
HP-IB

~ Performance Evaluation of HP-IB
Using RTE Operating Systems

Application Note 201-4

33208 fREQUENCY SYNTHESI ..
HEWLETT. PAOKAIIO

UNE

iii

Fli;1 HEWLETT
~e.. PACKA~D

II

Table of Contents Page

Introduction 2
HP-IB/RTE Overview 4
HP-IB Performance : 6
Service Request Processing 14
Time-out Processing 16
Performance Enhancements 19
Appendix 20

COMPUTER tI I

This application note will help you to de­
termine the capabilities and limitations of
the Hewlett-Packard Interface Bus (HP-IB)
when used with an HP 1000 Computer
System. HP-IB is Hewlett-Packard's im­
plementation of IEEE Standard 488-1978,
"Digital Interface for Programmable
Instrumentation" .

DRIVER I 1 DEVICE

All HP 1000 computers use the Hewlett­
Packard family of Real-Time Executive
(RTE) operating systems The newest and
smallest member of the HP 1000 family,
the L-Series, uses RTE-L, while the HP
1000 M, E, and F-series use RTE-II or
RTE-IV. Each version of RTE has its unique
features, but the real-time philosophy is
similar. This gives the important benefit of
program transportability. Most programs
written in a high level language are trans­
portable from machine to machine without
any changes.

The references in this note pertain to all
RTE systems, HP-IB drivers, and HP-IB I/O
cards unless specifically stated. To de­
termine the operating system, driver, and
HP-IB card for your particular system,
please refer to table 1

#1 I
I/O CARD #1

#1

I
DRIVER I I/O CARD - --E #2 #2 DEVICE

I #2

I I/O CARD
DRIVER

I #3
#3 ~ t? #3

Figure 1A. The "old" way, with a separate driver, separate I/O card, and
separate cable for each device.

COMPUTER

Figure 1 B. The HP-IB way. One driver, and up to 14 devices on each bus.

1

The HP-IB interface card is just one of the
many interface cards available for your
computer system. Its vast capabilities ,
however, make it unique. The HP-IB I/O
card allows the computer to control, talk,
and listen to a variety of both fast and slow
devices connected to it. HP-IB compatible
devices include instruments such as vol­
tmeters , high speed D/A's and counters,
and computer peripherals such as
graphic devices , discs, or even other
computers. The length of messages can
span from one byte to thousands of bytes

per message (and higher, as new and
more intelligent devices become
available).

Because it is designed for an extremely
wide range of interfacing uses, HP-IB may
not be the fastest method. However, it of­
fers the most flexibility at a minimum cost.
Up to 14 HP-IB devices can be inter­
connected with only one interface card.

The same driver operates all devices on
the bus. When compared to the previous
'methods of requiring a separate interface
card and separate driver for each device,
the cost advantage of the HP-IB is readily
apparent.

2

This performance note presents a model
which can be used to determine the time
to send or receive data messages from
various instruments and devices opera­
ting with any of the HP 1000 computers
using RTE and HP-IB. The model can also
be used to calculate the amount of spare
time the computer will have during a mea­
surement. This spare time, or unused
computer potential, can be used to oper­
ate other HP-IB test stations or perform
other progam operations.

The speed of an HP-IB system will depend
on the measurement and commmunica­
tion speeds of the instruments being used.
For this reason, various popular instru­
ments (with differing measurement and
communication speeds) have been used
as examples. The instruments used are
the HP 3455A Dig ital Voltmeter (average
speed and average message length), HP

~ 3437A System Voltmeter (high speed and
short message length), and HP 2240A

Measurement and Control Processor (high
speed and large buffer capable of long
message lengths). The HP 3495A Scanner
(a listener only) is also shown in conjunc­
tion with the 3455A.

This performance note is divided into five
sections

1. An overview of how HP-IB is used

2. Timing and performance of HP-IB sys-
tems

Measurement speeds and timing re- 3. Service request timing and usage
quirements for instruments are usually
available in their respective Operation and 4. Time-out handling and usage

Service Manuals, or from the instrument 5. HP-IB performance enhancement pos-
supplier. sibilities

Table 1. Hardware and Software needed for HP-IB in HP 1000 Computers.

HP 1000 HP 1000 HP 1000 HP 1000
COMPUTER L-Series M-Series E-Series F-Series

OPERATING RTE-L RTE-II or RTE-II or RTE-II or
SYSTEM RTE-IV RTE-IV RTE-IV

DRIVER 10.37 DVR37 DVR37 DVR37

HP-IB I/O 12009A 59310B 59310B 59310B
CARD

3

HP-IB/RTE Overview

The driver's role in
controlling the HP-IB

The HP-IB driver is the key link in any RTE
based system between a running program
and the HP-IB interface card (figure 2). It
is a general purpose driver used in all
HP-IB/RTE configurations to the bus. The
driver can be called through FORTRAN,
BASIC, PASCAL, and Assembly lan­
guages, making it a powerful tool that can
be used in a variety of environments.

The driver assumes responsibility for all
HP-IB interaction between the computer
and the interface card for the bus. This
includes control modes, device address­
ing, and data passage. In an automatic
addressing mode (autoaddressing),
which is the most common technique
used, each device is addressed by a
pre-chosen logical unit number. Standard
READ/WRITE statements are then used.
For example, if a digital voltmeter was
chosen to be logical unit (LU) 1 number 29,
a vol tage reading in BASIC to be called
"V1" would be set up as follows:

READ#29;V1

The driver assumes the responsibility of
addressing the device, controlling the
transmission of the data, and accepting
the data into the computer as variable
"V1".

Translating the data:
The formatter

When data is brought into the computer, it
is usually translated to a format internally
usable by the computer (i.e., ASCII to bi­
nary). The same process is used in re­
verse on output; the data is translated
from the internal representation to the for­
mat which the device can accept. The
routine used to make this translation is
called the formatter.

1A logical unit (LU)is the method that RTE
uses to reference I/O devices. This allows
the flexibility of writing a program without
specifying the physical location of the
device. At execution time, RTE dynami­

cally matches the LU and the device.

4

I' ~ u
S

F ~ E
R 0 D

R R ~
P M R I HP-IB §~mZlI:t HP-IB
R A T V INTERFACE DEVICE
0 T E E
G T R
R E ~ A R

M

./ ./

Figure 2. Structure of the various components used when working with HP-IB.

ASCII format is most commonly used for
data transfer over an HP-IB bus. For
example, the value "3.141592653x1012"
(which is stored in two computer words as
a floating point number) would be trans­
ferred via HP-IB as fourteen 8-bit bytes
(each byte holds one character).

