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Chapter Ι

Introduction

The analysis of electrical signals is α fundamental
problem for many engineers and sc ientists . Even if the
immediate prob lem is not electrical, the bas ic parameters
of inte rest are often changed into electrical signals by
means of trandsucers . Common t ransduce rs include
accele rometers and load cells in mechanical work, EEG
electrodes and blood pressu re probes in biology and
medicine, and pH and conductiv ity probes in chem i stry .
The rewards for t ransforming physical parameters to elec-
trical signals are great, as many instruments are availab le
for the analysis of electr ical signals in the time, frequency
and modal dom ains. The powerfu l measurement and
analysis capab ilities of these in struments can lead to rapid
understanding of the system unde r study .

Th is note is α primer for those who are un famil ia r
with the advantages of analysis in the frequency and
modal dom ains and with the class of analyzers we call
Dynamic Signal Analyzers . In Chapter ΙΙ we develop the
concep ts of the time, frequency and mod al domains and
show why these different ways of look ing at α problem
often lend their own un ique insigh ts . We then introduce
classes of in strumentation available for analysis in these
domains.

In Chapte r III we develop the properties of one of
these classes of an alyzer s, Dynam ic S ignal An alyzers .
These instruments are particularly appropr iate for the
analys is of signals in the range of α few millihertz to about
α hundred kilohertz .

Chapter IV shows the benefits of Dynam ic Signal
An alys is in α wide range of measurement situat ions . The
powerfu l analysis tools of Dynam ic Signal Analysis are in-
troduced as needed in each measurement situation .

Th is note avo ids the use of rigorous mathematics
and instead depends on heur istic arguments. We have
found in over α decade of teach ing this materia l that such
arguments lead to α bette r understanding of thebasic pro-
cesses involved in the various domains and in Dynamic
Signal Analys is . Equ ally important, th is heuristic in struc-
tion leads to better in strument operators who can in -
telligently use these an alyzers to solve compl icated
measurement prob lems with accuracy and ease .'

Because of the tuto ri al nature of th is note, we will
not attemp t to show detailed solutions for the multitude
of measurement prob lems which can be so lved by
Dynam ic Signal Analysis . Instead , we will concentrate on
the features of Dynamic Signal Analysis, how these
features are used in α wide range of app licat ions and the
benefits to be gained from using Dynamic Sign al
Analysis .

Those who desire more details on specif ic applica-
tions should look to Appendix Β . It contains ab stracts of
Hewlett-Packard Application Notes on α wide range of
related subjects . These can be obtained free of charge
from your local HP field engineer or representative.

' Α more rigorous mathem atical justification for the argumen ts
developed in the m ain text can be found in Appendix Α .



The Time, Frequency and Modal Domains:

ΑMatter off Perspective
, .

	

"

	

. .

	

concepts .

!W9

	

time, frequency and modal domains . These three ways
. looking

	

problemat a

	

. " a . -

	

.

information is lost in changing from one domain to
another . The advantage in introducing these three
domains is that of a change of perspective. By changing
ι " ι .

	

,

	

�

	

solution ι ι
cult problems can often become quite clear in theTrTe

" Spring

	

quency or modal domains .
"

After developing the concepts of each domain, we
introduce

	

ι " ι

	

, available .

'Ar

	

me rits ο eac

	

generic ιη s rumen

	

y

Force

	

give the reader an apprec i at ion of the advantages and
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Section 1: The Time Domain
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Figure 2.2
Indirect recording of displacement

Chapter 11

The t r aditio nal way of observing signals is to view

them in the time domain . The time doma in is α record o f

what happened to αparameter o f the system versus time .

For instance, Figure 2 .1 shows α simple spr ing-mass

system where we have attached α pen to the mass and

pu lled α piece o f paper past the pen at α constant rate .

The resulting graph is α record o f the d i splacement o f the

mass versus time, α time domain view of displacement .

Such direct recording schemes are sometimes used ,

bu t i t usual ly is much more practical to convert the

parameter of interest to an electrica l signal using α trans-

ducer . Transducers are commonly ava i lable to change α

wide variety of pa rameters to elect rical si gnal s . Micro-

phones, acce lerometer s, load ce lls, conductivity and
pressure probes are just α few examples .

This electr ical si gnal , which represents α parameter

of the system , can be recorded on α strip char t recorder

as in Figure 2 .2 . We can adjust the gain o f the system to

cal i b rate our measuremen t . Then we can reproduce

exact ly the results of our simple di rect recording system in

Figure 2 .1 .

Why shou ld we use t hi s indirect approach? One

reason is that we are not always measuring disp lacement .

Slits

	

We then mu st convert the desired parameter to the

Light

	

displacement of the recorder pen . Usua lly, the eas iest

Source

	

way to do thi s is through the i ntermediary of electronics .

However , even when measuring displacement we would

normally use an indirect approach . Why? Pr imarily

because the system in Figure 2.1 is hopeless ly i deal . The
4α9e<

	

mass must be large enough and the spring stiff enough so

ode	_

	

that the pen's mass and drag on the paper will not a ff ect

the results appreciab ly . Also the defl ection of the mass

must be la rge enough to give α usab l e result, otherwise α
ν Gο~ςι

	

mechanical lever system to amplify the motion would

have to be added with its attendant mass and friction .

Figure 2.3

	

With the indirect system α transduce r can usually be

Simplified oscillograph operation

	

selected which will not sign i f ican tl y aff ect the measure-



ment . This can go to the extreme of commercially avail -
able displacement t ransducers which do not even contact
the mass . The pen deflection can be easily set to any
des ired value by cont ro l ling the gain of the electronic
amplifi ers .

This ind i r ect system works well unti l our measured
pa rameter begins to change rap idly . Because of the mass
of the pen and recorder mechanism and the power limita
tions of its d r ive, the pen can only move at finite ve loc ity .
If the measured parameter changes faste r , the outpu t of
the recorder will be in error . Α common way to reduce
this problem is to elim inate the pen and record on α
photosensit ive pape r by deflecting α ligh t beam . Such α
device i s called an oscillograph . Since it is only necessary
to move α small, light-weigh t mirror through α very small
angle, the oscillograph can respond much faster than α
st rip chart recorder .

Another common device for displaying signals in the
time domain is the oscilloscope . Here an e l ect ron beam is
moved using electr ic fields . The electron beam is made
vis ible by α screen o f phosphorescent mater ial . It is
capable o f accurately displaying signals that vary even
more rap idly than the oscillograph can handle . This is
because it is only necessary to move an elect ron beam,
not α mirror .

Conversely , we can break down our real world
signal into these same sine waves . I t can be shown that
this combination o f sine waves is unique ; any real world
signal can be represented by only one combination o f
sine waves .

	

Amplitude

Figure 2 .6α is α thr ee dimensional graph o f th is addi-
tion of sine waves . Two of the axes are tim e and
amplitude, familia r from the time domain . The th i rd ax i s
is frequency which a llows us to visually separate the sine
waves which add to give us our complex waveform . If we
view this three dimensiona l graph along the frequency
axis we get th e view in Figure 2 .6b . This is the time do-
main v iew of the sine waves . Adding them together at
each instan t o f time gives the origina l waveform .

However , if we view our graph along the time axis as
in Figure 2.6c, we get α totally diffe rent pictu re . Here we
have axes of amplitude versus frequency , what is com
monly called the frequency domain . Every sine wave we

Figure 2.4
Simplified oscilloscope operation

(Horizontal deflection circuits omitted for clarity)

Section 2: The Frequency Domain
Amplitude

I t was shown over one hundred years ago by Baron
Jean Baptiste Fourie r that any waveform that exists in the
real world can be generated by add i ng up sine waves . We
have ill u st rated this in Figure 2.5 for α simple waveform

	

(α)
composed of two sine waves . By picking the amplitudes,
frequencies and phases of these sine waves correctly , we
can generate α waveform identical to our desi red s ignal .

k)

Figure 2.6

Electron
Source

Figure 2.5The strip chart, oscillograph and osc il loscope all

	

Any real waveform can be producedshow displacement versus time . We say that changes in

	

by adding sine waves together .
" this d isplacemen t represent the variation of some

parameter versus time . We wi ll now look at another way
of representing the variation of α parameter .

Ampl itude

Frequency

The relationship between the time and frequency domains.
α) Three-dimensional coordinates showing time, frequency

and amplitude
b) Time domain view
ε) Frequency domain view



b) Frequency Domain -
Small signal easily resolved

Figure 2.7
Small signals are not hidden in the frequency domain .

separated from the inpu t appears as α ver t ical line . Its
height rep resen ts its amp l itude and its pos i t ion represen ts
its frequency . Since we know that each line represen ts α
sine wave, we have uniquely characterized our inpu t
signal in the frequency domain* . Th is frequency domain
representat ion of our s ignal is ca lled the spectrum o f the
signal . Each sine wave line of the spectrum is cal led α
component of the total s ign al .

It is very important to understand that we have
neither gained nor lost information, we are just
represen ting it differently We are looking at the same
three-dimensiona l graph from different angles . This dif-
ferent perspective can be ve ry use ful .

Why the Frequency Domain?

Suppose we wish to measure the leve l o f distortion
in an audio oscillator . Or we migh t be trying to detect the
fir st sounds of α bearing failing on α no isy machine. In
each case, we are tr ying to detect α small sine wave in the
presence of large signals . Figure 2 .7α shows α time
domain waveform which seems to be α s ingle sine wave.
Bu t Figure 2.7b shows in the frequency domain that the
same signal is composed of α large sine wave and s ignifi-
cant other sine wave components (distortion compo-
nents) . When these componen ts are separated in the fre-
quency domain, the sm al l componen ts are easy to see
because they are not masked by large r ones .

The frequency domain's use fulness is not restricted
to electronics or mechanics . All fields of science and
enginee ring have measurements like these where large
signals mask others in the time doma in. The frequency
domain provides α usefu l tool in analyzing these small but
importan t effects .

The Frequency Domain : Α Natura l Dom ain

At first the frequency domain may seem strange and
unfami liar, yet it is an important part ο$ everyday life.
Your ea r-bra in combination is an excel lent frequency
domain analyzer . The ea r-brain sp l its the audio spectrum
into many narrow bands and determines the power pre-
sen t in each band . It can easi ly pi ck sm all sounds out of
loud background noise thanks in par t to its frequency
domain capab ility . Α docto r listens to your hear t and
breathing for any unusual sounds . He is l istening fo r fre-
quenc ies wh ich will tel l him something is wrong . An ex-
perienced mechanic can do the same th ing wi th α
machine . Using α screwdriver as α stethoscope, he can
hear when α bearing is failing because of the frequenc ies
it produces.

So we see that the frequency domain is not at all un-
common . We are ju st not used to see ing it in graphical
form. Bu t thi s graphica l presentat ion is really not any
st range r than saying that the temperature changed with
time like the displacement of α line on α graph .

'Actually, we have lost the phase inform ation of the sine waves. How
we get this will be discussed in Cha p ter ΙΙΙ .



ι The Need for Decibels

Power Ratio

	

db

	

Voltage Ratio
Since one of -the major uses of the frequency domain

into resolve small signals in the presence of large ones, let
us now address the problem of how we can see both large
and small signals on our display simultaneously .

Suppose we wish to measure α distortion compo-
nent that is 0 . 1% of the signal . If we set the fundamental
to full scale on α four inch (10 cm) screen, the harmonic
would be only four thousandths of an inch . ( . lmm) tall .

