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COMPUTER tI I 

This application note will help you to de­
termine the capabilities and limitations of 
the Hewlett-Packard Interface Bus (HP-IB) 
when used with an HP 1000 Computer 
System. HP-IB is Hewlett-Packard's im­
plementation of IEEE Standard 488-1978, 
"Digital Interface for Programmable 
Instrumentation" . 

DRIVER I 1 DEVICE 

All HP 1000 computers use the Hewlett­
Packard family of Real-Time Executive 
(RTE) operating systems The newest and 
smallest member of the HP 1000 family, 
the L-Series, uses RTE-L, while the HP 
1000 M, E, and F-series use RTE-II or 
RTE-IV. Each version of RTE has its unique 
features, but the real-time philosophy is 
similar. This gives the important benefit of 
program transportability. Most programs 
written in a high level language are trans­
portable from machine to machine without 
any changes. 

The references in this note pertain to all 
RTE systems, HP-IB drivers, and HP-IB I/O 
cards unless specifically stated. To de­
termine the operating system, driver, and 
HP-IB card for your particular system, 
please refer to table 1 

#1 I 
I/O CARD #1 

#1 

I 
DRIVER I I/O CARD - --E #2 #2 DEVICE 

I #2 

I I/O CARD 
DRIVER 

I #3 
#3 ~ t? #3 

Figure 1A. The "old" way, with a separate driver, separate I/O card, and 
separate cable for each device. 

COMPUTER 

Figure 1 B. The HP-IB way. One driver, and up to 14 devices on each bus. 
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The HP-IB interface card is just one of the 
many interface cards available for your 
computer system. Its vast capabilities , 
however, make it unique. The HP-IB I/O 
card allows the computer to control, talk, 
and listen to a variety of both fast and slow 
devices connected to it. HP-IB compatible 
devices include instruments such as vol­
tmeters , high speed D/A's and counters, 
and computer peripherals such as 
graphic devices , discs, or even other 
computers. The length of messages can 
span from one byte to thousands of bytes 

per message (and higher, as new and 
more intelligent devices become 
available). 

Because it is designed for an extremely 
wide range of interfacing uses, HP-IB may 
not be the fastest method. However, it of­
fers the most flexibility at a minimum cost. 
Up to 14 HP-IB devices can be inter­
connected with only one interface card. 

The same driver operates all devices on 
the bus. When compared to the previous 
'methods of requiring a separate interface 
card and separate driver for each device, 
the cost advantage of the HP-IB is readily 
apparent. 
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This performance note presents a model 
which can be used to determine the time 
to send or receive data messages from 
various instruments and devices opera­
ting with any of the HP 1000 computers 
using RTE and HP-IB. The model can also 
be used to calculate the amount of spare 
time the computer will have during a mea­
surement. This spare time, or unused 
computer potential, can be used to oper­
ate other HP-IB test stations or perform 
other progam operations. 

The speed of an HP-IB system will depend 
on the measurement and commmunica­
tion speeds of the instruments being used. 
For this reason, various popular instru­
ments (with differing measurement and 
communication speeds) have been used 
as examples. The instruments used are 
the HP 3455A Dig ital Voltmeter (average 
speed and average message length), HP 

~ 3437A System Voltmeter (high speed and 
short message length), and HP 2240A 

Measurement and Control Processor (high 
speed and large buffer capable of long 
message lengths). The HP 3495A Scanner 
(a listener only) is also shown in conjunc­
tion with the 3455A. 

This performance note is divided into five 
sections 

1. An overview of how HP-IB is used 

2. Timing and performance of HP-IB sys-
tems 

Measurement speeds and timing re- 3. Service request timing and usage 
quirements for instruments are usually 
available in their respective Operation and 4. Time-out handling and usage 

Service Manuals, or from the instrument 5. HP-IB performance enhancement pos-
supplier. sibilities 

Table 1. Hardware and Software needed for HP-IB in HP 1000 Computers. 

HP 1000 HP 1000 HP 1000 HP 1000 
COMPUTER L-Series M-Series E-Series F-Series 

OPERATING RTE-L RTE-II or RTE-II or RTE-II or 
SYSTEM RTE-IV RTE-IV RTE-IV 

DRIVER 10.37 DVR37 DVR37 DVR37 

HP-IB I/O 12009A 59310B 59310B 59310B 
CARD 
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HP-IB/RTE Overview 

The driver's role in 
controlling the HP-IB 

The HP-IB driver is the key link in any RTE 
based system between a running program 
and the HP-IB interface card (figure 2). It 
is a general purpose driver used in all 
HP-IB/RTE configurations to the bus. The 
driver can be called through FORTRAN, 
BASIC, PASCAL, and Assembly lan­
guages, making it a powerful tool that can 
be used in a variety of environments. 

The driver assumes responsibility for all 
HP-IB interaction between the computer 
and the interface card for the bus. This 
includes control modes, device address­
ing, and data passage. In an automatic 
addressing mode (autoaddressing), 
which is the most common technique 
used, each device is addressed by a 
pre-chosen logical unit number. Standard 
READ/WRITE statements are then used. 
For example, if a digital voltmeter was 
chosen to be logical unit (LU) 1 number 29, 
a vol tage reading in BASIC to be called 
"V1" would be set up as follows: 

READ#29;V1 

The driver assumes the responsibility of 
addressing the device, controlling the 
transmission of the data, and accepting 
the data into the computer as variable 
"V1". 

Translating the data: 
The formatter 

When data is brought into the computer, it 
is usually translated to a format internally 
usable by the computer (i.e., ASCII to bi­
nary). The same process is used in re­
verse on output; the data is translated 
from the internal representation to the for­
mat which the device can accept. The 
routine used to make this translation is 
called the formatter. 

1A logical unit (LU)is the method that RTE 
uses to reference I/O devices. This allows 
the flexibility of writing a program without 
specifying the physical location of the 
device. At execution time, RTE dynami­

cally matches the LU and the device. 

4 

I' ~ u 
S 

F ~ E 
R 0 D 

R R ~ 
P M R I HP-IB §~mZlI:t HP-IB 
R A T V INTERFACE DEVICE 
0 T E E 
G T R 
R E ~ A R 

M 

./ ./ 

Figure 2. Structure of the various components used when working with HP-IB. 