Timing studies for RTE have produced a
formula that can be used in the HP-IB
model for the formatter overhead. The
equations for the HP 1000 L, M, E, and
F-series computers are:

t (L) = 4.402 +.606n
t(M) = 1.928+.288n
t(EF) = 0.697+.109n

where n is the number of bytes and t is the
time in milliseconds. For example, a 14
byte string on an HP 1000 L-series com­
puter would take approximately 12.9 mil­
liseconds to convert.

The formatter, drivers, languages, and
user programs are all overseen by the RTE
operating system. It controls the order of
execution, and provides protection for un­
authorized actions. For efficiency, certain
routines (like the driver) are linked to and
included in the operating system. There­
fore , each time the driver is accessed, the
request must go through RTE. Conceptu­
ally, this flow is shown in figures 3 and 4,
which shows a model of HP-IB within an

RTE environment. This model shows that

the overhead of the driver is only a small
portion of total system overhead when
using HP-IB. Overhead expenses for other
components of the system, such as the
formatter and operating system, must be
considered to give a proper view of over­
all HP-IB performance.

For both input and output, notice in figures
3 and 4 that communication with HP-IB
can be performed with or without the for­
matter. Skipping the formatter step will
save processing time. If computation is
not to be performed on the data (i .e., the
data is to be stored or displayed), you
probably won't need formatting.

Data transfer techniques

Data brought into HP 1000 M, E, and
F-Series computers via the HP-IB I/O card
is handled in one of two ways. The first
method is Direct Memory Access (DMA).
With DMA, the information is brought into
memory directly from the interface card.
This process is controlled by the Dual
Channel Port Controller (DC PC) which
acts as a direct pipeline between the
memory and I/O sections of the computer.
DMA is the fastest method for transferring
information, and is necessary for functions
such as disc transfers. Once assigned,
the DMA channel is dedicated to the I/O
card until the data transfer is completed.
There are 2 DMA channels available when
the DCPC is installed. They can both be
used for data transfer, but if you have a
disc, remember that it requires one of the
channels when swapping programs or
transferring data. If you use both channels
for an HP-IB data transfer, the disc and
other devices which use DMA must wait
until one of the data transfers completes.

The other method of data transfer for HP
1000 M, E, and F-Series computers is
non-DMA, or "i nterrupt processing." With
this method, as in the DMA case, the
computer (via the driver) initiates the data
transfer, and then goes off to perform
other tasks. The difference is that the
HP-IB card and driver work in conjunction
to transfer data to or from the memory by
triggering an interrupt when the operating
system is needed. When the interrupt sig­
nal is noticed, the operating system re­
turns, transfers the data via software, and
goes off again to other tasks. The set-up
time for interrupt processing is less than
that for DMA, but the transfer time for each
byte is greater since interrupt servicing is
required for each byte (figure 5).

HP-IB/RTE Overview

U
S
E
R

P
R
o
G
R
A
M

U
S
E
R

~,
0
G
R
A
M

F
0
R
M
A
T
T
E
R

"

D
R

--r-
v
E

/'R

Figure 3. Input from the HP-IB.

~

D
~

I_~ ,J ~ .r R - HP-IB
T V

I- I- E ~I
} ITERFACE ~~m;al:t

---.-

~) ~

/ /" l/
Y

Figure 4. Output to the HP-IB.

HP-IB
DEVICE

HP-IB
DEVICE

Note: For both input and output, communication with HP-IB can be performed with or without the
formatter. Skipping the formatter step will save processing time. If computation is not to be
performed on the data (the data is to be stored or displayed) you don't need formatting.

The previous discussion pointed out that
the fastest and least CPU-demanding
technique for data transfer is DMA. Suffi­
cient DMA channels would need to be
available, however, to satisfy all I/O pro­
cesses. This is the design philosophy for

SET UP TIME PROCESSING TIME PER BYTE

the HP 1000 L-Series. Every I/O card in the
L-Series computer has a DMA channel,
and uses it automatically. With this design,
multiple devices such as discs, tape
drives, terminals and instruments can all
use DMA concurrently. Data transfer rates
have been maximized, and CPU utilization
has been minimized. The use of interrupt
processing for HP-IB in an L-series com­
puter has been eliminated.

DMA I I 00000000000000000000000000000000000

NON-DMA c:::::J
SET UP
TIME

CJ CJ CJ CJ
PROCESSING TIME PER BYTE

TIME -----'l~~

CJ CJ CJ CJ CJ CJ

Figure 5. Although the set-up time is greater for DMA, the time to process each
individual character or byte in a message is much less.

5

HP-IB Performance

The most important question to be asked
about any HP-IB configuration is whether
there is sufficient capability to perform the
needed task. This really breaks down to
whether the devices connected on the bus
will run at the required rate, and how much
capacity is left in the computer for other
tasks. Factors influencing this decision in­
clude interface card speed, device
speed, length of the data message, and
how the data will be treated once inside
the computer.

The results reported in this performance
note were obtained on an HP 1000 Model
45 system with RTE-IVB using standard
(595ns) memory, and on an HP 1000
Model 10 with RTE-L.

HP-IB driver speed

The first item needed to determine HP-IB
performance is the speed of the interface
card operating with its driver. Table 2
shows the maximum transfer speeds for
both DMA and non-DMA for RTE-IV, and
DMA for RTE-L. Figures 6 and 7 illustrate
these results graphically. It can be seen
that for each method there is a fixed
set-up time, and then a fairly linear incre­
ment of time per byte of data in a mes­
sage. The set-up time includes the time to
pass through the operating system, driver
housekeeping, and addressing a device
as a talker or listener (the formatter is
separate).

The total time to perform an input or output
task is the sum of the time required for the
data transfer plus the time required to for­
mat the data. This can be represented by
the formula:

t(IO) = t(exec) + t(format)

= (HP-IB setup time
+ transfer rate x number of

bytes)
+ (format setup time
+ conversion rate x number of

bytes)

Note that if the formatter is not required
(i.e., an EXEC CALL is used), the terms for
the formatter in the above equation revert
to zero.

6

All coeffecients for the above equation are
presented in this note, but a que:3tion
arises about the data transfer rate. Most
devices communicate at a rate slower
than HP 1000 computers can. Therefore,
should the data transfer rate of the com­
r?uter be used , or should the data transfer
rate of the device be used instead? This
question has to be answered separately
for DMA and non-DMA operation.