	

dB = 10 log (Powe r Ratio) = 20 log (Vohage Ratio)
Obviously, we could barely see such α signal, much less

	

Figure 2.8
measure it accurately . Yet many analyzers are available

	

The relationship between decibels, power and voltage
with the ability to measure signals even smaller than
this .

Since we want to be ab le to see all the components
easily at the same time, the only answer is to change our
amplitude scale . Α logarithmic scale would compress our
large signal amplitude and expand the small ones, allow-
ing all components to be displayed at the same time .

AlexanderGraham' Bell discovered that the human
ear responded logarithmically to power difference and in-
vented α unit, the Bel, to help him measure the ab ility of
people to hear . One tenth o f α Bel, the deciBel (dB) is the
most common unit used in the frequency domain today .
Α tab le of the relationship between volts, power and dB is
given in Figure 2.8 . From the table we can see that our
0 .1% distortion component example is 60 d B below the
fundamental . If we had an 80 dB display as in Figure 2 .9,
the distortion component would occupy 1/4 of the
screen, not 1/1000 as in α linear display .

Spectrum Examples

Another signal of i nterest i s the impulse shown in
Figure 2 .10d . The frequency spectrum of an impulse i s
flat, i .e ., there is energy at all frequencies . It would,
therefore, require infinite energy to generate α true im-
pulse . Nevertheless, it is possible to generate an approxi-
mation to an impulse which has α f airly flat spectrum over
the desired frequency range of interest . We will find
signals with α flat spectrum useful in our next subject, net-
work analysis .

ε ) Transient
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α) Linear Amp litude ,

	

b) Logarithmic Amplitude
Scale

	

Scale

Figure Ζ.9'
Small signals can be measured with a logarithmic

amplitude scale :

Time Domain

	

Frequency Domain

Let us now look at α few common signals in both the

	

α ) Sine Wavetime and frequency domains . In Figure 2.10α , we see

	

Amplitude
that the spectrum o f α sine wave is just α single line . We
expect th is from the way we constructed the frequency

	

Time

domain . The square wave in Figure 2.106 is made up of

	

IT[--

	

}-1Π .

	

Frequency
an ίηfiηίte number of sine waves, α11 harmonically related .
The lowest frequency present is the reciprocal of the
square wave period . These two examples illustrate α pro-

	

6) Square Wave
perty o f the fre quency transform : α signal wh ich is
periodic and exists for all time has α discrete frequency

	

Time
spectrum . Th is is in contrast to the transient signal in
Figure 2 .10c which has α continuous spectrum . Th is

	

-'i Τ
means that the sine waves that make up this signal are
spaced infinitesimally close together .

Time

Time

Figure 2.10
Frequency spectrum examples

F requ ency

Frequency



Voltage
(Excitation

or
Stimulus)

Stimulus
(or Excitation)

Voltage
Impedance = Current

α) Actual impedance of α real capacitor

All o f t hese problems and many more are examp les
of network analy sis . As you can see α "network" can be
any system at all . One-port network analysis is the varia
tion o f one parameter with respect to another , both

-i,+
Displacement

	

measured at the same k,

	

(por t) of the network . The
(Output or Response)

	

impedance or comp liance of the electron ic or mechani-

Displacement

	

ca l networks shown in Figure 2 .11 are typical examples
Compliance =

	

Force

	

of one-por t network analysis .

b) Compliance of α shock mount

	

Two-port analysis gives the response at α second
port due to an inpu t at the f irst po r t . We are gener ally in

Figure 2.11

	

terested in the transmission and rejection of signals and in
One-port network analysis examples

	

in suring the integrity of signal transmission . The concept
of two-port analysis can be extended to any number of in-Is
puts and ou tpu ts . This is calledΝ-portanalysis, α subject

Acoustic Barrier	we wi ll use in modal analysis late r in this chapte r .

We have del ibe rately de fined network analys is in α
very gener al way . It appl ies to all networks with no lim ita-
tions . If we place one cond ition on our network , linearity ,
we find that network analysis becomes α very powerfu l
tool .Ι / / Ι 1

S peaker _
When we say α network is linear, we mean i t

α) Sound transmission through α barrie r	be haves like the netwo rk i n Figure 2 .13 . Suppose one in-
put causes an output Α and α second input app l ied at the
same port causes an output Β. If we app ly both inputs at
the same time to α linea r network , the output wi ll be the

Stimulus-04

	

Ε'Filterrc

	

Response

	

sum of the individua l outputs, Α + Β.

Figure 2.13
Linear network

Output
C=(οτ Response)
Mike

b) Elect ronic filter used to separate single conversation

	

At fir st glance it migh t seem that all networks would
from FDM phone system

	

behave in thi s fashion . Α counter examp le, α non-linear
network , is shown in Figure 2 .14. Suppose that the f irst

Figure 2.12

	

inpu t is α force that va ries in α sinusoidal manner . We
Two-port network analysis

	

pick its amplitude to ensure that the displacement is small
enough so that the osci llating mass does not quite hit the
stops . If we add α second iden t ical inpu t, the mass would

α(t)-~ Network

	

Α(t)

	

now h it the stops . Instead of α sine wave wi th twice the
amp litude, the output is clipped as shown in Figure

Β(t)

	

2.14b .
b(t) Network

α(t) + 6(t)--~ Network

	

Α(t) + Β(t)

Network Analysis

If the frequency domain were restricted to the
analysis of signal spectrum s, it wou ld ce rtainly not be

	

is
such α common engineering tool . However , the frequen-
cy domain is also widely used in ana ly z ing the behavio r of
networks (network analys is) and in design work .

Network analysis is the general engineering prob l em
of determ ining how α network will respond to an inpu t . "
For instance, we might wish to determine how α stru cture
will behave in high wind s. Or we migh t want to know
how effective α sound absorbing wall we are planning on
purchas ing would be in reducing machinery no ise . Or
perhaps we are interested in the effects of α tube of sa line
solu tion on the transmission o f blood pressure waveform s
from an arte ry to α monitor .

' Netwo rk Analysis is sometim es called Stimulus/Response Testing .
The inpu t is then known as the stimu lus or excitation and the output is
called the response .
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This spring-mass system with stops ill u st rates an im-
portant principal : no rea l system is completely linear . Α
system may be approximately linear over α wide range of
signals, but eventually the assumption of linearity breaks
down . Our spring-mass system is l inear before it h its t he
stops . L i kewise α linear e l ectronic amplifi er clip s when the
output voltage approaches the internal supply vo ltage . Α
spring may compress linearly un ti l the coil s star t pressing
again st each other .

Other forms o f non- l ίnearities a re also often presen t .
Hysteresis (o r backlash ) is usually present in gear tr ains,
loosely riveted joints and in magnetic devices . Sometimes
the non -l ίnearit ies are l ess abrupt and are smooth, but
non-linear, curves . The torque versus rpm of an engine
or the operating curves of α transisto r a re two examples
that can be considered linear over only small port ions of
their operating regions .

The importan t poin t is not that all systems are non-
linear ; i t is that most systems can be approximated as
linear systems . Often α la rge engineering effort i s spen t
i n making the system as linear as practical . This is done
for two reasons . First, it i s o ften α design goal fo r the out-
put of α network to be α scaled , li near vers ion o f t he in-
put . Α st rip chart recorder is α good example . The elec-
tronic amplifier and pen motor must both be designed to

ensure that the defl ection across the paper is linear with
the applied voltage .

The second reason why systems are linearized is to
reduce the problem o f non-linear instability . One exam-
ple would be the pos i ti oning system shown in Figure
2 .16 . The actual positio n is compared to the desired posi-
t ion and the error is integrated and applied to the motor .
If t he gear tr ain has no backlash , it i s α st raigh t forward
problem to design thi s system to the desi red specificat ions
of positioning accuracy and response time .

However , i f t he gear t r ain has excessive backlash ,
the motor wil l "hunt" causing the positio n ing system to
osc illate around the des ired positio n . The solu tion is
either to reduce the loop gain and therefo re reduce the
overa ll performance of the system, or to reduce the back-
lash in the gear train . Often , reduc ing the backlash is the
only way to meet the performance specificat ions .

Analysis of L inear Networks

As we have seen , many systems are designed to be
reasonably l inear to meet design speci f ications . This has α
fort uitous side benefit when attempting to ana l y ze net-
works . '

Recall that any real signa l can be considered to be α
sum of sine waves . Also, reca ll that the response of α
li near network is the sum of the responses to each com
ponent of the input . Therefore, if we knew the response
o f the network to each of the s ine wave components of
the input spectrum, we cou ld predict the output .

-ι,MPPMP'~
ϊιι -,ο.4

elp" i'l/ )0 Spring

Q-00a+ ὶ

Ι <

Got~a

Force
α) System is linear for small deflections

Torque

ool
Je Spring

Force

6) System is non-linear for large deflections

Figure 2.14
Non-linear system example

Amplifier
Input

	

Output

Ρ~~er Supply
Limit

α) Output clipping (saturation) of an electronic amplifier

θ2

~θ t
θ tZ__L/ -Θ

6) Backlash in α gear train

Shaft Speed
ε) Operating curves for an electric motor

'We will discuss the analysis of networks wh ich have not been linea r iz -

	

Figu re 2.15
ed in Chapter III, Sectio n 6 . Examples of non-lίnearit ies



Signal Representing

	

It is easy to show that the steady-state response of α
Desired Position

	

linear network to α sine wave inpu t is α s in e wave of t he
same frequency . As shown in Figure 2.17, the amplitude

integrator

	

Motor

	

of the ou tpu t sine wave is proportional to the input
Error_

	

Gear

	

amp litude. Its phase is sh ifted by an amount wh ich
S'g"~

	

`r

	

Train

	

depends on ly on the fre quency of t he sine wave . As we
--D

ri-

	

vary the frequency o f the sine wave input, the amp l itude
proportional ity factor (ga in) changes as does the phase of

ion

	

Driv. to

Transducer

the output. If we divide the outpu t of the network by
Position

	

Controlled

	

the input, we get α normalized resul t called the .fre
Device

	

quency response of the network . As shown in Figure

Figure 2.16

	

2.18, the frequency response is the gain (or loss) and
Α positioning system

	

phase sh ift of the network as α fun ction of frequency .
Because the network is linear , the frequency response is
independent of the input amp litude ; the frequency
response is α property of α linear network , not depen-
den t on the stimulus .

Input Sine Wave

ΚS

Output Sine Wave

Aout =

	

ΚΑίη
Aout

ι ν
Αιn

ι ~

	

.-o- Input
-4- Output

The frequency response of α network will generally
fall into one of t hree catego ries; low pass, high pass,
bandpass or α combination of t hese . As the names sug
gest, their frequency responses have relatively high gain
in α band of frequencies, allowing these fre quencies to
pass through the network . Other frequencies suffer α
relatively high loss and are rejected by t he network . To
see what this means in terms of the response of α filter to
an inpu t, let us look at the bandpass filte r case .

t

	

N

	

ί

	

1

	

Γ

	

In Figure 2 .20, we pu t α square wave into α bandpass
11

	

f ilter . We recall from Figure 2.10 that α square wave is
ι\V/

composed of harmonica lly related sine waves
.
The fre-

quency response of our examp le network is shown in
Phase

	

F igure 2.20b . Because the filter is narrow, it wi ll pass on ly
Shift

	

one component of the square wave . Therefore, the
Figure 2.17

	

steady -state response of this bandpass fi lter is α sine wave .Linear network response to α sine wave input

Amplitude
Ratio

In con tr ast, it is very di fficu lt to compute in the time
dom ain the output of any bu t the simplest networks. Α
comp licated integral must be eva luated wh ich often can
only be done numerically on α digital computer* . If we
compu ted the network response by both evaluat ing the
time domain integ ral and by transforming to the frequen-

F

	

Frequency

	

cy domain and back , we wou ld get the same res ults .
Howeve r , it is usu ally easier to compute the output by

Phase ,

	

transforming to the frequency domain .

