.

Building a hybrid test system
requires a wide range of decisions,
but a few quick rules-of-thumb will
simplify the process:

• Try using no more than two
architectures. Using more is
generally too complex and is more
prone to problems. Think back to
the A/V analogy: If you buy each
component from a different manu-
facturer, you may have problems
with incompatible cabling, remote
controls and so on. Similar issues
may arise when mixing multiple
test architectures and products
from multiple vendors.

• Build as much of your system as
possible in a single, newer archi-
tecture. This will let you use many
newer capabilities and maximize
the potential benefi ts.

• When updating an existing system,
carefully consider which parts
to keep or replace—instruments,
application software, instrument
drivers, underlying support tools,
and more. Ideally, it’s best to
change only one or two elements at
a time. Conversely, it’s important
to consider the age and support
status of every part of your system.
We’ll cover this in more detail
throughout this note.

Working through
the issues
To illustrate some of the complexities
and considerations involved, let’s
start by outlining the various compo-
nents or layers that make up your
test system:

• System management

• Test application or program

• Input/output (I/O) library

• Instrument control

• Computing

• Connections

• Instruments

• Fixturing, cabling and routing

• Device under test (DUT)

Clearly, there are numerous choices
to make within each level (Figure 1).
Key factors such as your test require-
ments, performance needs and
available resources will infl uence
your decisions within each level—
and will affect your choice of primary
and secondary architectures.

System management Test executive, database program

Test application or program

Input/output (I/O) library

Instrument control

Computer

Computer-to-instrument connections

Instruments

Switches, fixtures, cables, routing

Device under test

VEE Pro, MATLAB®, LV, Visual Studio®

VISA, NI-488, SICL

SCPI, IVI-COM, IVI-C, VXIplug&play

PC with Windows®, Linux or real-time OS

LAN, GPIB, USB, PXI, VXI

DMM, scope, analyzer, source…

Instrument-to-DUT connections

Figure 1. Components of a test system

3

The following general process can be
helpful when building a hybrid test
system:

1. Inventory the components you
have on-hand and decide which
ones to continue using.

2. Determine which measurements
and requirements aren’t covered
by the equipment from Step 1.

3. Determine if you can make all
measurements (and meet all
other requirements) with just one
architecture.

4. Determine how you will combine
multiple architectures.

5. Resolve any software issues that
result from the chosen combination
of architectures.

6. Work out other issues such as
computer, operating system,
assembly, cabling, and shielding.

7. Order or obtain instruments,
software and any other required
system elements.

To ensure your success, there are
a few key points to consider within
Steps 1, 2, 3, 4, and 5.

Step 1. When completing the
inventory of instruments, also
consider your performance needs. In
some cases, it is prudent to replace
one or more key instruments where

a newer model can signifi cantly
improve performance. The existing
instrument may still be usable
elsewhere.

Steps 2 and 3. These require
you to select a test architecture that
solves your unmet measurements
and requirements. For a majority of
mainstream applications, Figure 2
provides a summary of test functions
available in the major architectures.
The details will certainly change with
time, and even an architecture with
a poor score may provide the specifi c
capabilities you need. One note:
Older architectures may have more
choices, but the products may not
offer the same performance, features
or cost-effectiveness as solutions
available in newer architectures.

Figure 2. Relative functionality coverage (1 to 5) for the fi ve major architectures

Interface function GPIB LXI PXI VXI USB
Power supply
DMM
Oscilloscope ●
Function generator
Counter
Switching
Spectrum analyzer
RF sig generator
Digitizer
Digital I/O
Pulse/pattern gen
Logic ●
Digital-to-analog
Network analyzer
Data acquisition

● Additional LAN-based solutions available (not LXI-compliant)

4

Step 4. This has implications for
several of the layers in Figure 1.
For example, connectivity choices
can affect your computing choice.
The absolute best connectivity
performance is usually obtained with
dedicated I/O cards plugged into a
computer, but this may limit your
choice to one: a desktop computer
located close to the test equipment.
The LAN and USB interfaces built
into today’s PCs can minimize this
problem, but it is also worth consid-
ering alternatives such as remote
(LAN) connections and I/O gateways
or converters as ways to achieve
greater fl exibility. Specifi cally, many
I/O converters support programming
modes that make them transparent
to the system software. For instance,
the Agilent E5810A LAN/GPIB
gateway makes it possible to program
GPIB instruments as if they were
connected through a dedicated GPIB
card, even though they are physically
connected to a LAN.