ASCII format is most commonly used for 
data transfer over an HP-IB bus. For 
example, the value "3.141592653x1012" 
(which is stored in two computer words as 
a floating point number) would be trans­
ferred via HP-IB as fourteen 8-bit bytes 
(each byte holds one character). 

Timing studies for RTE have produced a 
formula that can be used in the HP-IB 
model for the formatter overhead. The 
equations for the HP 1000 L, M, E, and 
F-series computers are: 

t (L) = 4.402 +.606n 
t(M) = 1.928+.288n 
t(EF) = 0.697+.109n 

where n is the number of bytes and t is the 
time in milliseconds. For example, a 14 
byte string on an HP 1000 L-series com­
puter would take approximately 12.9 mil­
liseconds to convert. 

The formatter, drivers, languages, and 
user programs are all overseen by the RTE 
operating system. It controls the order of 
execution, and provides protection for un­
authorized actions. For efficiency, certain 
routines (like the driver) are linked to and 
included in the operating system. There­
fore , each time the driver is accessed, the 
request must go through RTE. Conceptu­
ally, this flow is shown in figures 3 and 4, 
which shows a model of HP-IB within an 

RTE environment. This model shows that 

the overhead of the driver is only a small 
portion of total system overhead when 
using HP-IB. Overhead expenses for other 
components of the system, such as the 
formatter and operating system, must be 
considered to give a proper view of over­
all HP-IB performance. 

For both input and output, notice in figures 
3 and 4 that communication with HP-IB 
can be performed with or without the for­
matter. Skipping the formatter step will 
save processing time. If computation is 
not to be performed on the data (i .e., the 
data is to be stored or displayed), you 
probably won't need formatting. 



Data transfer techniques 

Data brought into HP 1000 M, E, and 
F-Series computers via the HP-IB I/O card 
is handled in one of two ways. The first 
method is Direct Memory Access (DMA). 
With DMA, the information is brought into 
memory directly from the interface card. 
This process is controlled by the Dual 
Channel Port Controller (DC PC) which 
acts as a direct pipeline between the 
memory and I/O sections of the computer. 
DMA is the fastest method for transferring 
information, and is necessary for functions 
such as disc transfers. Once assigned, 
the DMA channel is dedicated to the I/O 
card until the data transfer is completed. 
There are 2 DMA channels available when 
the DCPC is installed. They can both be 
used for data transfer, but if you have a 
disc, remember that it requires one of the 
channels when swapping programs or 
transferring data. If you use both channels 
for an HP-IB data transfer, the disc and 
other devices which use DMA must wait 
until one of the data transfers completes. 

The other method of data transfer for HP 
1000 M, E, and F-Series computers is 
non-DMA, or "i nterrupt processing." With 
this method, as in the DMA case, the 
computer (via the driver) initiates the data 
transfer, and then goes off to perform 
other tasks. The difference is that the 
HP-IB card and driver work in conjunction 
to transfer data to or from the memory by 
triggering an interrupt when the operating 
system is needed. When the interrupt sig­
nal is noticed, the operating system re­
turns, transfers the data via software, and 
goes off again to other tasks. The set-up 
time for interrupt processing is less than 
that for DMA, but the transfer time for each 
byte is greater since interrupt servicing is 
required for each byte (figure 5). 
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Figure 3. Input from the HP-IB. 
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Figure 4. Output to the HP-IB. 
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Note: For both input and output, communication with HP-IB can be performed with or without the 
formatter. Skipping the formatter step will save processing time. If computation is not to be 
performed on the data (the data is to be stored or displayed) you don't need formatting. 

The previous discussion pointed out that 
the fastest and least CPU-demanding 
technique for data transfer is DMA. Suffi­
cient DMA channels would need to be 
available, however, to satisfy all I/O pro­
cesses. This is the design philosophy for 

SET UP TIME PROCESSING TIME PER BYTE 

the HP 1000 L-Series. Every I/O card in the 
L-Series computer has a DMA channel, 
and uses it automatically. With this design, 
multiple devices such as discs, tape 
drives, terminals and instruments can all 
use DMA concurrently. Data transfer rates 
have been maximized, and CPU utilization 
has been minimized. The use of interrupt 
processing for HP-IB in an L-series com­
puter has been eliminated. 

DMA I I 00000000000000000000000000000000000 

NON-DMA c:::::J 
SET UP 
TIME 

CJ CJ CJ CJ 
PROCESSING TIME PER BYTE 

TIME -----'l~~ 

CJ CJ CJ CJ CJ CJ 

Figure 5. Although the set-up time is greater for DMA, the time to process each 
individual character or byte in a message is much less. 
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HP-IB Performance 

The most important question to be asked 
about any HP-IB configuration is whether 
there is sufficient capability to perform the 
needed task. This really breaks down to 
whether the devices connected on the bus 
will run at the required rate, and how much 
capacity is left in the computer for other 
tasks. Factors influencing this decision in­
clude interface card speed, device 
speed, length of the data message, and 
how the data will be treated once inside 
the computer. 

The results reported in this performance 
note were obtained on an HP 1000 Model 
45 system with RTE-IVB using standard 
(595ns) memory, and on an HP 1000 
Model 10 with RTE-L. 

HP-IB driver speed 

The first item needed to determine HP-IB 
performance is the speed of the interface 
card operating with its driver. Table 2 
shows the maximum transfer speeds for 
both DMA and non-DMA for RTE-IV, and 
DMA for RTE-L. Figures 6 and 7 illustrate 
these results graphically. It can be seen 
that for each method there is a fixed 
set-up time, and then a fairly linear incre­
ment of time per byte of data in a mes­
sage. The set-up time includes the time to 
pass through the operating system, driver 
housekeeping, and addressing a device 
as a talker or listener (the formatter is 
separate). 

The total time to perform an input or output 
task is the sum of the time required for the 
data transfer plus the time required to for­
mat the data. This can be represented by 
the formula: 

t(IO) = t(exec) + t(format) 

= (HP-IB setup time 
+ transfer rate x number of 

bytes) 
+ (format setup time 
+ conversion rate x number of 

bytes) 

Note that if the formatter is not required 
(i.e., an EXEC CALL is used), the terms for 
the formatter in the above equation revert 
to zero. 
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All coeffecients for the above equation are 
presented in this note, but a que:3tion 
arises about the data transfer rate. Most 
devices communicate at a rate slower 
than HP 1000 computers can. Therefore, 
should the data transfer rate of the com­
r?uter be used , or should the data transfer 
rate of the device be used instead? This 
question has to be answered separately 
for DMA and non-DMA operation. 