Notice how easy it is to predict the output of any net-
work from its frequency response . The spectrum o f the
inpu t signal is multipl ied by the fre quency response of the
network to determ ine the componen ts that appear in the
output spectrum . Th is frequency domain output can then
be transformed back to the time domain .

Figure 2.18
The frequency response Ο} α network

	

`This operation is called convolution . .



Amplitude
Ratio

ι
Amplitude
Ratio

Signals

	

Signals
Passed

	

Ι Rejected

Ι

α) Low pass network

Signals

	

Signals
Rejected 1

	

Ι Passed
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Figure 2.19
Three classes of frequency response
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Up to this point we have only discussed the steady-
state response to α signal . By steady-state we mean the
output after any transient responses caused by applying

Frequency

	

the ίηρυ t have died out . However, the frequency
Response

	

response of α network also contains all the information
necessary to predict the transient response of the network
to any signal .

Output

	

Let us look qualitatively at the transient response of
α bandpass filter . I f α resonance i s narrow compared to its
frequency, then it i s said to be α high "Q" resonance * .
Figure 2.21α shows α high Q filter frequency response . I t
has α transient response which dies out very slowly . Α
time response which decays slowly is said to be lightly

Frequency

	

damped . Figure 2 .21b shows α low Q resonance . I t has α
transient response which dies out quickly . This illustrates

α) Lightly damped (high Q) filter

	

α general principle : signals which are broad in one
domain are narrow in the other . Narrow, selective

Frequency

	

filters have very long response times, α fact we will find
Response

	

Output

	

important in the next section .

Filter

Π -
Time

Just as the time domain can be measured with strip
b) Heavily damped (low Q filter

	

chart recorders, oscillographs or oscilloscopes, the fre-
quency domain is usually measured with spectrum and

Figure 2.21

	

network analyzers .
Time response of bandpass filters

Transient Response

Section 3: Instrumentation for the Frequency
Domain

Spectrum analyzers are instruments which are
optimized to characterize signals . They introduce very lit-
tle distortion and few spurious signals . This insures that
the signals on the display are truly part of the input signal
spectrum, not signals introduced by the analyzer .

Network analyzers are optimized to give accurate
amplitude and phase measurements over α wide range of
network gains and losses . This design difference means
that these two traditional instrument families are not inter-
changeable.** Α spectrum analyzer can not be used as
α network analyzer because it does not measure ampli-
tude accurately and cannot measure phase . Α network
analyzer would make α very poor spectrum analyzer
because spurious responses limit its dynamic range .

In this section we will develop the properties of
several types of analyzers in these two categories .

'Q is usually defined as :

Q = Center Fre quency of Resonance
Frequency Width of -3 dB Points

**Dynamic Signal Analyzers are an exception to this rule, they can act
as both network and spectrum analyzers .



The Parallel-Filter Spectrum Analyzer

As we developed in Section 2 of this chapter, elec-
tronic filters can be built which pass α narrow band of fre-
quencies . If we were to add α meter to the output of such
α bandpass filter, we could measure the power in the por-
tion of the spectrum passed by the filter . In Figure 2 .22α
we have done this for α bank of filters, each tuned to α
different frequency . If the center frequencies of these
filters are chosen so that the filters overlap properly, the
spectrum cove red by the fi lter s can be completely cha rac-
terized as in Figure 2.22b .

How many filters should we use to cover the desired
spectrum? Here we have α t radeoff . We would like to be
able to see closely spaced spectral lines, so we should
have α large number of filters . However, each filter is ex-
pensive and becomes more expensive as it becomes nar-
rower, so the cost of the analyzer goes up as we improve
its resolution . Typical audio parallel-filter analyzers
balance these demands with 32 filters, each covering 1/α
of an octave .

One way to avo id the need fo r such α la rge numbe r
of expensive filte rs i s to use only one fi lter and sweep it
slowly through the frequency range o f interest . If, as in
Figure 2.23, we display the ou tput of the filte r ve rsu s the
frequency to which i t is tuned, we have the spectrum of
the input signal . This swept analysis technique is com-
monly used in rf and microwave spectrum analysis .

One way to reduce this problem would be to speed
up the sweep time of our analyzer . We could still miss an
event, but the time in which this could happen would be
sho rte r . Unfortunately though , we cannot make the
sweep arbitrarily fast because of the response time of our
filter .

Input

Amplitude

Amplitude

Filter #1

Filter #2

Filter #N

F igure 2.22
Parallel filter analyzer

α) Simp lified parallel filter analyzer

Swep t Spectrum Analyzer

	

Frequency

b) Parallel filter analyzer ou tput

We have, however, assumed the input signal hasn't
changed in the time it takes to complete α sweep o f our
analyzer . If energy appears at some frequency at α
moment when our filter is not tuned to that frequency,
then we will not measure it .

	

Input

	

Tunable F ίlter	Detector

Tuning
Voltage

5awtooth
Generator Deflection

Voltage T
CRT Display

Figure 2.23
Simplified swept spectrum analyzer
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Ο
Sine Wave
Source

Stimulus

In α para l lel-filter spectrum analyzer we do not
have thi s prob lem. All the filters are connected to the

Figure 2.24

	

input signal all the time. Once we have waited t he in it i al
Amplitude error from sweeping too fast

	

settling time of α single filte r , all the filters will be settled
and the spectrum will be val id and not miss any tran-
sien t events .

Network

	

Channel Β
Under
Test

Figure 2.25
Gain-phase meter ope ration
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Channel Β
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racking ~VoltmeterUnder

	

Filter
Test

Amplitude

Channel A

To understand this problem, reca l l from Section 2
Slow Sweep

	

that α filte r takes α f inite time to respond to changes in
its input. The narrower the filter , the longer it takes to

Faster Sweep

	

respond . If we sweep the filter past α signal too quickly,
the filter outpu t will not have α chance to respond fully
to the signal . As we show in Figure 2.24, the spectrum
d is play will then be in error; our estimate of the s ign al
lev el will be too low.

Channel Α

-b- Sweeping Sine Wave

Stimulus

Gain-Phase Meter

Sweeping Sine
Wave Source

	

Ramp
Generator

Phase Meter

T racking
k---LOVoltmeterFilter

i~ Frequency

Frequency
Filters t rack source and eliminate noise

Figure 2.26

	

'More inf ormation on the performance of swept spectrum analyzers
Tuned network analyzer operation

	

can be found in Hewlett-Packard Application Note Se ries 150.

So there is α basic tradeoff between parall el-filter and
swept spectrum analyzers. The par allel- filter analyzer is
fast, bu t has limited resolution and is expensive . The
swept ana lyzer can be cheaper and have higher resolu -
tion but the measurement takes longer (especially at high
resolution) and it can not analyze transient events .

Dynamic Sign al Analyzer

In recent years another kind of analyzer has been
developed which offers the best features of the par allel-
filter and swep t spectrum analyzers. Dynamic Signal
Analyzers are based on α high speed ca lculation routine
which acts like α par al lel fi lter analyzer with hundreds of
filters and yet are cost competit ive wi th swept spectrum
analyzers. In addition , two chann el Dynamic Sign al
Analyzers are in many ways bette r network analyzers
than the ones we will introduce next.

Network Analyzers

Since in network analysis it is requ ir ed to measure
both the inpu t and ou tpu t, network analyzers are gen-
eral ly two channel devices with the capabili ty of mea
sur ing the am plitude ratio (gain or loss) and phase
difference between the channels . All o f the an alyzers
discussed here measure frequency response by u sing α
sinusoid al input to the network and slow ly chan ging its
frequency . Dynam ic Signal An alyzers use α differen t,
much faste r technique for network an alysis wh ich we
discuss in the next chapte r .

Gain-phase meters are broadband devices wh ich
measure the amp litude and phase of the inpu t and output
sine waves of the network . Α sinusoidal source must be
supplied to stimulate the network when u sing α gain -
phase meter as in Figure 2 .25. The source can be tuned
manually and the gain -phase plots done by hand or α
sweeping source and an χ-y plotter can be used for
automatic frequency response plots .

The primary attraction of gain-phase meters is their
low price. If α sinusoid al source and αplotter are al ready
availabl e, frequency response measurements can be
made for α very low investment. However , because gain-



phase meters are broadband, they measure all the noise
of the network as well as the desired sine wave . As the
network attenuates the input, this noise eventually
becomes α floor below which the meter cannot measure .
This typically becomes α problem with attenuations of
about 60 dB (1,000 :1) .

Tuned analyzers are available in the frequency
range of α few Hertz to many Gigahertz (109 Hertz) . If
lower frequency analysis i s desired, α frequency
response analyzer is often used . To the operator, it
behaves exactly like α tuned network analyzer . How-
ever, it is quite different inside . It integrates the signals
in the time domain to effectively filter the signals at very
low frequencies where i t is not practical to make filters
by more conventional techniques . Frequency response
analyzers are generally limited to from 1 mHz to about
10 kHz .

Section 4: The Modal Domain

To understand the modal domain let us begin by
analyzing α simple mechanical structure, α tuning fork . If
we strike α tuning fork, we easily conclude from its tone
that it is primarily vibrating at α single frequency . We see
that we have excited α network (tuning fork) with α force
impulse (hitting the fork ) . The time domain view of the
sound caused by the deformation of the fork is α lightly
damped sine wave shown in Figure 2 .27b .

Amplitude

Microphone

Tuned network analyzers minimize the noise floor
problems of gain-phase meters by including α bandpass
filter which t racks the source frequency . Figure 2 .26

	

α) Themechanical vibration ofα tuning forkcauses soundwaves .
shows how this tracking filter virtually eliminates the noise
and any harmonics to allow measurements of attenuation
to 100 dB (100,000 :1) .

By minimizing the noise, it is also possible for
tuned network analyzers to make more accurate mea-

	

Time
surements of amplitude and phase . These improve-
ments do not come without their price, however, as

	

b) Time domain view of the sound from α tuning fork
tracking filters and α dedicated source must be added
to the simpler and less costly gain-phase meter .

Frequency

ε) Frequency domain view of the sound from α t uning fork
In the preceding sections we have developed the

properties of the time and frequency domains and the in-

	

Figure 2.27
strumentation used i n these domains . In this section we

	

The vibration of α tuning fork
will develop the properties of another domain, the modal
domain . This change in perspective to a new domain is
particularly useful if we are interested in analyzing the
behavior of mechanical structures .

α)

	

First mode of vibration
of α tuning fork

In Figure 2.27 ε , we see in the frequency domain
that the frequency response of the tuning fork has α
major peak that is very lightly damped, which is the tone

	

----
we hear . There are also several smaller peaks.

b) Second mode of vibration
Each of these peaks, large and small, corresponds to

α "vibration mode" of the tuning fork . For instance, we

	

----
might expect for this simple example that the major tone
is caused by the vibration mode shown in Figure 2 .28α .