Using DMA processing , the 59310B can
handle approximately 550,000 bytes per
second, and the 129009A can handle over
one million. When a device transfers data
slower than these rates, the DMA transfer
occurs at the slower device rate. To com­
pute the DMA transfer time , multiply the
number of bytes to be transferred by the
time required for the device to transfer one
byte (seconds/byte). Then , add 6 milli­
seconds for approximate set-up time.

Whenever a byte has been transferred
using non-DMA processing in an HP 1000
M, E, or F-Series computer, the driver
checks to see if the next byte is ready. If it
is, the driver processes it directly. This is
displayed by the fast rate equation (curve
B). The speed of the device must be faster
than 17,000 bytes per second (60
microseconds/byte) to enjoy the higher
speed slope.

If the next byte is not ready, the computer
goes off to another task. When the next
byte is ready, an interrupt is generated,
causing execution to return to the driver. It

.'

then takes up to 1.1 mi lliseconds (on in­
put) to process the byte. This is displayed
by the slow transfer rate equation (curve
C). Note that the set-up time also appears
to increase. This slow transfer rate is
slower than the transfer rate of most de­
vices. The result is 2 distinct curves, Band
C, for non-DMA processing. Either the de­
vice is fast enough to ride the fast curve
(B), or it will "miss the bus" and have to
take the slower curve (C). As stated ear­
lier, the L-Series uses DMA, so these
non-DMA curves are not applicable.

The intersection of the fast non-DMA and
DMA curves for RTE-IV is approximately
130 bytes for output and 56 bytes for in­
put. As a general rule , total time is
minimized when fast interrupt processing
is used to the left of the intersection and
DMA to the right. However, common
sense dictates that a short burst of data
too fast for non-DMA 2 should be handled
by DMA. Likewise, a long, slow string
should be handled via non-DMA. For
example, the 3437A voltmeter can be
programmed to delay up to 1 second be­
tween readings. At this rate, a burst of
10,000 readings (the maximum the 3437 A
can send after a single request) wou ld
take almost 3 hours, sending only 2 data
bytes per reading. Tying up a shared DMA
channel for such infrequent use would be
an inefficient use of the resource.

2The maximum non-DMA transfer rate is
approximately 17,000 bytes per second.
This limitation is imposed by the driver
structure.

Table 2. HP-18 data transfer equations.

INPUT OUTPUT

Setup Time Per Byte Setup Time Per Byte
Time in Message Time in Message

Operati ng System (MS) (MS) (MS) (MS)

RTE-L DMA (Curve "A") 6.28 .001n 6.29 .001n

RTE-IV DMA (Curve "A") 5.95 .002n 6.14 .002n

RTE-IV Fast Interrupt 2.71 .060n 2.95 .020n
(Curve "8")

RTE-IV Slow Interrupt 5.73 1.10n 7.61 .560n
(Curve "e")

Note: The maximum data rate for the 59310B is 550,000 bytes/second .

The maximum data rate for the 12009A is 1,098,000 bytes/second.

25

20

15

TIME
(MS)

10

5

o

©
RTE-IV
SLOW INTERRUPT

RTE-IV
DMA

100

RTE-IV
FAST INTERRUPT

RTE-L
DMA

®

200 300 400

Figure 6. Maximum Number of Input Bytes.

25

20 RTE-IV
SLOW INTERRUPT

15

TIME
(MS)

10

5 RTE-L ®
DMA

0 100 200 300 400

Figure 7. Maximum Number of Output Bytes.

An HP-IB model

The HP-IB transfer speed coefficients
shown in table 2 can be used in conjunc­
tion with the system flow diagram (figures
3 and 4) to construct a conceptual model
of HP-IB system performance.

The examples for this model will be the HP
3455A and HP 3437A Digital Voltmeters
and the 2240A Measurement and Control
Processor. The voltmeters represent many
of the requirements of working with HP-IB,
and are the most popular multimeters cur­
rently offered. The 2240A is one of the first
HP products that uses Silicon-on-

Sapphire (SOS) microprocessor technol­
ogy, and lends itself to many intelligent
measurement and control applications.

In most cases, there is a set pattern to the
order in which HP-IB functions are per­
formed. In the housekeeping section, the
remote enable command is executed to
get the device's attention for remote con­
trol. Also, system configuration of the de­
vice can be altered to provide for time-out
processing, service requests, and DMA
RTE-IV defaults to non-DMA. for the re­
source management reasons previously
explained. RTE-L automatically provides
DMA

HP-IB Performance

When HP-IB system configuration has
been completed, the HP-IB devices and
computer go through the following steps:

• Computer TALKS/device LISTENS

the computer sends the device codes
to set up and program the device

• Computer activates the device

the desired function is performed by
the device

• Computer LISTENS/device TALKS

the device sends a response message
or a status message

Various combinations of the above steps
can occur. Also, the computer may use
the formatter to translate either the incom­
ing or outgoing data. More complicated
models could also be constructed. How­
ever, these steps are the basic building
blocks, and will be used in our examples.

Performance Examples:
HP 3455A Digital Voltmeter

Figure 8 shows the conceptual model for
an HP-IB system with the HP 3455A Digital
Voltmeter. The 3455A is a high accuracy
digital voltmeter capable of transmitting
up to 24 readings per second in the d.c.
mode if high resolution is not required. In
the high resolution setting, however, as
few as 2 readings per second could be
the maximum (remember, it depends on
the device settling time and function per­
formed). Sixteen bytes (including carriage
return and line feed) are transmitted for
each reading .

In the maximum-rate low resolution mode,
according to the model, each reading
should take a total of 62 milliseconds to
complete for RTE-L, and 48 milliseconds
for RTE-IV. During this period, the com­
puter wil l be active for over 26 mil­
liseconds in RTE-L, or 20 milliseconds in
RTE-IV, to control the transfer and trans­
late the data. The difference between

7

HP-IB Performance

computers appears to be CPU processing
speed for the formatter. The main point,
however, is to observe that the computer
is able to process other tasks during the
voltmeter settling time period (shaded
area) until the characters beg in to transfer.

After running th is test on the HP 1000, it
was found that the read ings actually took
50 milliseconds (or 20 readings per sec­
ond) with system util ization of 16 mil­
liseconds of CPU time for the RTE-IV sys­
tem , and 60 mi lli seconds (16 readings per
second) with 28 mil li seconds of utilization
for RTE-L.