Using DMA processing , the 59310B can 
handle approximately 550,000 bytes per 
second, and the 129009A can handle over 
one million. When a device transfers data 
slower than these rates, the DMA transfer 
occurs at the slower device rate. To com­
pute the DMA transfer time , multiply the 
number of bytes to be transferred by the 
time required for the device to transfer one 
byte (seconds/byte). Then , add 6 milli­
seconds for approximate set-up time. 

Whenever a byte has been transferred 
using non-DMA processing in an HP 1000 
M, E, or F-Series computer, the driver 
checks to see if the next byte is ready. If it 
is, the driver processes it directly. This is 
displayed by the fast rate equation (curve 
B). The speed of the device must be faster 
than 17,000 bytes per second (60 
microseconds/byte) to enjoy the higher 
speed slope. 

If the next byte is not ready, the computer 
goes off to another task. When the next 
byte is ready, an interrupt is generated, 
causing execution to return to the driver. It 

.' 

then takes up to 1.1 mi lliseconds (on in­
put) to process the byte. This is displayed 
by the slow transfer rate equation (curve 
C). Note that the set-up time also appears 
to increase. This slow transfer rate is 
slower than the transfer rate of most de­
vices. The result is 2 distinct curves, Band 
C, for non-DMA processing. Either the de­
vice is fast enough to ride the fast curve 
(B), or it will "miss the bus" and have to 
take the slower curve (C). As stated ear­
lier, the L-Series uses DMA, so these 
non-DMA curves are not applicable. 

The intersection of the fast non-DMA and 
DMA curves for RTE-IV is approximately 
130 bytes for output and 56 bytes for in­
put. As a general rule , total time is 
minimized when fast interrupt processing 
is used to the left of the intersection and 
DMA to the right. However, common 
sense dictates that a short burst of data 
too fast for non-DMA 2 should be handled 
by DMA. Likewise, a long, slow string 
should be handled via non-DMA. For 
example, the 3437A voltmeter can be 
programmed to delay up to 1 second be­
tween readings. At this rate, a burst of 
10,000 readings (the maximum the 3437 A 
can send after a single request) wou ld 
take almost 3 hours, sending only 2 data 
bytes per reading. Tying up a shared DMA 
channel for such infrequent use would be 
an inefficient use of the resource. 

2The maximum non-DMA transfer rate is 
approximately 17,000 bytes per second. 
This limitation is imposed by the driver 
structure. 

Table 2. HP-18 data transfer equations. 

INPUT OUTPUT 

Setup Time Per Byte Setup Time Per Byte 
Time in Message Time in Message 

Operati ng System (MS) (MS) (MS) (MS) 

RTE-L DMA (Curve "A") 6.28 .001n 6.29 .001n 

RTE-IV DMA (Curve "A") 5.95 .002n 6.14 .002n 

RTE-IV Fast Interrupt 2.71 .060n 2.95 .020n 
(Curve "8") 

RTE-IV Slow Interrupt 5.73 1.10n 7.61 .560n 
(Curve "e") 

Note: The maximum data rate for the 59310B is 550,000 bytes/second . 

The maximum data rate for the 12009A is 1,098,000 bytes/second. 
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An HP-IB model 

The HP-IB transfer speed coefficients 
shown in table 2 can be used in conjunc­
tion with the system flow diagram (figures 
3 and 4) to construct a conceptual model 
of HP-IB system performance. 

The examples for this model will be the HP 
3455A and HP 3437A Digital Voltmeters 
and the 2240A Measurement and Control 
Processor. The voltmeters represent many 
of the requirements of working with HP-IB, 
and are the most popular multimeters cur­
rently offered. The 2240A is one of the first 
HP products that uses Silicon-on-

Sapphire (SOS) microprocessor technol­
ogy, and lends itself to many intelligent 
measurement and control applications. 

In most cases, there is a set pattern to the 
order in which HP-IB functions are per­
formed. In the housekeeping section, the 
remote enable command is executed to 
get the device's attention for remote con­
trol. Also, system configuration of the de­
vice can be altered to provide for time-out 
processing, service requests, and DMA 
RTE-IV defaults to non-DMA. for the re­
source management reasons previously 
explained. RTE-L automatically provides 
DMA 

HP-IB Performance 

When HP-IB system configuration has 
been completed, the HP-IB devices and 
computer go through the following steps: 

• Computer TALKS/device LISTENS 

the computer sends the device codes 
to set up and program the device 

• Computer activates the device 

the desired function is performed by 
the device 

• Computer LISTENS/device TALKS 

the device sends a response message 
or a status message 

Various combinations of the above steps 
can occur. Also, the computer may use 
the formatter to translate either the incom­
ing or outgoing data. More complicated 
models could also be constructed. How­
ever, these steps are the basic building 
blocks, and will be used in our examples. 

Performance Examples: 
HP 3455A Digital Voltmeter 

Figure 8 shows the conceptual model for 
an HP-IB system with the HP 3455A Digital 
Voltmeter. The 3455A is a high accuracy 
digital voltmeter capable of transmitting 
up to 24 readings per second in the d.c. 
mode if high resolution is not required. In 
the high resolution setting, however, as 
few as 2 readings per second could be 
the maximum (remember, it depends on 
the device settling time and function per­
formed). Sixteen bytes (including carriage 
return and line feed) are transmitted for 
each reading . 

In the maximum-rate low resolution mode, 
according to the model, each reading 
should take a total of 62 milliseconds to 
complete for RTE-L, and 48 milliseconds 
for RTE-IV. During this period, the com­
puter wil l be active for over 26 mil­
liseconds in RTE-L, or 20 milliseconds in 
RTE-IV, to control the transfer and trans­
late the data. The difference between 
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HP-IB Performance 

computers appears to be CPU processing 
speed for the formatter. The main point, 
however, is to observe that the computer 
is able to process other tasks during the 
voltmeter settling time period (shaded 
area) until the characters beg in to transfer. 