	

Figure 2.28
The second harmonic might be caused by α vibration like

	

Example vibration modes of α tuning fork
Figure 2 .28b .



α) Damping material applied at maximum displacement
in second mode

For instance, let us look again at our tuning fork ex-
ample . Suppose that we decided that the second har-
monic tone was too loud . How should we change our
tuning fork to reduce the harmonic? If we had measured
the vibration of the fork and determined that the modes
of vibrat ion were those shown in Figure 2 .28, the answer

6) Damping material has little effect on first mode.

	

becomes clear . We might apply damping material at the
center of the tines of the fork . This would greatly aff ect

Figure 2.29

	

the second mode which has maximum deflection at the
Reducing the second harmonic by damping the

	

center while only slightly affecting the desired vibration of
second vibration mode

	

the f i rst mode . Other solutions are possible, but all

6) Frequency response at measurement points

Figure 2.30
Modal analysis of α tuning fork

We can express the vibration of any structure as α
sum of its vibrat ion modes . Just as we can represent any
real waveform as α sum of much simpler sine waves, we
can represent any vibration as α sum of much simple r
vibrat ion modes . The task of "modal" analysis is to deter-
mine the shape and the magnitude of the structural defor-
mation in each vibration mode. Once these are known, it
usually becomes apparent how to change the overall
vib rat ion .

depend on knowing the geometry of each mode .

TheRelationship Between TheTime,
Frequency and Modal Domains

To determine the total vibration of our tuning fork or
any other structure, we have to measure the vibration at
several points on the structure . Figure 2 .30α shows some
points we might pick . If we transformed this time domain
data to the frequency domain , we would get resul ts like
Figure 2.30b . We measure frequency response because
we want to measure the properties of the structure in-
dependent of the stimulus.'

We see that the sharp peaks (resonances) al l occur at
the same frequencies independent of where they are
measured on the structure. Likewise we would find by
measuring the width of each resonance that the damping
(or Q) of each resonance is independent of pos i t ion. The
only parameter that varies as we move from point to
point along the structure is the relat ive height of
resonances .' " By connecting the peaks of the
resonances of α g iven mode, we trace out the mode
shape of that mode.

*Those who are more fa mil i ar with electronics might note that we
have measured the fr equency response of α network (structure) at Ν
points and thu s have done an Ν-port Network Analys is.

	

0
"The phase of each resonance is not shown for clarity of the figures
but it too is important in the mode shape . The m agnitud e of the fre-
quency response gives the magnitude of the mode shape while the
phase gi ves the direction of the deflection .



Experimentally we have to measure only α few
points on the structure to determine the mode shape .
However, to clearly show the mode shape in our figure,
we have drawn in the frequency response at many more
points in Figure 2.31α . If we view this three-dimensional
graph along the distance axis, as in Figure 2 .316, we get
α combined frequency response . Each resonance has α
peak value corresponding to the peak displacement in
that mode . I f we view the graph along the frequency axis,
as in Figure 2.31c, we can see the mode shapes of the
structure .

We have not lost any information by this change of
perspective . Each vibration mode is characterized by its
mode shape, frequency and damping from which we can
reconstruct the frequency domain view .

Section 5: Instrumentation for the Modal
Domain

There are many ways that the modes of vibration
can be determined . In our simple tuning fork example we
could guess what the modes were . In simple structures
like drums and plates i t is possible to write an equation for
the modes of vibration . However, in almost any real
problem, the solution can neither be guessed nor solved
analytically because the structure is too complicated . In
these cases it is necessary to measure the response of the
structure and detemine the modes .

There are two basic techniques for determining the
modes of vibration in complicated structures ; 1) exciting
only one mode at α time, and 2) computing the modes of
vibration from the total vibration .

Amplitude

Amplitude

Curve fitting

Ι α ) Thr ee-dimensional coordinates
showing frequency, distance
and amplit ude

A mplitudeHowever, the equivalence between the modal, time
and frequency domains i s not quite as strong as that bet- Mode ιween the time and frequency domains . Because the

	

Total Vibration// Envelope
mod al domain portrays the Frοpertίes of the network i r ι- Envelope

dependent of the stimulus, transforming back to the time

	

Frequency

domain gives the impulse response of the structure, no
matter what the stimulus . Α more important limitation of

	

b) Frequency domain view
Ι

	

Ι

	

Mode 2
this equivalence is that curve fitting is used in transforming

	

Envelope
from our frequency response measurements to the modal
domain to minimize the effects of noise and small ex-

	

Distance

perίmental errors . No information is lost in this curve fit-

	

0 Modal domain view

ting, so all three domains contain the same information,

	

Figu re 2.31
but not the same noise . Therefore, transforming from the

	

The relationship between the frequency and the
frequency domain to the mod al domain and back again

	

modal domains
will give results like those in Figure 2.32 . The results are
not exactly the same, yet in all the important features, the
frequency responses are the same . This is also true of time
domain data derived from the modal domain .

Figure 2.32
Curve fitting removes measurement noise



To determine the modes of vibration from the tota l
vibration of the structure, we use the techniques
developed in the prev ious section. Basi cally, we determine
the frequency response of t he structure at severa l points
and compute at each resonance the frequency, damping
and what is cal led the residue (wh ich represents the heigh t
of the resonance) . Th is is done by α curv e-fitting routine to

Figure 2.33

	

smooth ou t any noise or sm all experimenta l errors . From
Single mode excitation modal analysis

	

these measurements and the geomet ry of the stru cture,
the mode shapes are computed and drawn on α CRT
display or α plotter . If drawn on α CRT, these displays may
be animated to h elp the use r understand the vibration
mode .

Figure 2.34
Measured mode shape

S ingle Mode Excitation Moda l Analysis

To illustrate single mode excitation, let u s look once
again at our simple tuning fork example. To excite just the
first mode we need two shakers, driven by α s inewave and
attached to the ends of t he tines as in Figure 2.33α . Vary-
ing the frequency of the generator near the first mode
resonance frequency would then g ive us its frequency,
damping and mode shape.

In the second mode, the ends of the tines do not
move, so to excite the second mode we mu st move the
shakers to the cente r of the t ines. If we anchor the ends of
the tines, we will con stra in the vibration to the second
mode alone .

In more realistic, three dimensional problem s, it is
necessary to addmany mo re shakers to ensure that only
one mode is excited . The difficulties and expense of
testing with many shakers has limited the app l ication o f
this traditiona l mod al analysis technique.

Modal Ana lysis From Total V ib ration

From the above description, it is apparent that α
modal analyzer requires some type of network analyzer
to measure the frequency response of the structure and α
compute r to convert the frequency response to mode
shapes . This can be accomplished by connecting α
Dynamic Signal Analyzer t hrough α digital interface' to α
compute r furnished with the appropriate software. This
capabil ity is also available in α sing le instrument called α
Structur al Dynamics Analyzer . In gener al, compute r
systems offer more versatile performance since they can
be programmed to solve other problems . However ,
Structur al Dynamics Analyzers generally are much easier
to use than computer systems.

*HP-113, Hewlett-Packard's implemen tation of IEEE-488-1975 is ideal
for th is application.



Section 6: Summary

In this chapter we have developed the concept of
look ing at problems from d i fferen t perspectives. These
perspectives are the tim e, frequency and modal
domains. Phenomena that are confu sing in the time
dom ain are often clarified by changing perspective to
another domain . Small signals are easi ly resolved in the
presence of large ones in the frequency domain . The
frequency domain is also valuable for predi cting the
ou tput of any kind o f linea r network . Α change to the
mod al dom ain breaks down complicated st ructural
v ibration problems into simple v ibration modes .

No one domain is always the best answer , so the
ability to easily change domains is quite valuable . Of all
the instrumentation avai lable today, only Dynamic Signal
Analyzers can work in all three domains. In the next
chapte r we develop the proper t ies of this important class
of an alyzers .



We saw in the previous chapter that the Dynamic

Am plitude

	

S igna l Analyzer has the speed advantages of par allel-filter
analyzers without their low resolut ion lim itations . In addi-
tion , it is the only type of analyzer that wo rks in all three
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domains. In th is chapter we will develop α fuller under-
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stan ding of this important analyzer fam ily, Dynamic
Ι

	

Ι

	

Ι

	

Ι

	

Ι

	

Ι

	

Ι

	

S igna l Analyzers . We begin by presen ting the properties
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of the Fast Four ie r Transform (FFT) upon which Dynamic
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S igna l Analyzers are based . No proof of these propert ies
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is given, bu t heuristic arguments as to their valid ity are
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used where appropriate. We then show how these FFTΙ
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properties cause some undesirable characteri stics in spec-
trum analy sis like al ίasing and leakage . Having demon-
strated α potential d ifficulty with the FFT, we then show1-f Time
what solutionsare used tomake practical Dynam ic Signal

,"

	

b) Samples

	

Analyzers. Developing th is basic knowledge of FFT char-
of input signal

	

acteri stics makes it simple to get good resu lts with α
Dynam ic Signal Analyzer in α wide range of measure-

Transform To 1W

	

ment problems .

Amplitude

Amp litude

The Fast Fourier Transform (FFT) is an algo rithm "
fo r transform ing data from the time dom ain to the fre-
quency domain . Since th is is exactly what we want α

spectrum analyzer to do, it would seem easy to imple-
ment α Dynam ic Sign al Analyzer based on the FFT .

ε) Samples of the frequency domain

	

However , we will see that there are many factors wh ich
(called lines)

	

complicate this seem in gly straight-forward task.
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F igure 3.1
The FFT samples in both the time and

frequency domains

Figure 3.2
Α time record is Ν equally spaced samples

of the ίηρυ t

Chapter III

Understanding Dynamic Signal Analysis

Section 1 : FFT Properties

First, because of the many calculations involved in
transforming domain s, the transform mu st be imp lement-
ed on α dig ital compute r if the resu lts are to be sufficien tly
accurate . Fortunately , with the advent of microproces-
sors, it is easy and inexpensive to incorporate all the
needed compu ting power in α sm all instrument package.
Note, however , that we cannot now transform to the fre-
quency domain in α continuous manne r , but instead
must sample and di gitize the time dom ain inpu t . Th is
means that our algo rithm transform s digitized samples
from the time domain to samples in the frequency
domain as shown in Figu re 3 .1 .**

Because we have sampled, we no longer have an
exact representation in either domain . However , α
sampled representation can be as close to ideal as we

o-Time

	

desire by placing our samples closer together . Later in
this chapte r , we will con sider what samp le spacing is
necessary to guarantee accurate resu lts .

*An algorithm is any special mathem atical m ethod of solving α cer-
tain kind of problem; e.g ., the techni que you use to balance your
checkbook .

**To reduce confus ion abou t whic h dom ain we are in, samples in the
frequency domain are called lines.

ι

ι



Time Records

Α time record i s defined to be Ν consecutive, equall y
spaced samples o f the input . Because it makes our
trans form algor ithm simpler and much faste r , Ν is
r estr icted to be α multiple of 2, for instance 1024 .