1="'-1 r-'''-j

System utilization is g iven in absolute time
instead of a percentage, because it might
be misleading to report utilization as a
percentage. If the DVM settling varies, the
total time to complete the measurement
will also vary . However, the absolute time
for computer involvement will remain con­
stant, regard less of settling time. There­
fore , the percentage utilization for a read­
ing decreases as the settling time
inc reases.

The results obtained for the 3455A DVM
and all other devices tested were shorter
than the model for total time required . This
is understood when it is realized that the
worst case settling times were used for
estimation in the model. CPU utilization

48 .23

.,

differed slightly in each example. This is
mainly due to system overhead, the test­
ing program, and DMA cycle stealing.

To characterize the use of non-DMA in
RTE-IV, the same experiment was con­
ducted with the 3455A. The model and
non-DMA equations show that the data
processing time can be expected to in­
crease when not us ing DMA, and so will
CPU involvement. Without DMA, mea­
surement took 58 mil liseconds to com­
plete (17 readings per second) with 28
mil li seconds of CPU utili zation . This shows
that DMA provides a benefit in speed and
overhead even if the fast curve cannot be
met. If DMA is availab le, it should be used.

SETUP I
HP 1000

COMPUTER I TALK SET U'fOR I
TR~~~g~'T3·· I

READ

UNUSED
COMPUTER
POTENTIAL

COMPUTER LISTENS
& RECEIVES READING

READING 15:1 SETUP 1
TRANSLATED COS~~~SER I TALK
(FORMATTER) TRIGGER ""T3" I

tlNvseo
COMPUTER
POTENTIAl.

)

8

I z
HP 3455A ~

OVM SETS SWITCHES.
SETTLES & NORMALIZES

RE ADINGS

OVM TALKS & SENDS
READING

1.12~ " ---- _+-__ 32 ----j

STEP

COMPUTER SENDS MESSAGE TO PROGRAM AND TRIGGER DVM

• SETUP
• SEND MESSAGE - METER LISTENS (2 BYTES)

DVM SETTLES

COMPUTER RECEIVES READING FROM DVM

• SETUP
• RECEIVE VALUE DVM TALKS (14 BYTES)

FORMAT VALUE

TOTALS

Note: All times in milliseconds
CPU TIME

% UTILIZATION = TOTAL TIME

HP 1000
COMPUTER

7.61
1.12

5.95
3.2

2.3

20.18

20.18
48 .23

42%

Figure 8. Model for HP 3455A Digital Voltmeter.

DVM s eTS SWITCHES
SETTLES ETC

HP 3455A
VOLTMETER

1.12

34

3.2

TOTAL
TIME

7.61
8.73

42.73

45.93

48.23

48.23

HP 3455A Digital Voltmeter
and HP3495A Scanner

The next example of HP-IB performance is
with a 3455A Digital Voltmeter and the HP
3495A Scanner. This combination is very
popular, since it allows one meter to be
used to measure multiple test points. Fig­
ure 9 shows the timing model when read­
ing through 10 channels on the DC volts
range. First a scanner channel must be
closed. Then the meter must be triggered
and read. It is estimated by the model that

it requires 121 milliseconds per channel
read with 48 milliseconds of computer
utilization time for RTE-L, and 90.47 mil­
liseconds per channel with 30 mil­
liseconds utilization for RTE-IV. The actual
time was 120 milliseconds per channel
(9.5 reading/sec) with 46 milliseconds
computer utilization for RTE-L, and 95 mil­
liseconds with 30 milliseconds utilization
for RTE-IV.

The previous examples showed the opera­
tion of HP-IB with typical instruments that

HP-IB Performance

perform tasks individually. You can per­
form the same analysis for other HP-IB
devices by consulting the particular de­
vice manual to find the device-dependent
times , such as settling time , gate time,
integration time, or other delays. Also, Ap­
plication Note Series 401 , HP-IB Pro­
gramming Examples, presents perfor­
mance information for many HP-IB instru­
ments used with an HP 1000 computer.

COMPUTER LISTENS
& RECEIVES READING

==1 /'" CYClE AEPEATS FOA 1 2.3 ~ NEXT CHANNEL

REAOING IS
TRANSLATEO
(FO RM ATIER)

------J.----,.,----l

STEP

COMPUTER SENDS MESSAGE TO CLOSE SCANNER CHANNEL

• SETUP
• SEND MESSAGE - SCANNER LISTENS (4 BYTES)

SCANNER SWITCH SETTLES

COMPUTER SENDS MESSAGE TO PROGRAM AND TRIGGER DVM

• SETUP
• SEND MESSAGE - METER LISTENS (2 BYTES)

DVM SETTLES

COMPUTER RECEIVES READING FROM DVM

• SETUP
• RECEIVE VALUE - DVM TALKS (14 BYTES)

FORMAT VALUE

TOTALS

Note: All times in milliseconds
CPU TIME

% UTILIZATION = TOTAL TIME

HP 1000
COMPUTER

7.61
2.24

7.61
1.12

5.95
3.2

2.3

30.03

30.03
98.08

31%

3455A & 3495A
VOLTMETER
& SCANNER

2.24

40

1.12

34

3.2

Figure 9. Model for HP 3455A Digital Voltmeter and HP 3495A Scanner with Option 2 installed.

TOTAL
TIME

7.61
9.85

49.85

57.46
58.58

92.58

95.78

98.08

98.08

9

HP-IB Performance

HP 3437A Digital Voltmeter

The HP 3437A Digital Voltmeter is a good
example of an instrument requiring DMA
processing. The 3437A can take over
5000 readings per second, and up to
9999 readings per burst. Each reading
transmits 2 bytes when "packed format" is
selected. This rate is faster than non-DMA
processing can handle. Although the
3437 A can take a reading in 175 mi­
croseconds, the driver would revert to the
slow non-DMA curve because the delay
between bytes is greater than 60 mi­
croseconds. Therefore on curve C, it
would take 1.1 milliseconds to process the
interrupt for the next reading. During this
time, 6 readings would be lost, due to the
synchronous operation of the 3437 A. DMA
must be used.

A test was performed with the 3437 A, tak­
ing various numbers of readings (from 100
up to 5000). The total time values were
then plotted on a graph (figure 10), and
linear regression performed to extrapolate
the setup time and computer involvement.
The slope of the lines in figure 10 shows a
reading rate of 5535 readings per second
(with 2.9% CPU utilization) for RTE-L, and
4758 readings per second (with 3.8%
CPU utilization) for RTE-IV. The y-intercept
in figure 10 represents the setup time to
trigger the 3437 A plus the setup time for
the data transfer.