After running th is test on the HP 1000, it 
was found that the read ings actually took 
50 milliseconds (or 20 readings per sec­
ond) with system util ization of 16 mil­
liseconds of CPU time for the RTE-IV sys­
tem , and 60 mi lli seconds (16 readings per 
second) with 28 mil li seconds of utilization 
for RTE-L. 

1="'-1 r-'''-j 

System utilization is g iven in absolute time 
instead of a percentage, because it might 
be misleading to report utilization as a 
percentage. If the DVM settling varies, the 
total time to complete the measurement 
will also vary . However, the absolute time 
for computer involvement will remain con­
stant, regard less of settling time. There­
fore , the percentage utilization for a read­
ing decreases as the settling time 
inc reases. 

The results obtained for the 3455A DVM 
and all other devices tested were shorter 
than the model for total time required . This 
is understood when it is realized that the 
worst case settling times were used for 
estimation in the model. CPU utilization 

48 .23 

., 

differed slightly in each example. This is 
mainly due to system overhead, the test­
ing program, and DMA cycle stealing. 

To characterize the use of non-DMA in 
RTE-IV, the same experiment was con­
ducted with the 3455A. The model and 
non-DMA equations show that the data 
processing time can be expected to in­
crease when not us ing DMA, and so will 
CPU involvement. Without DMA, mea­
surement took 58 mil liseconds to com­
plete (17 readings per second) with 28 
mil li seconds of CPU utili zation . This shows 
that DMA provides a benefit in speed and 
overhead even if the fast curve cannot be 
met. If DMA is availab le, it should be used. 
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Figure 8. Model for HP 3455A Digital Voltmeter. 
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HP 3455A Digital Voltmeter 
and HP3495A Scanner 

The next example of HP-IB performance is 
with a 3455A Digital Voltmeter and the HP 
3495A Scanner. This combination is very 
popular, since it allows one meter to be 
used to measure multiple test points. Fig­
ure 9 shows the timing model when read­
ing through 10 channels on the DC volts 
range. First a scanner channel must be 
closed. Then the meter must be triggered 
and read. It is estimated by the model that 

it requires 121 milliseconds per channel 
read with 48 milliseconds of computer 
utilization time for RTE-L, and 90.47 mil­
liseconds per channel with 30 mil­
liseconds utilization for RTE-IV. The actual 
time was 120 milliseconds per channel 
(9.5 reading/sec) with 46 milliseconds 
computer utilization for RTE-L, and 95 mil­
liseconds with 30 milliseconds utilization 
for RTE-IV. 

The previous examples showed the opera­
tion of HP-IB with typical instruments that 

HP-IB Performance 

perform tasks individually. You can per­
form the same analysis for other HP-IB 
devices by consulting the particular de­
vice manual to find the device-dependent 
times , such as settling time , gate time, 
integration time, or other delays. Also, Ap­
plication Note Series 401 , HP-IB Pro­
gramming Examples, presents perfor­
mance information for many HP-IB instru­
ments used with an HP 1000 computer. 
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Figure 9. Model for HP 3455A Digital Voltmeter and HP 3495A Scanner with Option 2 installed. 
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HP-IB Performance 

HP 3437A Digital Voltmeter 

The HP 3437A Digital Voltmeter is a good 
example of an instrument requiring DMA 
processing. The 3437A can take over 
5000 readings per second, and up to 
9999 readings per burst. Each reading 
transmits 2 bytes when "packed format" is 
selected. This rate is faster than non-DMA 
processing can handle. Although the 
3437 A can take a reading in 175 mi­
croseconds, the driver would revert to the 
slow non-DMA curve because the delay 
between bytes is greater than 60 mi­
croseconds. Therefore on curve C, it 
would take 1.1 milliseconds to process the 
interrupt for the next reading. During this 
time, 6 readings would be lost, due to the 
synchronous operation of the 3437 A. DMA 
must be used. 

A test was performed with the 3437 A, tak­
ing various numbers of readings (from 100 
up to 5000). The total time values were 
then plotted on a graph (figure 10), and 
linear regression performed to extrapolate 
the setup time and computer involvement. 
The slope of the lines in figure 10 shows a 
reading rate of 5535 readings per second 
(with 2.9% CPU utilization) for RTE-L, and 
4758 readings per second (with 3.8% 
CPU utilization) for RTE-IV. The y-intercept 
in figure 10 represents the setup time to 
trigger the 3437 A plus the setup time for 
the data transfer. 
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Figure 10. Reading rates with 3437 A voltmeter. The intersection at the "Y" axis 
represents the setup time to make the 3437A the talker. 



HP 2240A Measurement and 
Control Processor 

One interesting aspect of HP-IB is its per­
formance with more intelligent devices. As 
devices on the bus become more intelli­
gent, RTE involvement tends to decrease. 
To demonstrate this, look at the curves 
shown in figures 6 and 7. HP-IB perfor­
mance was described as a line with 
y-intercept representing the set-up time. 
Typically, via DMA, the y-intercept is ap­
proximately 6 milliseconds with a positive 
slope in microseconds per byte. When 
using DMA most of the overhead is incur­
red before the actual transfer begins. 
Therefore, it is to the user's advantage to 
transfer as many bytes as possible in one 
burst. An optimal solution is to program a 
device one time and have it perform a 
large number of tasks independent of the 
computer. One such intelligent device is 
the 2240A Measurement and Control pro­
cessor. The 2240A can be programmed to 
perform analog point scanning, digital 
point scanning, establish control loops, 
respond to interrupts, and finally return 
requested resu lts to the computer. 

A test was performed with the 2240A, hav­
ing it capture and return 8, 16, and 24 
analog samples via DMA. The total time 
values were then plotted and extrapolated 
to observe computer involvement. The 
setup value extrapolated from the test 
(figure 11) was approximately 11.5 mil­
liseconds for RTE-IV and 12.50 mil­
li seconds for RTE-L. 
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Figure 11. Analog operation with the HP 2240A. The intersection at the "Y" axis 
represents the total setup times. 
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Summary/one final example 

In every example shown, the time to send 
or receive a message has been estimated 
and measured for RTE-IV and RTE-L. In 
each case, the only external inputs which 
the model requires are the number of 
bytes in the message, the speed which 
the device sends or receives data, and the 
time for the device to perform its functions , 
ie, settling, switching, gating, computing , 
etc. This information is available in the de­
vice manual , or from your instrument 
supplier. Th is final example shows how to 
combine many of the techniques found in 
this brief for a typical application. 