Amplitude

rall

	

ιιι misra
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shown	in

	

Figure

	

3.3,

	

this

	

time

	

record

	

is

	

Time Record of Ν Samples
transformed as α complete block into α complete block
o f frequency l in es . All the samples o f the time record a re
needed to compute each and every line in the frequency

	

FFT
domain . This is i n con t rast to what one might expect,
namely that α sing le time domain sample t ransforms to
exactly one frequency dom ain line . Understanding this

	

Amplitude
block processing property o f t he FFT i s crucial to
understanding many of the properties of the Dynam ic
Signa l Analyzer .

o-Frequency
For instance, because the FFT transforms the entire

tim e record block as α total, there cannot be valid fre-

	

Figure 3.3
quency domain results un t il α complete time record has

	

The FFT work s on blocks of data
been gathered . However , once completed, the oldest
sample could be discarded, all the samp les shifted in the
time record , and α new sample added to the end of the
time record as in Figure 3.4 . Thus, once the time record
is initially filled , we have α new time record at every time
domain sample and therefore could have new valid
results in the frequency domain at every time domain
sample .

Amplitude
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This is very similar to the behavior of the parallel-
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Ιfilter analyzer s described in the previous chapter .

	

Ι
When α signal i s fir st applied to α parall el-fil te r analyz e r,
we must wait for the fi lters to respond , then we can see
very rapid changes in the frequency domain . W i t h α

	

Time
Ι

Dynamic Signal Analyz er we do not get α valid resul t

	

ι

	

ί
until α fu ll time record has been gathered . Then rapid

	

Ι

	

ι
changes in the spectra can be seen .

It s hould be noted here that α new spectrum every
sample is usu all y too much informat ion, too fast . This
would o ften give you thousands of trans forms per
second . Just how fast α Dynamic Signa l Analyzer shou ld
tran s form is α subject better le ft to the sections in t his
chapter on real time bandwidth and overlap processing .

How Many Lines are There?

We stated ear lier t hat the time record has Ν equall y

	

Amplitude
spaced samples . Another property o f t he FFT i s that it
transforms these time domain samples to Ν/2 equall y
spaced lines in the frequency domain . We on ly get ha lf as
many l ines because each frequency line actually contains
two pieces o f information , amplitude and phase . The
meaning of this is most easily seen if we look aga in at the
relationship between the time and frequency doma in .

New Time Record
One Sample Later

Figure 3.4
Α new time record every sample afte r the time

record is filled

Figure 3 .5 reproduces from Chapte r ΙΙ our three-
dimensional graph of this r elationship . Up to now we
have implied that the amplitude and frequency of the sine
waves

	

contains

	

al l

	

the

	

information

	

necessary	to

	

Figure 3.5
reconstruct the input . But it shou ld be obvious that the

	

The relationsh ip between the time and
phase o f each o f these sine waves is importan t too . Fo r

	

frequency domains
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Figure 3.6

	

Nowthat we know that we have Ν /2 equally spacedPhase of frequency domain components is important

	

lines in the frequency domain, what is their spacing? The
lowest frequency that we can resolve with our FFT spec-
trum analyzer m ust be based on the length o f the time
record . We can see in Figure 3.7 that if the period of the

Amplitude

	

input signal i s longer than the time record, we have no
way of determining the period (or frequency, its
reciprocal) . Therefore, the lowest frequency line of the
FFT must occur at frequency equal to the reciprocal of
the time record length .

In addition, there is α frequency line at zero Hertz,
DC . This i s merely the average of the input over the time

Time Record

	

record . I t is rarely used in spectrum or network analysis .
α ) Period of input signal equals time record .

	

But, we have now established the spacing between these
Lowest resolvable frequency .

	

two lines and hence every line ; it is the reciprocal of the
Amplitude

	

time record .

I t t t t til
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What is the Frequency Range of the FFT?
Time

7

	

7

	

We can now quickly determine that the highest fre-
_J-_

	

quency we can measure is :

Time Record

	

Ν

	

1
6) Period of input signal longer than the

	

fmax

	

- 2

	

period of Time Record
time reco rd. Frequency of input signal
is unknown.

Figure 3.7
Lowest frequency resolvable by the FFT

instance, in Figure 3.6, we have shifted the phase of the
higher frequency sine wave components of this signal .
The result is α severe distortion of the original wave form .

We have not discussed the phase information con-
tained in the spectrum of signals until now because none of
the traditional spectrum analyzers are capable of measur
ing phase . When we discuss measurements in Chapter IV,
we shall find that phase contains valuable information in
determining the cause of performance problems .

What is the Spacing of the Lines?

because we have Ν/2 lines spaced by the reciprocal of
the time record starting at zero Hertz* .

Since we would like to adjust the frequency range of
our measurement, we must vary fmax. The number of
time samples Ν is fixed by the implementation o f the FFT
algorithm . Therefore, we must vary the period of the time
record to vary fmηχ . To do this, we must vary the sample
rate so that we always have Ν samples in our variable
time record period . This is illustrated in Figure 3.9 . Notice
that to cover higher frequencies, we m ust sample faster .

ο

	

_1

	

_2

	

_Ν _1
TR

	

TR

	

2 TR

Figure 3.8
Frequencies of all the spectral lines of the FFT

'The usefulness of th is frequency range can be limited by the pro blem
of aliasing . Aliasing is discussed in Section 3 .



Section 2` : Sampling and Digitizing

Recall that the input to our Dynamic S igna l Analyzer

	

Short Time Record

	

Wide Line Spacing
is α continuous ana log voltage . Thi s voltage migh t be
from an electron ic circu it or could be the ou tpu t of α
t ransduce r and be proportional to current, power ,
pressure, acce leration o r any number o f other inputs .
Recall a lso that the FFT requ ires digitized samples of the
inp ut for its d i gital calculations. Therefore, we need to

	

Long Time Record

add α samp le r and analog to digital converter (ADC) to

	

Figure 3.9
our FFT processo r to make α spectrum analyzer . We

	

Frequency range of Dynamic Signal Analyzers is
show this basic block diag ram in Figure 3.10.

	

determined by sample rate

For the analyzer to have the high accuracy needed
for many measurements, the sampler and ADC mu st be
quite good . The sample r must sample the input at exactly
the co rrect time and mu st accurately hold the inpu t

	

Input

	

Samp ler

	

FFT
voltage measured at this time unt il the ADC has f inished

	

Voltage

	

ΑDC

	

00 Processo r

	

Display

its conversion . The ADC mu st have high resolut ion and
linearity . For 70 dB of dynam ic range the ADC mu st
have at least 12 b its of resolution and one half least

	

Figure 3.10
s ign ificant b it lineari ty .

	

Block diag ram of Dynamic Signal Analyzer

Α good Digital Voltmeter (DVM ) wil l typi cally
exceed these spec ification s, bu t the ADC for α Dynamic
Sign al Ana lyzer mu st be much faste r than typ ical fast
DVM's . Α fast DVM might take α thousand readings per
second , but in α typica l Dynam ic Signal Analyzer the
ADC must take at least α hundred thousand read ings per
second .

0

	

Section 3: Aliasing

Α Simple Data Logging Examp le of Al iasing

'This section and t he next can be skipped by those not intereste d in the
internal operation of α Dynamic Signal Analyzer . However , those who
specify the purc hase of Dynamic Signal Analyzers are es pecially
encouraged to read these sections . Th e basic knowledge to be gained
from these sections can insure specifyi ng the best analyzer for your
requirements .

je%,*.Wj

	

*It f + ,

Amplitude

Reference

ι 0~

Digital
V oltmeter

Figure 3.12

Narrow Line Spacing

The reason an FFT spectrum analyzer needs so
many samples per second is to avoid α problem ca lled

	

F igure 3.11
alias ing . Al iasίng is α poten tial problem in any sampled

	

The Samp le r and ADC must not introduce erro rs.
data system . I t is often overlooked, som etimes with
d isastrous resu lts .

Let us look at α simple data logging example to see
what al iasing is and how it can be avoided . Consider the

	

Junction
example for recording temperature shown in F igure
3 .12, Α thermocouple is connected to α digital voltmeter

	

Α simple sampled data system
wh ich is in turn connected to α pr inte r . The system is set
up to prin t the temperature every second . What would
we expect for an output?

Printer

If we were measuring the temperature of α room
wh ich on ly changes slowly , we would expect every
reading to be almost the same as the previous one. In
fact, we are sampling much more often than necessary to

	

Time
determine the temperature of the room with time. If we
plotted the results of th is "thought experiment", we

	

Figure 3.13
wou ld expect to see resu lts like F igure 3.13.

	

Plot of temperature variation of α room



Actual
Temp Ι Ι Ι 1 Ι ι

ι

	

ι

	

ι

	

ι

	

ι

	

ι
ι

	

Ι

	

Ι

	

ι

	

ι

	

Ι
Ι

	

Ι

	

Ι

	

Ι

	

1

	

1
Sampled " 1

	

. Ι

	

Ι

	

. ι

	

. ι

	

" ι
Temp

	

i. ,

	

~ ί. . .

	

<. ,

	

~. ,	~ ., .:

	

r. .
Ι ~

	

Ι

	

Ι

	

Ι

	

Ι '
ι

	

ι

	

ι

	

ι

	

1

	

ι

Ι

	

Ι

	

Ι

	

Ι

	

Ι
Printed Ι

1

	

Ι

	

Ι

	

(

	

Ι

	

Ι
Results

Range of
Analyzer

Inpu t
=00]

	

Alias
Signals 1 Signals

O-Time

0-

--0.-Figure 3.14

	

Aliasing in the Frequency Domain
Plot of temperature variation of α small part

This complete ly erroneous res ul t is due to α phe-
nomena cal led aliasing.* Aliasing is shown in the fre-
quency dom ain in Figure 3.15. Two signals are said to
alias if the difference of th ei r frequencies falls in the
frequency range of i nterest. Th is difference frequency

Range of

	

is always generated in the process of sam pling. In Fig
Analyzer

	

ure 3.15, the input frequency is slightly higher than the
Ι

	

sampling frequency so α low frequency al ias term is
Ι

	

generated. If the input frequency equals the sampl ing
Ι

	

frequency as in our small part examp le, then the alias
Ι

	

term falls at DC (zero Her tz ) and we get the constant
Ι

	

Frequency

	

ou tput that we saw above.
fi n -f5

	

fs

	

f in
Alias

	

Samp ling

	

Inpu t

	

Aliasing is not always bad. It is called mixing orFrequency

	

Frequency Frequency
heterodyning in analog e lect roni cs, and is commonly

Figure 3.15

	

used for tuning household radios and televisions as well
The problem o f aliasing viewed in the frequency domain

	

as many other communication products. Howeve r , in the
case of the missing temperature var iat ion of our small
part, we definitely have α problem . How can we
guarantee that we will avoid thi s prob lem in α measur -
ment s i tuation?

0- Frequency

1max

	

Is - fmax

	

IS

Figure 3.16
Α frequency domain view of how to avoid abasing -

sample at greate r than twice the highest input frequency

The Case of the Missing Temperature

I f , on the other hand, we we re measuring the
temperature of α sm all part wh ich could heat and cool
rap id ly, what would the output be? Suppose that the
temperature of our part cycled exactly once every
second . As shown in Figure 3 .14, our printou t says that
the temperature never changes.

What has happened is that we have sampled at
exactly the same point on our periodic temperature cycle
with every sample. We have not samp led fast enough to
see the temperature fluctuat ions.