10

TIME
(MS)

800

700

600

500

400

300

200

100

II

I SETUP [::::L--_--'---_-'-_--'---_---1_------'
- -- 1000 2000 3000 4000 5000

NUMBER OF READINGS

Figure 10. Reading rates with 3437 A voltmeter. The intersection at the "Y" axis
represents the setup time to make the 3437A the talker.

HP 2240A Measurement and
Control Processor

One interesting aspect of HP-IB is its per­
formance with more intelligent devices. As
devices on the bus become more intelli­
gent, RTE involvement tends to decrease.
To demonstrate this, look at the curves
shown in figures 6 and 7. HP-IB perfor­
mance was described as a line with
y-intercept representing the set-up time.
Typically, via DMA, the y-intercept is ap­
proximately 6 milliseconds with a positive
slope in microseconds per byte. When
using DMA most of the overhead is incur­
red before the actual transfer begins.
Therefore, it is to the user's advantage to
transfer as many bytes as possible in one
burst. An optimal solution is to program a
device one time and have it perform a
large number of tasks independent of the
computer. One such intelligent device is
the 2240A Measurement and Control pro­
cessor. The 2240A can be programmed to
perform analog point scanning, digital
point scanning, establish control loops,
respond to interrupts, and finally return
requested resu lts to the computer.

A test was performed with the 2240A, hav­
ing it capture and return 8, 16, and 24
analog samples via DMA. The total time
values were then plotted and extrapolated
to observe computer involvement. The
setup value extrapolated from the test
(figure 11) was approximately 11.5 mil­
liseconds for RTE-IV and 12.50 mil­
li seconds for RTE-L.

HP-IB Performance

25

20
RTE-L
DMA

TIME
(MS) 15

COMPUTER
SETUP

TO
LISTEN

TALK

COMPUTER
SETUP

TO
TALK

10

5

--6 L---~5-----1~0-----1L5----~20-----2~5----~30

NUMBER OF CHANNELS

Figure 11. Analog operation with the HP 2240A. The intersection at the "Y" axis
represents the total setup times.

11

HP-IB Performance

Summary/one final example

In every example shown, the time to send
or receive a message has been estimated
and measured for RTE-IV and RTE-L. In
each case, the only external inputs which
the model requires are the number of
bytes in the message, the speed which
the device sends or receives data, and the
time for the device to perform its functions ,
ie, settling, switching, gating, computing ,
etc. This information is available in the de­
vice manual , or from your instrument
supplier. Th is final example shows how to
combine many of the techniques found in
this brief for a typical application.

An engineer has a machine with four
waste water tanks. The level in each tank
must be monitored and logged once each
second . To accomplish this task, pressure
transducers were installed in the bottom of
each chamber. The The 3495A/3455A
scanner and digital voltmeter connected
to an HP 1000 E-Series computer will be
used to monitor the transducers. The
3455A is an interesting choice, because it
can be programmed with mathematic
coefficients that normalize the readings
and return the results in units of level in­
stead of voltage.

In order to calculate the measurement
speed and expected computer efficiency,
the user will need to know:

1. The number of bytes to program each
device and the number of bytes they
return.

2. The speed at which the devices can
send or receive information.

3. The time required for the devices to
complete their function

For this specific example , the user must
answer the following questions.

Scanner

• How do I find the length of the program
message?

12

Refer to the scanner manual. Four
bytes are used to program the scanner

\i.e. ,"C01E")

• How fast will the scanner receive the
message?

This information could not be found in
the manual but the follow ing assump­
tion could be made. DMA does not
begin in an RTE-IV system until the
fourth byte is sent. It is ineffic ient to tie
up the resources for only 1 byte, so
non-DMA processing wil l be used .
Most devices are not fast enough to
take advantage of the high speed
curve (B), so it is assumed that the
slower rate will apply. Table 1 shows
that the setup time will be 7.61 mil­
liseconds and the transfer time will be
4x.56 = 2.24 milliseconds.

• How long does it take for the scanner to
settle?

Again, referring to the manual we found
that the relay takes less than 10 mil­
liseconds to settle.

• Does the scanner talk back to the
computer?

No, it doesn't, so no consideration for a
talker is needed.

Voltmeter

• How long will it take to trigger the DVM?

The instruction manual shows that we
are allowed to trigger the DVM with a
"T3" command. By consu lting with a
3455A representative, we found that
the message transfer rate for the DVM
is 5,000 bytes per second. Since only
two bytes are used , a non-DMA trans­
fer will occur. The fast non-DMA trans­
fer rate requires 17,000 bytes per sec­
ond. So again, we will use the slow
non-DMA output equation from Table 1.
This gives a setup time of 7.61 mi l­
liseconds. The transfer time wi ll be 2 x
.56 = 1.12 milliseconds .

• How long will the DVM require to per­
form its function?

Again, we learned that from the time
that the DVM receives the trigger until it
is ready to talk (in the low resolution
d.c. mode) typically takes 34

mlllivvQon~v ,

. ,

• How long wil l it take for the DVM to talk
to the computer?

The manual states that the data mes­
sage is 14 bytes plus carriage return/
linefeed . Since we discovered that the
transfer rate is 5,000 bytes per second,
Table 1 g ives us the setup time of 6.25
milliseconds and a message transfer
time of 16 bytes x 1/5000 seconds/byte
= 3.2 milliseconds.

• Should the data be formatted?

Since limit checking will be performed,
it should be formatted.

• How long will it take to format the data?

Page 3 gives the formatting equation
as t = [069 + .11(14)] =2.23
mi lliseconds.

Figure 12 shows how this information was
put together to estimate 1 channel. The
total time and utilization is obtained by
multiplying by 4. The model estimated that
it would take 241 .68 milliseconds with
120.12 milliseconds (50%) of computer
utilization. It actual ly took 255 milliseconds
with 120 milliseconds of utilization.

HP-IB Performance

F' 61 i i '611 i '''1
"1 CYClE REPEATS FOR r 2.3 / NEXT CHANNEL

SETUP 0 SETUP 3 seTUP UNUSEO
HP 1000 TO CLOSE ~ TO TRIGGER

~
TO READ COMPUTER

SCANNER DVM DVM POTENTiAl

TOTAL
STEP HP 1000 3455A & 3495A TIME

COMPUTER SENDS MESSAGE TO CLOSE SCANNER CHANNEL

• SETUP 7.61 7.61

• SEND MESSAGE - SCANNER LISTENS (4 BYTES) 2.24 2.24 9.85

SCANNER SWITCHES SETTLE 10 19.85

COMPUTER SENDS MESSAGE TO PROGRAM AND TRIGGER DVM

• SETUP 7.61

• SEND MESSAGE - METER LISTENS (2 BYTES) 1.12 20.97

DVM SETTLES 34 54.97

COMPUTER RECEIVES READING FROM DVM

• SETUP 5.95

• RECEIVE VALUE - DVM TALKS (14 BYTES) 3.2 3.2 58.17
FORMAT VALUE 2.3 60.47

TOTALS 30.03 60.47

Note: All times in milliseconds
CPU TIME 30.03

% UTILIZATION
TOTAL TIME = """6"ii'A7 50%

TANK 1 TANK 2 TANK 3 TANK 4

Figure 12. Model for HP 3455A Digital Voltmeter and HP 3495A Scanner with Option 1 installed for fluid level example.