An engineer has a machine with four 
waste water tanks. The level in each tank 
must be monitored and logged once each 
second . To accomplish this task, pressure 
transducers were installed in the bottom of 
each chamber. The The 3495A/3455A 
scanner and digital voltmeter connected 
to an HP 1000 E-Series computer will be 
used to monitor the transducers. The 
3455A is an interesting choice, because it 
can be programmed with mathematic 
coefficients that normalize the readings 
and return the results in units of level in­
stead of voltage. 

In order to calculate the measurement 
speed and expected computer efficiency, 
the user will need to know: 

1. The number of bytes to program each 
device and the number of bytes they 
return. 

2. The speed at which the devices can 
send or receive information. 

3. The time required for the devices to 
complete their function 

For this specific example , the user must 
answer the following questions. 

Scanner 

• How do I find the length of the program 
message? 
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Refer to the scanner manual. Four 
bytes are used to program the scanner 

\i.e. ,"C01E") 

• How fast will the scanner receive the 
message? 

This information could not be found in 
the manual but the follow ing assump­
tion could be made. DMA does not 
begin in an RTE-IV system until the 
fourth byte is sent. It is ineffic ient to tie 
up the resources for only 1 byte, so 
non-DMA processing wil l be used . 
Most devices are not fast enough to 
take advantage of the high speed 
curve (B), so it is assumed that the 
slower rate will apply. Table 1 shows 
that the setup time will be 7.61 mil­
liseconds and the transfer time will be 
4x.56 = 2.24 milliseconds. 

• How long does it take for the scanner to 
settle? 

Again, referring to the manual we found 
that the relay takes less than 10 mil­
liseconds to settle. 

• Does the scanner talk back to the 
computer? 

No, it doesn't, so no consideration for a 
talker is needed. 

Voltmeter 

• How long will it take to trigger the DVM? 

The instruction manual shows that we 
are allowed to trigger the DVM with a 
"T3" command. By consu lting with a 
3455A representative, we found that 
the message transfer rate for the DVM 
is 5,000 bytes per second. Since only 
two bytes are used , a non-DMA trans­
fer will occur. The fast non-DMA trans­
fer rate requires 17,000 bytes per sec­
ond. So again, we will use the slow 
non-DMA output equation from Table 1. 
This gives a setup time of 7.61 mi l­
liseconds. The transfer time wi ll be 2 x 
.56 = 1.12 milliseconds . 

• How long will the DVM require to per­
form its function? 

Again, we learned that from the time 
that the DVM receives the trigger until it 
is ready to talk (in the low resolution 
d.c. mode) typically takes 34 

mlllivvQon~v , 

. , 

• How long wil l it take for the DVM to talk 
to the computer? 

The manual states that the data mes­
sage is 14 bytes plus carriage return/ 
linefeed . Since we discovered that the 
transfer rate is 5,000 bytes per second, 
Table 1 g ives us the setup time of 6.25 
milliseconds and a message transfer 
time of 16 bytes x 1/5000 seconds/byte 
= 3.2 milliseconds. 

• Should the data be formatted? 

Since limit checking will be performed, 
it should be formatted. 

• How long will it take to format the data? 

Page 3 gives the formatting equation 
as t = [069 + .11(14)] =2.23 
mi lliseconds. 

Figure 12 shows how this information was 
put together to estimate 1 channel. The 
total time and utilization is obtained by 
multiplying by 4. The model estimated that 
it would take 241 .68 milliseconds with 
120.12 milliseconds (50%) of computer 
utilization. It actual ly took 255 milliseconds 
with 120 milliseconds of utilization. 
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F' 61 i i '611 i '''1 
"1 CYClE REPEATS FOR r 2.3 / NEXT CHANNEL 

SETUP 0 SETUP 3 seTUP UNUSEO 
HP 1000 TO CLOSE ~ TO TRIGGER 

~ 
TO READ COMPUTER 

SCANNER DVM DVM POTENTiAl 

TOTAL 
STEP HP 1000 3455A & 3495A TIME 

COMPUTER SENDS MESSAGE TO CLOSE SCANNER CHANNEL 

• SETUP 7.61 7.61 

• SEND MESSAGE - SCANNER LISTENS (4 BYTES) 2.24 2.24 9.85 

SCANNER SWITCHES SETTLE 10 19.85 

COMPUTER SENDS MESSAGE TO PROGRAM AND TRIGGER DVM 

• SETUP 7.61 

• SEND MESSAGE - METER LISTENS (2 BYTES) 1.12 20.97 

DVM SETTLES 34 54.97 

COMPUTER RECEIVES READING FROM DVM 

• SETUP 5.95 

• RECEIVE VALUE - DVM TALKS (14 BYTES) 3.2 3.2 58.17 
FORMAT VALUE 2.3 60.47 

TOTALS 30.03 60.47 

Note: All times in milliseconds 
CPU TIME 30.03 

% UTILIZATION 
TOTAL TIME = """6"ii'A7 50% 

TANK 1 TANK 2 TANK 3 TANK 4 

Figure 12. Model for HP 3455A Digital Voltmeter and HP 3495A Scanner with Option 1 installed for fluid level example. 
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Service request processing 

In a programmable HP-IB system, the con­
troller determines who should talk and 
who should listen. There are times, how­
ever, when an instrument needs to let the 
controller know that it must be attended to 
by the controller. The instrument can do 
this by asserting the HP-IB service request 
line, SRO. The time for the controller to 
respond to SRO assertions is an important 
performance factor in many applications. 

The usual cases for SRO being asserted 
are when an instrument error has occur­
red, or the instrument has been told to 
indicate when data is available . This latter 
case can be used to improve system effi­
ciency for slow measurement rates or long 
communication delays . An example of this 
SRO usage would be for a counter waiting 
for an external event to occur to initiate a 
measurement, and the timing of the event 
is unknown. When the event occurs, and 
the measurement is taken, the counter can 
then assert SRO to indicate that a value is 
available. This process is much cleaner 
and uses less of the computer's resources 
than if the computer continuously interro­
gates the counter for completion, or if an 
infinite time-out is specified. The usage of 
an infinite time-out also presents the 
drawback of preventing time-out handling 
for any other device on the same bus 
(EOT) in RTE-IV. 