Figure 3 shows various connection
alternatives for common test archi-
tectures. Note that the modular
architectures (e.g., VXI, PXI,
PXI Express) have somewhat less
fl exibility because they use a central-
ized computing architecture and
depend on a fast, local backplane.

Step 5. At fi rst, the software
issues may appear to be the most
problematic part of building a hybrid
test system. Within Figure 1, software
elements are present in multiple
layers, and each of these must be
tested against the earlier decisions.
Here is one suggested approach:

1. Decide on the operating system.
Legacy systems may be on
Windows® 98 or Windows NT®,
but Microsoft® no longer supports
either one. Windows 2000 support
ends in 2010. Whether using a
Windows-based OS, Linux or a
real-time operating system, you

may want to ensure continued
support over the expected lifetime
of the test system—or at least
through the development phase.

2. Check the expected support life
of your application software.
If moving from an older system,
you may need to upgrade to a
newer revision or release. Note that
your choice of application software
also affects your choice of instru-
ment driver (discussed below).

3. Ensure I/O library support.
For new programs, we strongly
recommend using VISA, which is
an open, industry-standard library.
This may automatically link in
if you are using typical test-and-
measurement application software.
It will also maximize portability
for future projects. Note: Many
GPIB instruments are accessed
via the proprietary NI-488 library.
Fortunately, the NI and Agilent I/O
libraries can both support mixed
VISA and NI-488 calls. Be sure to
use a revision of the I/O libraries
that is supported on your chosen
operating system.

LAN/GPIB
gateway

LAN

LAN
Router

GPIB

GPIB instruments
LAN and LXI
instruments

LAN

LAN
Router

VXI or PXI
mainframe
with LAN

LAN and LXI
instruments

MXI
interface

LAN
Router

VXI or PXI
mainframe

LAN and LXI
instruments

LAN/GPIB
gateway

LAN
Router

GPIB

GPIB
Card

GPIB instruments
LAN and LXI
instruments

Figure 3. Connection alternatives for common hybrid systems

5

4. Determine your instrument-
control driver or language.
Modular architectures such as VXI
and PXI require an instrument
driver for instrument control (e.g.,
to perform common measure-
ment and control functions). In
contrast, GPIB, LXI and USB
instruments often have a built-in
native language called Standard
Commands for Programmable
Instruments (SCPI), but drivers
are also commonly available.

Writing directly in SCPI generally
provides the best performance and
fi nest control, but this approach
may not integrate as smoothly as
a driver will into your program-
ming language. Note: There are
multiple types of drivers, and these
have been created for a number
of reasons. Please refer to the
“Instrument programming” sidebar
for more about this topic.

At this point you’re ready to assemble
the rest of your system. The website
www.agilent.com/fi nd/open has
pointers to application notes that
cover the common issues in system
creation.

Instrument programming
The decision to use drivers or direct
programming depends on instrument
architecture, age of instrument,
programming language, and your
personal preferences.

With PXI, PXI Express or VXI, you will
need a driver to control the instruments.
These architectures have a backplane
connection and use register reads
and writes to control their modular
card-based instruments. Most modules
contain limited processing power,
depending on the host computer for
all control and processing tasks. This
requires the use of drivers that are
compatible with your chosen operating
system and preferred programming
language.

With GPIB, LXI or USB instruments, you
can generally choose between writing
instructions in the native language of
the instrument or using an instrument
driver. SCPI is the most common native
instrument language and has the
advantage of being extremely portable,
working in virtually every revision of
every operating system. It can also
provide complete, fi ne-grained control
of the instrument. Because SCPI is the
instrument’s native language, it also

tends to have fewer bugs than a driver,
which may have been written long
after the instrument was introduced.
In contrast to SCPI, instrument drivers
may not implement every instrument
function, so this is another advantage
that favors SCPI.

SCPI programming has a downside:
it doesn’t integrate seamlessly into
your programming language. SCPI
programming is executed by sending
ASCII strings through the write and read
functions of the programming language
while drivers provide a programming
interface that appears as a logical exten-
sion of the programming language.

If you chose to use a driver, you next
need to determine which type to
use. Early instrument drivers were
proprietary, written specifi cally for each
test-focused language. LabVIEW is the
only common test language still using
proprietary instrument drivers, which
are required to maintain its graphical
interface. If you are programming in
LabVIEW, your best choice is to use
these drivers although LabVIEW can
also use industry standard drivers.
Other languages usually call either an
IVI (C or COM) or VXIplug&play driver.