13

Service request processing

In a programmable HP-IB system, the con­
troller determines who should talk and
who should listen. There are times, how­
ever, when an instrument needs to let the
controller know that it must be attended to
by the controller. The instrument can do
this by asserting the HP-IB service request
line, SRO. The time for the controller to
respond to SRO assertions is an important
performance factor in many applications.

The usual cases for SRO being asserted
are when an instrument error has occur­
red, or the instrument has been told to
indicate when data is available . This latter
case can be used to improve system effi­
ciency for slow measurement rates or long
communication delays . An example of this
SRO usage would be for a counter waiting
for an external event to occur to initiate a
measurement, and the timing of the event
is unknown. When the event occurs, and
the measurement is taken, the counter can
then assert SRO to indicate that a value is
available. This process is much cleaner
and uses less of the computer's resources
than if the computer continuously interro­
gates the counter for completion, or if an
infinite time-out is specified. The usage of
an infinite time-out also presents the
drawback of preventing time-out handling
for any other device on the same bus
(EOT) in RTE-IV.

When SRO is asserted, the controller must
determine who needs service, and why.
The requestor is determined by a process
referred to as a serial poll. During a serial
poll, the controller sequentially interro­
gates each configured instrument, asking
for a status byte. The status byte contains
one bit indicating whether SRO is pend ­
ing . The other bits are used to indicate
device-specific status information. For
example, a typical instrument could return
a status byte in which bit 7 is the SRO
indicator, bit 6 indicates data is available
to be read, and bits 1 through 5 indicate
problems within its various modules.

When the instrument requiring service is
isolated, the HP 1000 Computer responds
by scheduling a program for execution

14

that was previously selected. The
mechanics of the SRO response, serial
poll, and scheduling are conducted by the
HP-IB software, and are transparent to the
user program.

The time required to respond to an SRO
varies, depending on the number of de­
vices to poll, the response rate of the de­
vices involved, and the state of the bus
when the SRO occurs (if an HP-IB 1/0 task
is currently being performed). This makes
the prediction of an absolute SRO re­
sponse time differ from application to
application.

A good prediction of SRO response can
be obtained by measuring the time from
the SRO assertion until the serial poll has
been enabled (SPE) . This represents the
interaction and response elements de­
pendent on the computer. The times from
SRO assertion to SPE measured in a
quiescent system are:

HP 1000 L-series
HP 1000 M-series
HP 1000 E-series
HP 1000 F-series

1.10 milliseconds
1.65 milliseconds
0.77 milliseconds
0.77 milliseconds

When a long data transfer is in progress,
the processing of an SRO will be held off
until the data transfer completes . Also, if a
device hangs up, processing of the SRO
will be held off until the time-out occurs.
Note that if an infinite time-out value is
assigned to a device on the bus, and the
device hangs up, SRO processing of the
entire bus could be foiled. Therefore, we
care to assign realistic time-out values if
normal SRO processing is desired.

There are times when response time for an
SRO can be critical, and disruption of
another 1/0 task is permissable. Aborting
a plotter when a nuclear process is out of
limits is an extreme example . An ad ­
vanced feature of the HP 1000 M, E, and
F-Series computers provides for this
capability. The task in progress can be
aborted, and the SRO response time will
be the same as the time in a quiescent

.,

system. Application note 401-1, HP10001
HP-IB Programming Procedures, discus­
ses the use and programmming of this
feature (the "S" bit). Remember, most 1/0
tasks cannot be recovered when aborted,
so avoid indiscriminate use of this
capability.

An application program using SRO should
contain three elements. These are:

1. Setup and arming of the SRO

2. The SRO occurrence

3. SRO disarming and cleanup.

Figure 13 shows a pair of programs which
demonstrate service request scheduling.
One program, called SETUP in this exam­
ple, is used to setup a voltmeter and pre­
pare the system to receive and process an
SRO. The statement in line 6 prepares the
system to schedule a program called
EVENT when the SRO is asserted. Then
SETUP goes on to other tasks . In this
example, a message will be repeated until
data is available . Notice that the data lin­
kage between the two programs will be
system common.

When the SRO is received, program
EVENT is scheduled. It has a higher prior­
ity than SETUP (40 vs. 99), it will execute
before SETUP is allowed to continue.
EVENT will retrieve the status of the device
that caused EVENT to be scheduled with a
call to the routine RMPAR. The various bits
of the status byte could be checked at this
point if the meaning of the SRO is unclear.
In this case , the status will be printed (line
9). Then, the data value will be read. Since
VALUE is in system common, the data is
also available to program SETUP.

When SRQ processing is completed, pro­
gram SETUP will resume. SRO schedul ing
should then be disarmed to prevent
further scheduling of the EVENT routine ,
and eliminate unnecessary polling of the
device (line 29) .

Service request processing

0001 FTN4,L
0002 PROGRAM SETUP (3,99)
0003 INTEGER IPRG(S),IP(S)
0004 COMMON VALUE
0005 DATA IPRG/5,2HEV,2HEN,2HT I
0006 VALUE=O.O
0007 C SET UP PROGRAM EVENT AS THE ALARM PROGRAM
0008 CALL SRQ(26,16,IPRG)
0009 C PROGRAM METER TO MAKE MEASUREMENT AND ASSERT SRQ WHEN DONE
0010 WRITE(26,101)
0011 101 FORMAH"F5R7T3H1D1")
0012 C NOW DO SOMETHING UNTIL SRQ OCCURS
0013 C
0014 C THIS PROGRAM WILL STAY IN THE FOLLOWING LOOP UNTIL A VALUE
0015 C IS RETURNED THROUGH SYSTEM COMMON.
0016 C
0017 44 IF(VALUE.NE.O.O) GO TO 55
0018 WRITE(1,102)
0019 102 FORMAH"WAITING FOR SRQ")
0020 GO TO 44
0021 C WHEN SRQ OCCURS AND THE VALUE APPEARS, THE PROGRAM WILL
0022 C RESUME HERE
0023 55 WRITE(1 ,103) VALUE
0024 103 FORMAH"VALUE IS " F12.6)
0025 WR ITE(1,104)
0026 104 FORMAH"ALL DONE")
0027 C
0028 C RESET SRQ PROCESSING
0029 CALL SRQ(26,17,0)
0030 STOP
0031 END