When SRO is asserted, the controller must 
determine who needs service, and why. 
The requestor is determined by a process 
referred to as a serial poll. During a serial 
poll, the controller sequentially interro­
gates each configured instrument, asking 
for a status byte. The status byte contains 
one bit indicating whether SRO is pend ­
ing . The other bits are used to indicate 
device-specific status information. For 
example, a typical instrument could return 
a status byte in which bit 7 is the SRO 
indicator, bit 6 indicates data is available 
to be read, and bits 1 through 5 indicate 
problems within its various modules. 

When the instrument requiring service is 
isolated, the HP 1000 Computer responds 
by scheduling a program for execution 
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that was previously selected. The 
mechanics of the SRO response, serial 
poll, and scheduling are conducted by the 
HP-IB software, and are transparent to the 
user program. 

The time required to respond to an SRO 
varies, depending on the number of de­
vices to poll, the response rate of the de­
vices involved, and the state of the bus 
when the SRO occurs (if an HP-IB 1/0 task 
is currently being performed). This makes 
the prediction of an absolute SRO re­
sponse time differ from application to 
application. 

A good prediction of SRO response can 
be obtained by measuring the time from 
the SRO assertion until the serial poll has 
been enabled (SPE) . This represents the 
interaction and response elements de­
pendent on the computer. The times from 
SRO assertion to SPE measured in a 
quiescent system are: 

HP 1000 L-series 
HP 1000 M-series 
HP 1000 E-series 
HP 1000 F-series 

1.10 milliseconds 
1.65 milliseconds 
0.77 milliseconds 
0.77 milliseconds 

When a long data transfer is in progress, 
the processing of an SRO will be held off 
until the data transfer completes . Also, if a 
device hangs up, processing of the SRO 
will be held off until the time-out occurs. 
Note that if an infinite time-out value is 
assigned to a device on the bus, and the 
device hangs up, SRO processing of the 
entire bus could be foiled. Therefore, we 
care to assign realistic time-out values if 
normal SRO processing is desired. 

There are times when response time for an 
SRO can be critical, and disruption of 
another 1/0 task is permissable. Aborting 
a plotter when a nuclear process is out of 
limits is an extreme example . An ad ­
vanced feature of the HP 1000 M, E, and 
F-Series computers provides for this 
capability. The task in progress can be 
aborted, and the SRO response time will 
be the same as the time in a quiescent 

., 

system. Application note 401-1, HP10001 
HP-IB Programming Procedures, discus­
ses the use and programmming of this 
feature (the "S" bit). Remember, most 1/0 
tasks cannot be recovered when aborted, 
so avoid indiscriminate use of this 
capability. 

An application program using SRO should 
contain three elements. These are: 

1. Setup and arming of the SRO 

2. The SRO occurrence 

3. SRO disarming and cleanup. 

Figure 13 shows a pair of programs which 
demonstrate service request scheduling. 
One program, called SETUP in this exam­
ple, is used to setup a voltmeter and pre­
pare the system to receive and process an 
SRO. The statement in line 6 prepares the 
system to schedule a program called 
EVENT when the SRO is asserted. Then 
SETUP goes on to other tasks . In this 
example, a message will be repeated until 
data is available . Notice that the data lin­
kage between the two programs will be 
system common. 

When the SRO is received, program 
EVENT is scheduled. It has a higher prior­
ity than SETUP (40 vs. 99), it will execute 
before SETUP is allowed to continue. 
EVENT will retrieve the status of the device 
that caused EVENT to be scheduled with a 
call to the routine RMPAR. The various bits 
of the status byte could be checked at this 
point if the meaning of the SRO is unclear. 
In this case , the status will be printed (line 
9). Then, the data value will be read. Since 
VALUE is in system common, the data is 
also available to program SETUP. 

When SRQ processing is completed, pro­
gram SETUP will resume. SRO schedul ing 
should then be disarmed to prevent 
further scheduling of the EVENT routine , 
and eliminate unnecessary polling of the 
device (line 29) . 



Service request processing 

0001 FTN4,L 
0002 PROGRAM SETUP (3,99) 
0003 INTEGER IPRG(S),IP(S) 
0004 COMMON VALUE 
0005 DATA IPRG/5,2HEV,2HEN,2HT I 
0006 VALUE=O.O 
0007 C SET UP PROGRAM EVENT AS THE ALARM PROGRAM 
0008 CALL SRQ(26,16,IPRG) 
0009 C PROGRAM METER TO MAKE MEASUREMENT AND ASSERT SRQ WHEN DONE 
0010 WRITE(26,101) 
0011 101 FORMAH"F5R7T3H1D1") 
0012 C NOW DO SOMETHING UNTIL SRQ OCCURS 
0013 C 
0014 C THIS PROGRAM WILL STAY IN THE FOLLOWING LOOP UNTIL A VALUE 
0015 C IS RETURNED THROUGH SYSTEM COMMON. 
0016 C 
0017 44 IF(VALUE.NE.O.O) GO TO 55 
0018 WRITE(1,102) 
0019 102 FORMAH"WAITING FOR SRQ") 
0020 GO TO 44 
0021 C WHEN SRQ OCCURS AND THE VALUE APPEARS, THE PROGRAM WILL 
0022 C RESUME HERE 
0023 55 WRITE(1 ,103) VALUE 
0024 103 FORMAH"VALUE IS " F12.6) 
0025 WR ITE( 1,104) 
0026 104 FORMAH"ALL DONE") 
0027 C 
0028 C RESET SRQ PROCESSING 
0029 CALL SRQ(26,17,0) 
0030 STOP 
0031 END 

0001 FTN4,L 
0002 PROGRAM EVENT (3,40) 
0003 C THIS PROGRAM IS SCHEDULED WHEN AN SRQ OCCURS 
0004 INTEGER IP(S) 
0005 COMMON VALUE 
0006 C GET STATUS PARAMETER 
0007 CALL RMPAR(IP) 
0008 C DISPLAY STATUS 
0009 WRITE(22,101) IP(1) 
0010 101 FORMAH"EVENT STATUS = ", 06) 
0011 C READ VALUE FROM VOLTMETER AND STORE IN COMMON 
0012 READ(63,*) VALUE 
0013 STOP 
0014 END 

Figure 13. Sample SRQ Program 
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Time-out processing 

A time-out error is defined as the failure of 
an I/O device to complete a task within a 
pre-specified period of time. Time-out er­
rors are not always bad, though. Some­
times, they can be used to indicate end of 
data, or that a device is busy. 