Figure 3.16 s hows that if we sample at greate r than
twice the highest frequency of our input, the a lias pro-
ducts wi l l not fall with in the frequency range of ou r input .
Therefore, α fi lter (o r our FFT processor wh ich acts like α
filter ) after the samp le r wi ll remove the alias products
wh ile passing the des ired input s igna ls if thesample rate
is greater than twice the h ighest frequency of the in-
put . If the samp le rate is lowe r , the alias products will fall
in the frequency range of the input and no amount of
filtering will be ab le to remove them from the signal .

Th is minimum samp le rate requirement is known as
the Nyq ui st Cr iterion . It is easy to see in the time domain
that α sampling frequency exactly twice the input fre
quency would not always be enough . It is less obvious
that slightly more than two samp les in each period is suffi-
cient in form at ion . It certa inly wou ld not be enough to
give α high quality time display. Yet we saw in F igure
3 .16 that meeting the Nyqu ist Cr iterion o f α samp le rate
greater than tw ice the maximum input frequency is suffi-
c ient to avoid aliasing and preserve all the in form at ion in
the input s ignal .

*Aliasing is also known as f old-over or mixing.



The Need for an Anti-Alias Filte r

Unfortunately, the real wor ld rar ely restricts the fre-
quency range of its signals . In the case of the room
temperatur e, we can be reasonably sure o f the maximum
rate at which the temperature cou ld change, but we still
can not rule ou t stray s ignals . Signals induced at the
powerl ine frequency or even local radio stations could
alias into the desired frequency range . The only way to
be really cer tain that the input frequency range is l imited

	

Amplit ude
is to add α low pass filte r be fore the sampler and ADC .
Such α filte r is called an anti-ali as filte r .

	

t--,

An idea l an t i -ali as filte r would look like Figure 3 .18α .
I t wou ld pass all the desired input frequencies with no loss

	

Time
and comp letely reject any higher frequencies which

	

fsampιe = 2 fmax

otherwise cou ld al ias into the input f requency range .

	

Amplitude
However , it is not even theoret i cally poss ible to build
such α fi lter, much less practical . Instead, a l l real filte rs
look something like Figure 3 .186 with α gradual roll off
and finite rejection of undesired signals . Large input
signals which are not well attenuated in the t ransit ion
band could still alias into the des ired input frequency

	

f sample = 3 f max

range . To avoid th is, the sampling fr equency is ra ised to

	

Figure 3.17
tw ice the highest frequency of the transition band . This

	

Nyquίst criterion in the time domain

guarantees that any signals which could al ias are well at-
tentuated by the stop band o f the fi lte r . Typically , t h is
means that the sample rate is now two and α hal f to four
times the maximum desi red input frequency . Therefore,
α 25 kHz FFT Spectrum Analyzer can requ i re an ADC
that runs at 100 kHz as we stated without proof in Section
2 of this Chapter* .

The Need for More Than One Anti-A lias Filter

Recall from Section 1 of this Chapte r , that due to the
properties o f the FFT we must vary the sample rate to
vary the frequency span of our analyzer . To reduce the
frequency span, we must reduce the sample rate . From
our considerations of al iasing, we now reali ze that we
must a lso reduce the anti-a li as filter frequency by the

	

Frequency
same amount . α) "Ideal" anti-abasing filter

Each o f these filters must have very good perfor-
mance . It i s des irable that their trans ition bands be as nar -
row as possible so that as many lines as possible are free
from alias products . Additionally, in α two channel
analyzer , each filte r pair must be we l l matched for

*Unfortunately, because th e spacing of the FFT lines depend s on the
sample r ate, increasing the sample rate decreases th e number of lines
t h at are in th e desired fr equenc y range . Therefore, to avoid aliasi ng
problems Dynamic Signal Analyzer have only .25Ν to .4Ν lines instead
o f Ν/2 li nes .

Since α Dynamic Signal Ana lyzer is α very versatile Transition
used in α wi de range of applications, it is

	

^ =ansition Band

desi rable to have α wide range of frequency spans avail-

	

i

	

l
able. Typical instruments have α minimum span of
1 Hertz and α maximum o f tens to hundreds of kilo-

	

Frequency
hertz .

	

This four decade range typically needs to be

	

b) Real anti-aliasing filter
covered with at least three spans per decade . This

	

Figure 3.18
would mean at least twelve anti-alias filte rs wou ld be

	

Actual anti-ali as filters requi re higher sampling frequencies.
requ ired for each channel.



Anti-
Alias
LPF

LPF

accurate network analys is measuremen ts . These two
LPF

	

poin ts unfortunately mean that each of the filters is ex-
pensive . Taken together they can add significan tly to the
price of the analyzer . Some manufacturers don't have α

LPF

	

ADC

	

FFT

	

low enough frequency an t i-alias filte r on the lowest fre-
quency spans to save some of t h is expense . (The lowest

"

	

frequency filters cost the most of all.) But as we have"
seen , this can lead to problems like our "case of the m iss-

Variable

	

ing tempe rature" .
LPF

	

Sample Rate

Sampler
& ADC

ADC

Uι
Cosine
(Digital)

Digital
Filter

Fixed V aria ble
Sample Sample
Rate Rate

In the analog case we already discussed, we had to
Figure 3.19

	

use α new filter every time we changed the sample rate of
Block diagrams of analog and d igital filtering

	

the Analog to Digital Converter (ADC) . When using
digital filter ing, the ADC sample rate is left constant at the
rate needed for t he highest frequency span of the
analyzer . Th is means we need not change ou r anti-alias
f ilte r . To get the reduced samp le rate and filtering we

FFT F ilter Spacing

	

need fo r the narrower frequency spans, we follow the
ADC with α digital fi lter .

This digital filter is known as a decimating filter . It n".
only filters the digital representation of the signal to the
desired frequency span, it also reduces the sample rate at
its output to the rate needed for that frequency span .
Because this filter is digital, there are no manufacturing
variations, aging or drift in the filter . Therefore, in a two

Ι
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. .-design a single digital filter to work on many
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Section 4: Band Selectable Analysis

Figure 3.20
High resolution measurements with Band Selectable Analysis

Figure 3.21
Analyzer block diagram

Digital
F ilter

FFT

Dig ita l Filtering

Fortunately, there is an altern ative which is cheaper
and when used in conjunction with α single ana log anti -
alias filte r , always provides aliasing protection . It is cal led
digital filtering because it f ilte rs the input signal after we
have sampled and dig i tized it . To see how thi s work s, let
us look at Figure 3.19 .

Suppose we need to measure α small signal that is
ve ry close in frequency to α large one . We might be
measuring the powerline sidebands (50 or 60 H z) on α 20
kHz oscil lator . Or we might wan t to distingu ish between
the stator vibration and the shaft imbalance in the spec-
trum o f α motor.'

Recal l from our di scussion of the propert ies of the
Fast Fourier Transform that it is equ ivalen t to α set of
filter s, starting at zero Hertz , equally spaced up to some
maximum frequency . Therefor e, our frequency resolu -
tion is lim ited to the maximum frequency divided by the
number of filters .

To just resolve the 60 Hz s idebands on α 20 kHz
oscillator sign al wou ld require 333 lines (o r filter s) of the

'The shaft of an ac induction moto r alway s r uns at α rate sligh tly lowe r
than α multiple of the driven frequency, an effect called slippage.



FFT . Two or three times more lines would be required to
accurately measure the sidebands . Bu t typical Dynamic
S ignal Analyzer s only have 200 to 400 l ines, not enough

40

	

for accurate measurements . To increase the number of
l ines would great l y increase the cost of the analyzer . If we
chose to pay the extra cost, we would still have trouble
seeing the results . With α 4 inch (10 cm) screen, the
sidebands would be only 0.01 inch ( .25 mm) from the
carr ie r .

Α better way to solve this problem is to concentrate
the filters into the frequency range of interest as in Figure
3.20 . If we select the minimum frequency as well as the
maximum frequency of our filte r s we can "zoom in" for α
high resolution close-up shot of our frequency spectrum .
We now have the capabi lity of looki ng at the en tire spec-
trum at once with low resolution as well as the ability to
look at what inte rests us with much higher resolu t ion .

This capabil ity o f increased resolution is called
Band Selectab le Ana lysis (BSA).* It is done by mixing
or heterodyn ing the input signal down into the range of
the FFT span selected . This techn ique, familia r to elec-
t ronic engineers, is the process by which radios and
te levi s ions tune in statio ns .

The primary diff erence between the implementation
of BSA in Dynamic S ignal Analyzer s and heterodyne
rad ios is shown in Figure 3 .21 . In α radio, the sine wave
used for mixing i s an ana log voltage . In α Dynamic Signal
Ana lyze r, the mixing is done a fter the input has been
di g it ized, so the "s ine wave" is α se ries of digital numbers
into α digital multip lie r . This means that the mixing will be
done with α ve ry accurate and stab le dig ita l signal so our
high resolution display w ill likew ise be very stable and
accurate .

Section 5: Windowing

The Need for W indowing

There is another property of the Fast Fourier
Transform which affects its use in fr equency domain
analy sis . We recall that the FFT computes the frequency
spect rum from α block of samples of the input called α
time record . In add ition, the FFT algo rithm is based upon
the assumption that this time record i s repeated through-
out time as i llu strated in Figure 3.22 .

This does not cause α problem with the transient
case shown . But what happens if we are measur ing α
continuous signal like α sine wave? If the time record con
tains an integral number of cycles o f the input s ine wave,
then th is assumption exactly matches the actual input
waveform as shown in Figure 3.23 . In this case, the input
waveform i s said to be periodic in the time record .

Figure 3.24 demonst rates the diff icu lty with this
assumption when the input is not periodic in the time

10

	

record . The FFT algo rithm is computed on the basis of
the highly distorted waveform in Figure 3 .24c .

'Also sometimes called "zoom" .

'

	

ε ) ΙAssumed inpu t
ure 3.22

FFT assumption-time record repeated throughou t all time

Figure 3.23
Input signal periodic in time record
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Figure 3.24
Input signal not periodic in time record



α)

6)

α) & b) Sine wave periodic in time record

ε) & d) Sine wave not periodic in time record

F igure 3.25
Actu al FFT resu lts

We know from Chapte r 2 that the actu al sine wave
inpu t has α frequency spectrum of sing le line. The spec-
trum of the inpu t assumed by the FFT in Figure 3.24ε
should be very different . Since sharp phenomena in one
domain are spread ou t in the other dom ain , we wou ld
expect the spectrum o f our sine wave to be spread out
through the frequency doma in.

In F igure 3.25 we see in an actual measurement that
our expectations are correct. In Figures 3.25 α& b, we
see α sine wave that is periodic in the time record . Its
frequency spectrum is α single line whose wid th is deter-
m ined only by the resolution of our Dynamic S ignal Ana-
lyzer.* On the other hand, Figures 3.25 c & d show α
sine wave that is not periodic in the time record . Its
power has been spread throughout the spectrum as we
predicted.

This smearing of energy throughout the frequency
domains is α phenomena known as leakage. We are see-
ing energy leak out of one resolution line of t he FFT into
all the other lines .

It is important to rea l ize that leakage is due to the fact
thatwe have taken α finite time record . For α s ine wave to
have α single line spectrum, it mu st exist for all time, from
minus infinity to plus infin ity . If we were to have an in-
finite time record, the FFT would compute the correct
s ing le line spectrum exactly . However , since we are not
willing to wai t forever to measure its spectrum, we only
look at α finite time record of the sine wave. Thi s can
cause leakage if the continuous input is notperiodic in the
time record .