0001 FTN4,L
0002 PROGRAM EVENT (3,40)
0003 C THIS PROGRAM IS SCHEDULED WHEN AN SRQ OCCURS
0004 INTEGER IP(S)
0005 COMMON VALUE
0006 C GET STATUS PARAMETER
0007 CALL RMPAR(IP)
0008 C DISPLAY STATUS
0009 WRITE(22,101) IP(1)
0010 101 FORMAH"EVENT STATUS = ", 06)
0011 C READ VALUE FROM VOLTMETER AND STORE IN COMMON
0012 READ(63,*) VALUE
0013 STOP
0014 END

Figure 13. Sample SRQ Program

15

Time-out processing

A time-out error is defined as the failure of
an I/O device to complete a task within a
pre-specified period of time. Time-out er­
rors are not always bad, though. Some­
times, they can be used to indicate end of
data, or that a device is busy.

Time-out errors are handled in one of two
ways. The default method is for RTE pro­
cessing of the time-out error. The program
requesting the I/O task is placed in the I/O
wait state, and the LU of the device
timing-out will be set down. The operator
must intervene to restore operation by cor­
recting the error situation, and entering the
"UP" operator command .

The second method for handling time-out
errors is for the user program to handle the
error itself. RTE allows this if the user pro­
gram requests it. When the user program
processes its own errors, the device LU
will not be set down, and the program will
be allowed to continue execution. Note
that this means the user program must
obtain the the interface status after each
I/O task to insure proper completion.

User processing of time-out errors con­
sists of four steps.

1. Establish the desired time-out value.

16

This is the time, in tens of milliseconds,
to wait before deciding that the the de­
vice has timed-out. Most instruments
have a settling or gating time which
must be fulfilled before the instrument
can respond. Make sure that a proper
amount ot time is provide to allow for
this.

The time-out command is similar in
structure for both RTE-IV and RTE-L,
but the parameters are different. In
RTE-IV, the time-out value is set for the
EOT of the HP-IB bus, and encompas­
ses all devices on the bus. In RTE-L,
the time-out value can be set on an
individual LU-for-LU basis. The FMGR
command to set the time-out value in

RTE-IV is the :SYTO command. This
command in RTE-L was shortened to
:TO. For example, the command:

:SYTO,7,100

wi ll set all devices on EOT 7 (RTE-IV) to
one second. The FMGR command:

:TO,26,50

will set the time-out value for LU 26
(RTE-L) to 500 milliseconds.

Care should be taken if time-out pro­
cessing is not needed and the time-out
value is set to zero. When the time-out
value is set to zero, the device will
never time-out (infinite time-out value).
A device with an infinite time-out value
can be the cause of the bus hanging
up if an SRO occurs. Also, SRO pro­
cessing can be prevented if a device is
hung up with an infinite time-out value.
RTE waits for the I/O task to complete,
and since the completion cannot oc­
cur, the SRO servicing wil l be held off.

2. Tell the operating system that you want
to handle your own time-out errors.
From your user program, use the HP-IB
library subroutine CNFG to set the "E"
bit. The CNFG subroutine is also the
same command needed to request
DMA operation in RTE-IV. Therefore,
you are able to configure everything
needed in one command. For example,
the statement:

CALL CNFG(26, 1,374008)

will turn on DMA for LU 26, and tell the
operating system that you want to
handle your own errors. For more
specific information on HP-IB config­
uration, refer to the HP-IB Users Guide
(HP part number 59310-90064).

3. After each I/O task, check to see if it
was completed properly. The HP-IB
function IBERR should be used. If the
value returned by the function is zero,
the task completed normall y. If the
value returned was 1, a time-out error
has occurred.

The IBERR function can be placed in
an IF statement. Doing this permits
your program to test the result of the I/O
task, and to jump to a time-out process­
ing routine if needed. For example, the
statement:

I F(I 8ERR(26) . EQ. 1) GO TO 81

will cause the program to jump to
statement label 81 if a time-out has oc­
curred for the device on LU 26.

4. Reset the user error bit to turn off user
handling of errors when you are done.
Otherwise, RTE wi ll not process time­
out errors for the device in future pro­
grams. The right to handle your own
errors also give you the responsibility to
restore things for others when you are
through. The CNFG subroutine should
be used to reset the user error bit.

The program in figure 14 illustrates how a
time-out can be trapped and processed
by a user program. If the LU entered
times-out , the message shown in line 81
wi ll be displayed. If desired, this is where
a more sophisticated time-out routine
would be included.

Time-out processing

FTN4,L
PROGRAM TMOUT

C THIS IS AN EXAMPLE PROGRAM TO DEMONSTRATE THE USE OF
C INSTRUCTIONS WHICH CAN CONTROL THE THREE PHASES OF TIME-OUT
C PROCESSING FOR HP-IB. THE THREE PHASES ARE:
C
C (1) SETTING THE TIME-OUT VALUE.
C (2) SETTING THE DEVICE CONFIGURATION WORD TO ALLOW
C USER PROCESSING OF THE TIME-OUT.
C (3) CHECKING FOR TIME-OUTS AND PROCESSING THE ERROR.
C
C **************************(1)********************************
C

INTEGER IP(S),IBUF(S),OS
C GET USER TERMINAL NUMBER AND FIND OUT WHICH OPERATING SYSTEM
C IS BEING USED. IT IS STORED IN PARAMETER IP(1).

CALL RMPAR(IP)
CALL OPSY(OS)

C NOTE THAT OPSY IS A USER WRITTEN ROUTINE FROM THE APPENDIX OF
C THIS NOTE. IF 05=-9, THE SYSTEM IS RTE-IV. IF 05=-31, THE
C SYSTEM IS RTE-L.

ILST=IP
IF(ILST.EQ.O) ILST=1

C ASK QUESTIONS TO SET TIME-OUT VALUE. THE FIRST IS FOR
C RTE-IV, AND THE SECOND PART IS FOR RTE-L.