Time-out errors are handled in one of two 
ways. The default method is for RTE pro­
cessing of the time-out error. The program 
requesting the I/O task is placed in the I/O 
wait state, and the LU of the device 
timing-out will be set down. The operator 
must intervene to restore operation by cor­
recting the error situation, and entering the 
"UP" operator command . 

The second method for handling time-out 
errors is for the user program to handle the 
error itself. RTE allows this if the user pro­
gram requests it. When the user program 
processes its own errors, the device LU 
will not be set down, and the program will 
be allowed to continue execution. Note 
that this means the user program must 
obtain the the interface status after each 
I/O task to insure proper completion. 

User processing of time-out errors con­
sists of four steps. 

1. Establish the desired time-out value. 
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This is the time, in tens of milliseconds, 
to wait before deciding that the the de­
vice has timed-out. Most instruments 
have a settling or gating time which 
must be fulfilled before the instrument 
can respond. Make sure that a proper 
amount ot time is provide to allow for 
this. 

The time-out command is similar in 
structure for both RTE-IV and RTE-L, 
but the parameters are different. In 
RTE-IV, the time-out value is set for the 
EOT of the HP-IB bus, and encompas­
ses all devices on the bus. In RTE-L, 
the time-out value can be set on an 
individual LU-for-LU basis. The FMGR 
command to set the time-out value in 

RTE-IV is the :SYTO command. This 
command in RTE-L was shortened to 
:TO. For example, the command: 

:SYTO,7,100 

wi ll set all devices on EOT 7 (RTE-IV) to 
one second. The FMGR command: 

:TO,26,50 

will set the time-out value for LU 26 
(RTE-L) to 500 milliseconds. 

Care should be taken if time-out pro­
cessing is not needed and the time-out 
value is set to zero. When the time-out 
value is set to zero, the device will 
never time-out (infinite time-out value). 
A device with an infinite time-out value 
can be the cause of the bus hanging 
up if an SRO occurs. Also, SRO pro­
cessing can be prevented if a device is 
hung up with an infinite time-out value. 
RTE waits for the I/O task to complete, 
and since the completion cannot oc­
cur, the SRO servicing wil l be held off. 

2. Tell the operating system that you want 
to handle your own time-out errors. 
From your user program, use the HP-IB 
library subroutine CNFG to set the "E" 
bit. The CNFG subroutine is also the 
same command needed to request 
DMA operation in RTE-IV. Therefore, 
you are able to configure everything 
needed in one command. For example, 
the statement: 

CALL CNFG(26, 1,374008) 

will turn on DMA for LU 26, and tell the 
operating system that you want to 
handle your own errors. For more 
specific information on HP-IB config­
uration, refer to the HP-IB Users Guide 
(HP part number 59310-90064). 

3. After each I/O task, check to see if it 
was completed properly. The HP-IB 
function IBERR should be used. If the 
value returned by the function is zero, 
the task completed normall y. If the 
value returned was 1, a time-out error 
has occurred. 

The IBERR function can be placed in 
an IF statement. Doing this permits 
your program to test the result of the I/O 
task, and to jump to a time-out process­
ing routine if needed. For example, the 
statement: 

I F( I 8ERR( 26) . EQ. 1) GO TO 81 

will cause the program to jump to 
statement label 81 if a time-out has oc­
curred for the device on LU 26. 

4. Reset the user error bit to turn off user 
handling of errors when you are done. 
Otherwise, RTE wi ll not process time­
out errors for the device in future pro­
grams. The right to handle your own 
errors also give you the responsibility to 
restore things for others when you are 
through. The CNFG subroutine should 
be used to reset the user error bit. 

The program in figure 14 illustrates how a 
time-out can be trapped and processed 
by a user program. If the LU entered 
times-out , the message shown in line 81 
wi ll be displayed. If desired, this is where 
a more sophisticated time-out routine 
would be included. 



Time-out processing 

FTN4,L 
PROGRAM TMOUT 

C THIS IS AN EXAMPLE PROGRAM TO DEMONSTRATE THE USE OF 
C INSTRUCTIONS WHICH CAN CONTROL THE THREE PHASES OF TIME-OUT 
C PROCESSING FOR HP-IB. THE THREE PHASES ARE: 
C 
C (1) SETTING THE TIME-OUT VALUE. 
C (2) SETTING THE DEVICE CONFIGURATION WORD TO ALLOW 
C USER PROCESSING OF THE TIME-OUT. 
C (3) CHECKING FOR TIME-OUTS AND PROCESSING THE ERROR. 
C 
C **************************(1)******************************** 
C 

INTEGER IP(S),IBUF(S),OS 
C GET USER TERMINAL NUMBER AND FIND OUT WHICH OPERATING SYSTEM 
C IS BEING USED. IT IS STORED IN PARAMETER IP(1). 

CALL RMPAR(IP) 
CALL OPSY(OS) 

C NOTE THAT OPSY IS A USER WRITTEN ROUTINE FROM THE APPENDIX OF 
C THIS NOTE. IF 05=-9, THE SYSTEM IS RTE-IV. IF 05=-31, THE 
C SYSTEM IS RTE-L. 

ILST=IP 
IF(ILST.EQ.O) ILST=1 

C ASK QUESTIONS TO SET TIME-OUT VALUE. THE FIRST IS FOR 
C RTE-IV, AND THE SECOND PART IS FOR RTE-L. 