VXIplug&play drivers were the original
open driver used across companies in
the test industry, and many older instru-
ments have these drivers. Because they
are DLL-based, all have the potential
revision issues associated with shared
library drivers. VXIplug&play drivers
were updated to become IVI-C drivers.
IVI-C drivers have all the same benefi ts
and issues as VXIplug&play drivers.
IVI-COM drivers use the Microsoft
COM model, making them much more
portable to today’s modern languages.

There is no perfect choice for drivers. If
you are using a more modern language
that can use COM objects, we suggest
using any IVI-COM drivers available. If
there is not an IVI-COM driver avail-
able, you’ll need to fi nd an IVI-C or
VXIplug&play driver.

Many instruments are shipped with a
CD that contains instrument drivers.
Both Agilent and NI also provide
websites where you can download
the latest drivers. Go to www.agilent.
com/fi nd/ADN for Agilent drivers and
www.ni.com/devzone/idnet/ for
NI drivers. Other instrument manufac-
turers typically post drivers on their
websites, too.

6

Assessing your
system priorities
In building a hybrid test system,
the best choice for a given situation
often depends on your priorities.
Whichever way you go, there are
likely to be challenges. If you under-
stand the possible issues, however,
you should be able to avoid most
problems.

There are two common scenarios
in system creation:

• Minimum development time
You’re probably combining old
and new equipment and want to
rapidly assemble a working system
so you can start testing the DUT as
soon as possible. System assembly,
programming, and debugging are
necessary, but you want to mini-
mize the time spent on these activi-
ties. You want good performance,
but it is not your top priority.

• Maximum overall performance
You’re testing a large volume of
products and the per-unit test time
will dominate the overall cost of
test. You are willing to spend more
time up front to get better system
performance.

Hybrid systems are a viable
approach to either scenario. The
next application note in this series
will cover these two scenarios and
present suggested steps that will
help you minimize development
time and maximize overall system
performance.

Conclusion
When building a new test system,
the best answer may be a hybrid
approach that includes two architec-
tures that, together, can fully satisfy
your test requirements. Using more
than two architectures can quickly
become too complex and will be
prone to problems.

The two-architecture hybrid
approach is viable whether you
seek to minimize development time
or maximize overall system perfor-
mance. In an example of the former
scenario, it takes just fi ve steps to
convert an all-GPIB system into a
LAN-based hybrid system that uses
existing GPIB instruments alongside
new LXI instruments.

7

Related Agilent
literature
The 1465 series of application notes provides a
wealth of information about the creation of test
systems, the successful use of LAN, WLAN and
USB in those systems, and the optimization and
enhancement of RF/microwave test systems.

• Test-System Development Guide:
A Comprehensive Handbook
for Test Engineers

 (pub no. 5989-5367EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-5367EN.pdf

Test System Development
• Test System Development Guide:

Application Notes 1465-1 through 1465-8
 (pub no. 5989-2178EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2178EN.pdf

• Using LAN in Test Systems:
The Basics

 AN 1465-9 (pub no. 5989-1412EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1412EN.pdf

• Using LAN in Test Systems:
Network Configuration

 AN 1465-10 (pub no. 5989-1413EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1413EN.pdf

• Using LAN in Test Systems:
PC Configuration

 AN 1465-11 (pub no. 5989-1415EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1415EN.pdf

• Using USB in the Test and
Measurement Environment

 AN 1465-12 (pub no. 5989-1417EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1417EN.pdf

• Using SCPI and Direct I/O vs. Drivers
 AN 1465-13 (pub no. 5989-1414EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1414EN.pdf

• Using LAN in Test Systems:
Applications

 AN 1465-14 (pub no. 5989-1416EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-1416EN.pdf

• Using LAN in Test Systems:
Setting Up System I/O

 AN 1465-15 (pub no. 5989-2409EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2409EN.pdf

• Next-Generation Test Systems:
Advancing the Vision with LXI

 AN 1465-16 (pub no. 5989-2802EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-2802EN.pdf

RF and Microwave Test Systems
• Optimizing the Elements of an

RF/Microwave Test System
 AN 1465-17 (pub no. 5989-3321EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3321EN.pdf

• 6 Hints for Enhancing Measurement
Integrity in RF/Microwave Test Systems

 AN 1465-18 (pub no. 5989-3322EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3322EN.pdf

• Calibrating Signal Paths in
RF/Microwave Test Systems

 AN 1465-19 (pub no. 5989-3323EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-3323EN.pdf