It is obvious from Figure 3.25 that the prob lem of
leakage is severe enough to en t irely mask small s ignals
close to our sine waves . As such, the FFΓ would not be α
very useful spectrum analyzer. The solu t ion to this pro-
blem is known as windowing. The prob lems of leakage
and how to solve them w ith windowing can be the most
confusing concepts of Dynam ic Signal Analys is. There-
fore, we wil l now careful ly develop the problem and its
solution in severa l representative cases.

'The additional two components in the photo are the harmonic distor-
tion o f the sine wave so ur ce .



What i s Windowing?

In Figure 3.26 we have again reproduced the
assumed input wave form of α sine wave that is not
pe riodic in the time record . Notice that most o f the
prob lem seems to be at the edges of the time record ,
the center i s α good sine wave . If the FFT could be
made to ignore the ends and concentrate on the mi ddle
o f the time record, we would expect to get much closer
to the correct single line spectrum in the frequency
domain .

If we multiply our time record by α function that is
ze ro at the ends of the time record and la rge in the mid-
dle, we wou ld concentrate the FFT on the middle of the
time record . One such function is shown in Figure 3 .26c .
Such funct ions are ca lled window functions because they
force us to look at data through α narrow window .

Figure 3 .27 shows us t he vast improvement we get
by windowing data that is not periodic in the time record .
However , it is importan t to reali ze that we have tampered
with the inpu t data and cannot expect perfect results . The
FFT assumes the input looks like Figure 3 .264, some-
thing l ike an ampl itude-modulated sine wave . This has α
frequency spectrum which is c loser to the correct single
line of the input sine wave than Figure 3 .26b, but i t sti ll is
not correct . Figure 3.28 demonstrates that the windowed
data does not have as narrow α spectrum as an unwin -
dowed funct ion whi ch is periodic in the time record .
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Figure 3.26
The effect of windowing in the time domain
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Figure 3.27
Leakage reduction with windowing

Figure 3.28
Windowing reduces leakage
but does not eliminate it.
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6)Windowed measurement - inpu t not periodic in time record
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Figure 3.29Windowing loses in formation from transient events.

The Hanning Window

Any number of functions can be used to window the
data, but the most common one is ca lled Hanning. We
actually used the Hanning window in Figure 3.27 as our
example of leakage reduction with windowing . The Ηαη-
ning window is also commonly used when measuring
random noise .

The Un i form Window-

We have seen that the Hanning window does an
ε) Windowed

	

acceptably good job on our sine wave examp les, both
transient

	

period ic and non-periodic in the time record. If th is is
true, why shou ld we want any other windows?

Suppose that instead ofwanting the frequency spec-
trum of α continuous signal, we would like the spectrum
o f α transient event . Α typica l transient i s shown in Figure
3.29α . If we mu ltip lied it by the window fun ction in
F igure 3 .29b we wou ld get the highly distorted signal
shown in Figure 3.29c . The frequency spectrum o f an
actu al transient with and wi thout the Hann ing window is
shown in F igure 3.30 . The Hanning window has taken
our transient, wh ich natur al ly has energy spread widely
through the frequency domain and made it look more
like α sine wave .

Therefore, we can see that for transien ts we do not
want to use the Hanning window. We would like to use
all the data in the time record equally or uniformly.
Hence we wil l use the Uniform window which weights all
of the time record un i form ly .

The case we made for the Un iform window by look-
ing at transien ts can be gener alized . Notice that our tran-
sien t has the property that it is zero at the begin ning and
end o f t he time record. Remember that we introduced
windowing to force the inpu t to be zero at the ends of
the time record . In th is case, there is no need for win-
dowing the input . Any funct ion like th is which does not
requi re α window because it occurs completely with in the
time record is called α self-windowing funct ion . Self -
windowing functions generate no leakage in the FFT and
so need no window.

'The Uniform Window is sometimes referred to as α "Rectangular
Window".



There are many examples of self-windowing func-
tions, some of which are shown in Figure 3 .31 . Impacts,
impulses, shock responses, sine bursts, noise bursts,
chirp bursts and pseudo-random noise can all be made to
be self-windowing . Self-windowing functions are often
used as the excitation in measuring the frequency
response of networks, particularly if the network has
l ightly-damped resonances (high Q) . This i s because the
self-windowing functions generate no leakage in the FFT .
Recall that even with the Hanning window, some leakage
was present when the signal was not periodic in the time
record . This means that without α self-windowing excita-
tion, energy could leak from α lightly damped resonance
into adjacent lines (filters) . The resulting spectrum would
show greater damping than actually exists .

The Flattop Window

We have shown that we need α uniform window for
analyzing self-windowing functions like transients . In
addition, we need α Harming window for measuring
noise and periodic signals like sine waves .

*There is another way to avoid th is problem using Band Selectable
Analysis . We will illustrate this in the next chapter .

**It will, in fact, be periodic in the time record .

b) Harming windowed transient

We now need to introduce α third window function,

	

Figure 3.30
the flattop window, to avoid α subtle effect of the Ηαηη -

	

Spectrums of transients
ίηg window . To understand this effect, we need to look at
the Hanning window in the frequency domain . We recall
that the FFT acts like α set of parallel filters . Figure 3 .32
shows the shape of those filters when the Hanning win-
dow is used . Notice that the Hanning function gives the
filter α very rounded top . If α component of the input
signal is centered in the filter it will be measured

	

Shock
accurately**. Otherwise,the filter shape will attenuate the

	

Impulse

	

Response
component by up to 1 .5 dB (16%) when it falls midway
between the filters .

W
Noise Burst

Figure 3.31

if

Self-windowing function examples

Figure 3.32
Harming passband shapes

T, .5 dB



Figure 3.34
Reduced resolution of the flat-top window

Figure 3.33
Flat-top passband shapes

Transient does not
Α hammer equ ipped with α force transducer is com -

mon ly used to stimulate α structure for response
measurements . Typically the force inpu t is connected to
one channel of the analyzer and the response of t he

	

ι
structure from another t ransducer is connected to the
second channel . This force impact is obviously α se lf -
windowing function . The response of the stru cture is also
self-windowing if it dies ou t within the time record o f the

dies ou t in time record

	

analyzer . To guarantee that the response does go to zero
by the end o f the time record, an exponential-we ighted
window cal led α response window is sometimes added.

Figure 3.35

	

Figure 3.35 shows α response window acting on theUsing the response window	response of α ligh tly damped st ructure wh ich did not fully
decay by the end of the time record . Notice that unlike
the Hann ing window, the response window is not zero at
both ends of t he time record . We know that the response
of the structure will be zero at the beginning of the time

die ou t in time recordι
ι
ι
ι
ι 6) Response window

(exponential)

c) W indowed response

Th is error is unacceptab ly la rge if we are trying to
measure α signa l 's amplitude accurately . The solution is
to choose α window funct ion which g ives the fi lter α
flatter passband . Such α flattop passband shape is
shown in Figure 3.33 . The amp litude error from this
window funct ion does not exceed .1 dB (1%), α 1 .4 dB
improvement.

The accuracy improvemen t does not come witho u t
its price, however . Figure 3.34 shows that we have flat-
tened the top of t he passband at the expense of widening
the skirts of the fi lter . We therefore lose some ab ility to
resolve α sm all component, closely spaced to α large one .
Some Dynamic S ign al Analyzers offer both Hann ing and
flattop window funct ions so that the operator can choose
between increased accuracy o r improved fre quency
resolution .

Other Window Functions

Many other window funct ions are poss ible but the
three listed above are by far the most common for general
measurements . For special measurement situations other
groups of window functions may be usefu l . We will
discuss two windows which are particularly use fu l when
doing network analysis on mechanical structu res by
impact testing.

The Force and Response W indows

ι
ι

α) Impact time record

	

record (before the hammer blow) so there is no need for
ι

	

with stray signals

	

the window function to be zero there . In add ition , most of
Ι

	

t he information about the structural response is contained
ι

	

at the beginn ing of the time record so we make sure thatι
Ι

	

t h is is weighted most heavily by our response window
ow

	

functionb) Force wind
Ι

The time record o f the exciting force should be just
the impact with the structure. However , movement of the

Ι ) Wi dd t

	

hammer be fore and a fter h ίtting the st ructure can causeε nowe impac
(stray signals eliminated)

	

stray signals in the time record . One way to avoid th is is
to use α force window shown in Figure 3 .36. The force

Figu re 3.36

	

window is unity where the impact data is va lid and zero
U sing the force window

	

everywhere else so that the analyzer does not measure
any stray noise that might be present.



Passband Shapes or Window Functions?

In the preceeding discussion we sometimes talked
about window functions in the time domain . At other
times we talked about the fi lte r passband shape in the fre-

	

Stimulus
quency domain caused by these windows . We change
our perspective freely to wh ichever domain yield s the

	

Frequency
simplest exp lanation . Likewise, some Dynamic Signal
Analyzers call the uniform, Hanning and flattop functions

	

ί
"windows" and other analyzer s call those functions "pass-

	

Analyzer
band shapes" . Use whichever term inology is eas i e r for

	

00

the prob lem at hand as they are completely inte rchange-

	

Frequency
ab le, just as the time and frequency domains are com-
pletely equivalent .

	

Figure 3.37
Frequency response measurements with α

sine wave stimulus

ι

Section 6: Network Stimulus

Recall from Chapter 2 that we can measure the fre-
quency response at one frequency by stimulating the net-
work with α single s ine wave and measuring the gain and
phase sh i ft at that fr equency . The frequency of the
stimulus is t hen changed and the measurement repeated
until all desired frequencies have been measured . Every	St imulus
time the frequency is changed , the network response

	

t

	

t

	

t
. . . . .

t
must settle to its steady-state value before α new

	

Frequency
measurement can be taken , making this measurement
process α slow task .

Many network analy zers operate in t his manner

	

Analyzer

and we can make the measurement th is way with α two

	

Frequency
channel Dynamic S ignal Analyzer . We set the sine wave
source to the center of t he fir st filter as i n Figure 3.37 .

	

Figure 3.38
The analy zer then measures the gain and phase of the

	

Pseudo-random noise as α st imulus
network at t hi s frequency while the rest o f the analyzer 's
fi lter s measure on ly noise . We then increase the source
frequency to the next filte r cente r , wait for the network to
settle and then measure the gain and phase . We continue
this procedure unt il we have measured the gain and
phase of the network at all the frequencies of the filte rs i n
our analyzer .

This procedure wou ld , within experimental erro r,
give us the same results as we would get w i t h any of the
network analyzers desc ribed in Chapte r 2 with any net-
work, linear or non-linear .

Noise as α Stimu lus

Α single sine wave stimulus does not take advantage
of the possible speed the paralle l f ilte rs of α Dynamic
Signa l Analyzer provide . If we h ad α source that put ou t
mulitple sine waves, each one cente red in α filter , t hen
we could measure th e frequency response at all frequen-
cies at one time . Such α source, shown in Figure 3 .38,
acts like hundreds o f si ne wave generato r s connected
together . Although th is sounds very expensive, just such
α source can be easily generated dig i tal ly . It is cal led α
pseudo-ran dom noise or periodic random noise source .

From the names used for this source it is apparent
that it acts somewhat like α t rue noise generator , except
that it has periodicity . If we add together α l a rge number
o f sine waves, the resu lt is very much l ike white no ise . Α



good analogy is the sound of rain . Α single drop of wate r
makes α quite dist inctive splashing sound , but α rain

Stimulus

	

storm sounds like white no ise . However , i f we add
together α large number of sine waves, our noise-l ike

Frequency

	

signal will perio dically repeat its sequence . Hence, the
name periodic random noise ( PRN) source .