IF(OS.EQ.-31) GO TO 31 
IF(OS.NE.-9) GO TO 98 
WR I TEO LST ,101 ) 

101 FORMAH"ENTER EQT OF HP-IB") 
READ(ILST,*) IBUF(3) 
WR !TE( I LST, 1 02) 

102 FORMAH"ENTER TIME-OUT VALUE (IN TENS OF MS.)II) 
READ(ILST,*)IBUF(S) 

C SET NEW TIME-OUT VALUE FOR HP-IB EQT 
IBUF(1)=2HTO 

C 

IBUF(2)=2H, 
IBUF(4)=2H, 
INUM=10 
CALL MESSS(IBUF,INUM) 
WR !TEO LST , 1 03) 

103 FORMAH"ENTER HP-IB DEVICE LU") 
READ(ILST,*) IDLU 
GO TO 44 

C RTE-L SECTION 
31 WR !TE( I LST , 103) 

READ(ILST,*) IDLU 
WR !TEO LST , 102) 
READ(ILST,*) ITIM 
CALL EXEC(3,2200B+IDLU,ITIM) 

C ***********************(2)****************************** 
C 
C SET THE DEVICE CONFIGURATION WORD 
C 
44 CALL CNFGCIDLU,1 ,17400B) 
C 

Figure 14. Time-Out Example 
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Time-out processing 

C 
C 
C 
C 
C 
C 
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C 
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C 
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108 
99 
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***********************(3)****************************** 
THIS SECTION SHOWS HOW A USER PROGRAM CAN INTERPRET AND 
PROCESS A TIME-OUT. THE LIERARY ROUTINE IEERR IS USED TO 
DETERMINE THE OUTCOME OF AN HP-IE 1/0 TASK. IN THIS EXAMPLE, 
A READ REQUEST WILL EE DONE TO A DEVICE THAT IS SHUT OFF. 
REMEMEER TO DISCONNECT THE DEVICE TO OESERVE THE TIME-OUT! 

READ<I DLU, *) A 
IA=IEERR(IDLU) 
CHECK ERROR CODES 
IF(IA.EQ.O) GO TO 80 
IF(IA.EQ.1) GO TO 81 
IF NEITHER CODES OCCURRED, IT IS SOME OTHER TYPE OF ERROR. 
WRlTE(ILST,105) 
FORMAH"A NON-TIME-OUT ERROR HAS OCCURED") 
GO TO 99 
IF IA WAS 0, EVERYTHING WAS ALL RIGHT. 
WR !TE( I LST ,106) 
F ORMAH "NORMAL COMPLET ION") 
GO TO 99 
IF IA WAS 1, A TIME-OUT OCCURRED. 
WR !TE( I LST, 1 07) 
FORMAH"A TIME-OUT OCCURRED") 
GO TO 99 
THIS IS THE ERROR MESSAGE FOR AN UNKNOWN OPERATING SYSTEM 
WR !TE( 1 ,108) 
FORMAH"OPERATING SYSTEM UNKNOWN") 
STOP 
END 

Figure 14. Time-Out Example (continued) 



In the previous sections of this Brief, the 
performance of the HP-IB running under 
RTE was presented. At times, the system 
was CPU-bound (the device was waiting 
for the CPU) and at times it was I/O-bound 
(the CPU waiting for the I/O device). RTE 
as a resource allocator tries to balance the 
mix, but bottlenecks can occur. The 
bottlenecks can be located , however, and 
there are techniques to reduce them. 

The ACCEU1000 RTE Profile Monitor 
(RPM) is a .software package which sam­
ples and analyzes the activity of any pro­
gram executing under the RTE-IV opera­
ting system. The RPM program will indi­
cate where the program spends most of 
its time. Once this is known, steps can be 
taken to reduce these critical paths. Real­
time I/O bound programs can only be 
helped by faster I/O devices, but CPU­
bound situations can be improved. 

Performance enhancements 

Direct I/O calls 

Auto addressing is simple, but the price 
paid for its simplicity is increased execu­
tion overhead time. If high speed perfor­
mance is needed, write all HP-IB functions 
as direct 1/0 calls to the bus. Direct I/O 
gives an approximately 25% increase in 
performance for typical HP-IB functions. 
For example, the scanner/voltmeter 
example for the water tank took only 95 
mi lliseconds of utilization with direct I/O 
versus 120 with autoaddressing. 

Formatter 

The RTE formatter is a general purpose 
formatting and translation routine. It must 
include the necessary error checking and 
coding to make it flexible and general 
purpose. The price paid for the flexibility is 
an increase in execution time and memory 
space for the. routine. If a device is to be 
used repeatedly, a device specific format­
ting routine could be written to take up 
less memory and execute faster. A device 
specific formatter for the 3455A can re­
duce the time for translation from 3 mil­
liseconds to under a mi ll isecond. 

Microcode 

Further speed and overhead improve­
ments can be made in an RTE-I V system 
by rewriting bottleneck routines in mi­
crocode. User microcode can give up to 
10 times improvement in execution time. A 
simple formatter would be a good 
candidate. 

Possibilities also exist for other improve­
ments (a less flexible, more device 
specific driver), but consider the tradeoffs. 
Changes and modifications to software 
can be very expensive in terms of labor, 
documentation, and test time. If the im­
provement is for production (used re­
peatedly), there can be a substant ial re­
turn against cost from increased perfor­
mance. However, if the application is 
"one-shot" in nature, the general purpose 
HP-IB driver and formatter should be 
used. 
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Appendix 

There are times when it is useful for a program to determine which HP 1000 operating 
system it is using. This way, a program can be written to run on various systems, with the 
program adapting itself to the system without the operator intervening. The program 
shown below is an assembly language subroutine which wi ll return the identification 
number of the various RTE operating systems. It is called from FORTRAN as shown in 
the listing. 

ASMB,L,R,F 
* THIS IS A SUBROUTINE TO DETERMINE WHICH OPERATING 

II 

* SYSTEM IS BEING USED. THE FORTRAN CALLING SEQUENCE IS: 
* 
* CALL OPSY(I) 
* 
* THE VALUE RETURNED IN I IS: 
* +------------------+-------+ 
* I OPERATING SYSTEM I VALUE I 
* +------------------+-------+ 
* 
* 
* 
* 
* 
* 
* 
* 

RTE-MI 
RTE-MI I 
RTE-MI I I 
RTE-II 
RTE-III 
RTE-IV 
RTE-L10 
RTE-L20 

-7 I 
-15 I 
-5 I 
-3 I 
-1 I 

· -9 I 
- 31 I 
-29 I 

* +------------------+-------+ 
* 

NAM OPSY 
EXT .ENTR,SOPSY 
ENT OPSY 

VAL BSS 1 
OPSY NOP 

JSB . ENTR 
DEF VAL 

* GET VALUE OF OPERATING SYSTEM 
LDA SOPSY 
STA VAL, I 
JMP OPSY,I 
END 

Printed in U.S.A. 10/80 (22) 5953-4274 

HEWLETT 
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