LAN eXtensions for Instrumentation (LXI)
• LXI: Going Beyond GPIB, PXI and VXI
 AN 1465-20 (pub no. 5989-4371)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4371EN.pdf

• 10 Good Reasons to Switch to LXI
 AN 1465-21 (pub no. 5989-4372EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4372EN.pdf

• Transitioning from GPIB to LXI
 AN 1465-22 (pub no. 5989-4373EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4373EN.pdf

• Creating Hybrid Systems
with PXI, VXI and LXI

 AN 1465-23 (pub no. 5989-4374EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4374EN.pdf

• Using Synthetic Instruments
in Your Test System

 AN 1465-24 (pub no. 5989-4375EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4375EN.pdf

• Migrating System Software
from GPIB to LAN/LXI

 AN 1465-25 (pub no. 5989-4376EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-4376EN.pdf

• Modifying a GPIB System to
Include LAN/LXI

 AN 1465-26 (pub no. 5989-6824EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-6824EN.pdf

Using Linux in Your Test Systems

Example code is available for download at
http://www.agilent.com/find/linux.

• Using Linux in Your Test Systems:
Linux Basics

 AN 1465-27 (pub no. 5989-6715EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-6715EN.pdf

• Using Linux to Control LXI
Instruments Through VXI-11

 AN 1465-28 (pub no. 5989-6716EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-6716EN.pdf

• Using Linux to Control LXI
Instruments Through TCP

 AN 1465-29 (pub no. 5989-6717EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-6717EN.pdf

• Using Linux to Control
USB Instruments

 AN 1465-30 (pub no. 5989-6718EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-6718EN.pdf

• Tips for Optimizing
Test System Performance in
Linux Soft Real-Time Applications

 AN 1465-31 (pub no. 5989-6719EN)
 http://cp.literature.agilent.com/

litweb/pdf/5989-6719EN.pdf

www.agilent.com/find/open

Remove all doubt
Our repair and calibration services
will get your equipment back to you,
performing like new, when promised.
You will get full value out of your Agilent
equipment throughout its lifetime. Your
equipment will be serviced by Agilent-
trained technicians using the latest
factory calibration procedures, auto-
mated repair diagnostics and genuine
parts. You will always have the utmost
confi dence in your measurements.

Agilent offers a wide range of additional
expert test and measurement services
for your equipment, including initial
start-up assistance onsite education
and training, as well as design, system
integration, and project management.

For more information on repair and
calibration services, go to

www.agilent.com/fi nd/removealldoubt

Agilent Email Updates

www.agilent.com/fi nd/emailupdates
Get the latest information on the products
and applications you select.

 Agilent Direct
www.agilent.com/fi nd/agilentdirect
Quickly choose and use your test
equipment solutions with confi dence.

www.agilent.com
For more information on Agilent
Technologies’ products, applications or
services, please contact your local Agilent
offi ce. The complete list is available at:
www.agilent.com/fi nd/contactus

Americas
Canada 877 894 4414
Latin America 305 269 7500
United States 800 829 4444

Asia Pacifi c
Australia 1 800 629 485
China 800 810 0189
Hong Kong 800 938 693
India 1 800 112 929
Japan 81 426 56 7832
Korea 080 769 0800
Malaysia 1 800 888 848
Singapore 1 800 375 8100
Taiwan 0800 047 866
Thailand 1 800 226 008

Europe & Middle East
Austria 0820 87 44 11
Belgium 32 (0) 2 404 93 40
Denmark 45 70 13 15 15
Finland 358 (0) 10 855 2100
France 0825 010 700*
 *0.125 € fi xed network rates

Germany 01805 24 6333*
 *0.14€/minute

Ireland 1890 924 204
Israel 972 3 9288 504/544
Italy 39 02 92 60 8484
Netherlands 31 (0) 20 547 2111
Spain 34 (91) 631 3300
Sweden 0200-88 22 55
Switzerland (French) 41 (21) 8113811 (Opt 2)
Switzerland (German) 0800 80 53 53 (Opt 1)
United Kingdom 44 (0) 118 9276201
Other European Countries:
www.agilent.com/fi nd/contactus
Revised: October 24, 2007

Microsoft, Windows and Windows NT are U.S.
registered trademarks of Microsoft Corporation.
Visual Studio is a registered trademark of
Microsoft Corporation in the United States
and/or other countries.

Product specifi cations and descriptions in this
document subject to change without notice.

© Agilent Technologies, Inc. 2008
Printed in USA, March 19, 2008
5989-8175EN