IF(OS.EQ.-31) GO TO 31
IF(OS.NE.-9) GO TO 98
WR I TEO LST ,101)

101 FORMAH"ENTER EQT OF HP-IB")
READ(ILST,*) IBUF(3)
WR !TE(I LST, 1 02)

102 FORMAH"ENTER TIME-OUT VALUE (IN TENS OF MS.)II)
READ(ILST,*)IBUF(S)

C SET NEW TIME-OUT VALUE FOR HP-IB EQT
IBUF(1)=2HTO

C

IBUF(2)=2H,
IBUF(4)=2H,
INUM=10
CALL MESSS(IBUF,INUM)
WR !TEO LST , 1 03)

103 FORMAH"ENTER HP-IB DEVICE LU")
READ(ILST,*) IDLU
GO TO 44

C RTE-L SECTION
31 WR !TE(I LST , 103)

READ(ILST,*) IDLU
WR !TEO LST , 102)
READ(ILST,*) ITIM
CALL EXEC(3,2200B+IDLU,ITIM)

C ***********************(2)******************************
C
C SET THE DEVICE CONFIGURATION WORD
C
44 CALL CNFGCIDLU,1 ,17400B)
C

Figure 14. Time-Out Example

17

Time-out processing

C
C
C
C
C
C
C

C

C

105

C
80

106

C
81

107

C
98

108
99

18

***********************(3)******************************
THIS SECTION SHOWS HOW A USER PROGRAM CAN INTERPRET AND
PROCESS A TIME-OUT. THE LIERARY ROUTINE IEERR IS USED TO
DETERMINE THE OUTCOME OF AN HP-IE 1/0 TASK. IN THIS EXAMPLE,
A READ REQUEST WILL EE DONE TO A DEVICE THAT IS SHUT OFF.
REMEMEER TO DISCONNECT THE DEVICE TO OESERVE THE TIME-OUT!

READ<I DLU, *) A
IA=IEERR(IDLU)
CHECK ERROR CODES
IF(IA.EQ.O) GO TO 80
IF(IA.EQ.1) GO TO 81
IF NEITHER CODES OCCURRED, IT IS SOME OTHER TYPE OF ERROR.
WRlTE(ILST,105)
FORMAH"A NON-TIME-OUT ERROR HAS OCCURED")
GO TO 99
IF IA WAS 0, EVERYTHING WAS ALL RIGHT.
WR !TE(I LST ,106)
F ORMAH "NORMAL COMPLET ION")
GO TO 99
IF IA WAS 1, A TIME-OUT OCCURRED.
WR !TE(I LST, 1 07)
FORMAH"A TIME-OUT OCCURRED")
GO TO 99
THIS IS THE ERROR MESSAGE FOR AN UNKNOWN OPERATING SYSTEM
WR !TE(1 ,108)
FORMAH"OPERATING SYSTEM UNKNOWN")
STOP
END

Figure 14. Time-Out Example (continued)

In the previous sections of this Brief, the
performance of the HP-IB running under
RTE was presented. At times, the system
was CPU-bound (the device was waiting
for the CPU) and at times it was I/O-bound
(the CPU waiting for the I/O device). RTE
as a resource allocator tries to balance the
mix, but bottlenecks can occur. The
bottlenecks can be located , however, and
there are techniques to reduce them.

The ACCEU1000 RTE Profile Monitor
(RPM) is a .software package which sam­
ples and analyzes the activity of any pro­
gram executing under the RTE-IV opera­
ting system. The RPM program will indi­
cate where the program spends most of
its time. Once this is known, steps can be
taken to reduce these critical paths. Real­
time I/O bound programs can only be
helped by faster I/O devices, but CPU­
bound situations can be improved.

Performance enhancements

Direct I/O calls

Auto addressing is simple, but the price
paid for its simplicity is increased execu­
tion overhead time. If high speed perfor­
mance is needed, write all HP-IB functions
as direct 1/0 calls to the bus. Direct I/O
gives an approximately 25% increase in
performance for typical HP-IB functions.
For example, the scanner/voltmeter
example for the water tank took only 95
mi lliseconds of utilization with direct I/O
versus 120 with autoaddressing.

Formatter

The RTE formatter is a general purpose
formatting and translation routine. It must
include the necessary error checking and
coding to make it flexible and general
purpose. The price paid for the flexibility is
an increase in execution time and memory
space for the. routine. If a device is to be
used repeatedly, a device specific format­
ting routine could be written to take up
less memory and execute faster. A device
specific formatter for the 3455A can re­
duce the time for translation from 3 mil­
liseconds to under a mi ll isecond.

Microcode

Further speed and overhead improve­
ments can be made in an RTE-I V system
by rewriting bottleneck routines in mi­
crocode. User microcode can give up to
10 times improvement in execution time. A
simple formatter would be a good
candidate.

Possibilities also exist for other improve­
ments (a less flexible, more device
specific driver), but consider the tradeoffs.
Changes and modifications to software
can be very expensive in terms of labor,
documentation, and test time. If the im­
provement is for production (used re­
peatedly), there can be a substant ial re­
turn against cost from increased perfor­
mance. However, if the application is
"one-shot" in nature, the general purpose
HP-IB driver and formatter should be
used.

19

Appendix

There are times when it is useful for a program to determine which HP 1000 operating
system it is using. This way, a program can be written to run on various systems, with the
program adapting itself to the system without the operator intervening. The program
shown below is an assembly language subroutine which wi ll return the identification
number of the various RTE operating systems. It is called from FORTRAN as shown in
the listing.

ASMB,L,R,F
* THIS IS A SUBROUTINE TO DETERMINE WHICH OPERATING

II

* SYSTEM IS BEING USED. THE FORTRAN CALLING SEQUENCE IS:
*
* CALL OPSY(I)
*
* THE VALUE RETURNED IN I IS:
* +------------------+-------+
* I OPERATING SYSTEM I VALUE I
* +------------------+-------+
*
*
*
*
*
*
*
*

RTE-MI
RTE-MI I
RTE-MI I I
RTE-II
RTE-III
RTE-IV
RTE-L10
RTE-L20

-7 I
-15 I
-5 I
-3 I
-1 I

· -9 I
- 31 I
-29 I

* +------------------+-------+
*

NAM OPSY
EXT .ENTR,SOPSY
ENT OPSY

VAL BSS 1
OPSY NOP

JSB . ENTR
DEF VAL

* GET VALUE OF OPERATING SYSTEM
LDA SOPSY
STA VAL, I
JMP OPSY,I
END

Printed in U.S.A. 10/80 (22) 5953-4274

HEWLETT
PACKARD