0000 Af
t 1-0-04 t . . . .

Figure 3.39
Random noise as α stimulus

f ι - Δf

	

If ι

	

f τ

	

f τ + Δ f
α) Intermodu lation

distortion (IM)

ι . ι ι

	

I

	

~ Δ f
4

	

I

	

. . ι . PRN Stimulus~i

Α t ruly random noise source has α spectrum
shown in Figure 3.39 . It is apparen t that α random
noise source wou ld also stimulate all the filte rs at one
time and so cou ld be used as α network stimulus.
Wh ich is α bette r stimulus? The answer depends upon
the measuremen t situation .

Linear Network Analys is

If the network is reasonab ly linear , PRN and random
no ise both give the same resu lts as the swept-sine test of
other analyzers . But PRN gives the frequency response
mu ch faste r . PRN can be used to measure the frequency
response in α single time record . Because the random
source is true noise, it must be averaged for several time
records before an accurate frequency response can be
determined . Therefore, PRN is the best stimulus to use
wi th fairly l inear networks because it gives the fastest
results* .

Non-Linear Network Analysis

If the network is severely non-linear, the situation is
quite different. In this case, PRN is α very poo r test signal

Distortion

	

Non-Linear

	

and random no ise is much better . To see why, let us look
Products

	

Output

	

at ju st two of the sine waves that compose the PRN
t

	

I

	

t

	

I

	

-

	

source . We see in Figure 3.40 that if two sine waves are
b) IM with per iodic noise

	

put th rough α non-linear network , distortion products will
be generated equally spaced from the signals" . Unfor

Figure 3.40

	

tunately, these products wil l fall exactly on the frequen-
Pseudo-random noise distortion

	

cies of the other sine waves in the PRN . So the d istortion
products add to the outpu t and therefore in te rfere with
the measurement of the frequency response . F igure
3.41α shows the jagged response of α non-linear network
measured with PRN . Because the PRN source repeats
itself exactly every time record, th is noisy looking trace
never changes and will not average to the desired fre-
quency response .

With random noise, the disto rtion componen ts are
also random and will average ou t . Therefore, the fre-
quency response does not in clude the disto rtion and we
get the more reasonab le results shown in Figure 3.41b .

Th is points out α fundamen tal prob lem with measur -
ing non-linear networks; thefrequency response is not α
property of the network alone, it also depends on the
stimulus. Each stimu lu s, swept-sine, PRN and random

*There is anot her reason whyPRN is α better test signal than random
or linear network s . Recall from the last section that PRN is se lf-
windowing. This means that un l ike random noise, pseud o-random
noise has no leakage. Therefore, with PRN, we can measu re ligh tly
damped (high Q) resonances more easily than with random noise.

**This disto r tion is called intermod u lation distortion .



noise wi ll, in general , give α different res ult. Also, if the
amplitude of the stimulus is changed , you will get α d i f -
feren t resu lt .

To il lu strate this, consider the mass-spring system
with stops that we used in Chapte r 2 . If t he mass does not
hit the stops, the system is linear and the frequency
response is given by Figure 3 .42α .

If t he mass does h it the stop s, the ou tput is clipped
and α large number of distor t ion components are
generated . As the ou tpu t approaches α square wave, the
fundamenta l component becomes constant . Therefore,
as we increase the input amp l itude, the ga in of the net-
work drops. We get α frequency response like Figure
3 .42b, where the gain is dependent on the input s igna l
ampl itude .

So as we have seen, the frequency response of α
non-linear network is not wel l defined, i .e ., it depends on
the st imulu s. Yet it is often used in sp ite of this . The fre
quency response of linear networks has proven to be α
very powerful tool and so naturally peop le have t ried to
extend it to non-linear analy sis, particularly since other
non-linear analysis tools have proved intractable .

If every stimulus yields α different frequency
response, wh ich one should we use? The "best" stimulu s
could be con sidered to be one wh ich approximates the
kind of signals you would expect to have as normal inpu ts
to the network . Since any la rge co llect ion of s ignals
begin s to look like noise, no ise is α good test signal* . As
we have already expla ined , no ise is also α good test
signal because it speeds the analysis by exciting all the
filte rs of our analyzer simu ltaneously .

6) Random noise stim ulus

F igure 3.41
Non-linear transfer function

Gain

α ) Linear response
But many other test signals can be used wi th

Dynamic Signal Analyzers and are "best" (op timum) in
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\ b) Non-linear
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~\responseother senses. As eχρ1αίηed ίη the begί11" ί11g of th ίs sec-
t ion, sine waves can be used to g ive the same res ults as
other types of network analyzers although the speed

	

P- Frequency
advantage of t he Dynamic Signal Analyzer is lost . Α fast

	

Figure 3.42s ine sweep (chirp) wil l give very similar resu lts with all the

	

Non-linear systemspeed o f Dynamic Signal Analysis and so is α better test
s ignal . An impu lse is α good test signal for acoustica l
testing if the network is linear . I t is good for acou stics
because reflections from surfaces at different distances
can easily be isolated or eliminated if desired . For
instance, by using the "force" window described ea rl ie r , it
is easy to get the free field response of α speaker by
elim inating the room reflections from the windowed time
record .

'Th is is α consequ ence of the cent ral limit theorem . As an example, the
telephone companies have fou nd that when many conve r sations are
transmitted together , the result is like white noise . The same effect is
found more commonly at α crowded cocktail party.



ε) Voices

Band-Limited Noise

Before leaving the subject of network stimulus, it is
appropriate to discuss the need to band lim it the stimu lus.
We wan t all the power o f the stimulu s to be concen trated
in the frequency reg ion we are analyzing . Any power out-
side thi s region does not contribute to the measuremen t
and could excite non- linea rit ies . Th is can be α particular ly
seve re problem when testing wi th random noise since it
theo retically has the same power at all frequencies (w hite
noise) . To elim inate this problem, Dynam ic Signa l
Analyzers often lim it the frequency range of their bu i l t- in
noise stimulu s to the frequency span selected . This could
be done wi th an externa l no ise source and filter s, but
every time the analyzer span changed , the noise power
and fi lter would have to be readjusted . Th is is done
automatically with α bu i lt-in no ise source so transfer func-
tion measuremen ts are easier and faste r .

Section 7 : Averaging

To make it as easy as possible to develop an under-
standing of Dynamic Signal Analyzers we have almost
exclusive ly used examp les with determin ist ic signals, i .e .,
signa ls with no noise . However , as the real wo rld is
rarely so obliging, the desired signal often mu st be mea-
sured in the presence of significant noise . At other times
the "signals" we are trying to measure are more like
no ise themse lves. Common examples that are some-
what noise- l ike include speech , mus ic, digital data, sei s-
m ic data and mechanical v ibrations. Because of these
two common cond it ions, we must develop techniques
both to measure signals in the presence of noise and to
measure the no ise itsel f .

traces were separated 30 dB fo r clarity
The standard technique in statistics to improve the

upper t race: female speaker	estimates of α value is to average. When we watch α
lower trace: male speaker

	

no isy reading on α Dynam ic S ignal Ana lyzer , we can
guess the average value. But because the Dynamic Sig

F ίgure 3.43

	

ηαΙ Analyzer contains dig ital computation capabil ity we
RMS averaged spectra

	

can have it compute th is average value for us. Two
kind s of averaging are available, RMS (o r "power" aver-
aging) and linear averaging.

RMS Averag ing

When we watch themagnitude of the spectrumand
attempt to guess the average value of the spectrum com-
ponent, we are do ing α crude RMS ` average. We are try
ing to determine the average magn itude of the signal,
ignoring any phase difference that may exi st between the
spectra. Th is averaging technique is very valuable for
determining the average power in any of the filters of our
Dynam ic Signa l Analyzers. The more averages we take,
the bette r our estimate of the power leve l .

In Figure 3.43, we show RMS averaged spectra of
random noise, d igital data and human voices . Each of
these examples is α fairly random process, but when
averaged we can see the basic propert ies of its spectrum .

'RMS stand s for " r oot-mean-square" and is calculated by squar i ng all
the v al ues, adding the squares together , divid ing by the number of
measurements (mean) and ta ki ng the square root of t he result .



If we wan t to measure α sm al l sign al in the presence
of noise, RMS averaging wi ll give us α good estimate of

the signal plus noise. We can not improve the signal to
no ise ratio with RMS averaging; we can only make mo re
accurate estimates of the total signal p lus no ise power .

Linear Averaging

Howeve r , there is α techn ique for improving the
signal to no ise ratio of α measurement, called linear
averaging. It can be used if α t rigger s ignal which is syn
chronous with the perio di c part of the spectrum is
ava ilable . Of course, the need for α synchronizing sign al
is somewhat restrictive, although there are numerous
s i tuat ions in which one is available . In network analys is
problems the stimulu s signal itself can often be used as α
synch ronizing s ign al .

Linear averaging can be implemented many ways,
bu t perhaps the easiest to understand is where the
averag ing is done in the time doma in. In this case, the
synchron izing signal is used to trigger the start of α time
record . Therefore, the periodic part of the inpu t wi l l
always be exactly the same in each time record we take,
whereas the noise wi ll, of course, vary . If we add together
α series of these trigge red time records and divide by the
number of records we have taken we wi ll compu te what
we call α linea r average .

Since the periodic signa l will have repeated itself
exactly in each time record, it will average to its exact
value . Bu t since the no ise is different in each time record,
it wil l tend to average to zero . The more averages we
take, the closer the no ise comes to zero and we con t inue
to improve the signal to noise ratio of our measuremen t .
Figure 3.44 shows α time record of α square wave buried
in noise . The res ul t ing time record a fte r 128 averages
shows α marked improvement in the signal to noise ratio .
Trans forming both res ults to the frequency domain shows
how many of the harmon ics can now be accurately
measured because of the reduced no ise floo r .

α )

b)

ε )

D

α) & b) Single recor d, no averaging

ε) & d) 128 Linea r averages

Figure 3.44
Linear averaging
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Section 8: Real Time Bandwidth
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Figure 3.45
Α new transform every sample

Dig ίtal Time
Filter Buffer

Figure 3.48
Non-real time operation

FFT

Until now we have ignored the fact that it will take
α finite time to compute the FFT of ou r time record . In
fact, if we could compute the transform in less time
than our samp ling period we could continue to ignore
th is computation al time. Figu re 3.45 shows that under
th is condition we could get α new frequency spectrum
wi th every sample. As we have seen from the section
on aliasing, t his could resu lt in far more spectrums

Time every second than we could possibly comprehend .
Worse, because of the complexity of the FFT algo-
r ithm, it would take α very fast and very expens ive
compute r to generate spectrums th is rapid ly .

Α reasonable alternative is to add α time record buf-
fer to the b lock diagram of our analyzer . In Figure 3.47
we can see that th is allows us to compu te the frequency
spectrum o f the previous time record whi le gathering the
curren t time record . If we can compute the transform
before the time record buffer fi lls, then we are said to be
operating in real time.

Figure 3.46

	

To see what this mean s, let us look at the case
Time buffer added to block diagram

	

where the FFT computation takes longer than the time
to f ill the time record . The case is illust rated in F ig-
ure 3.48. Although the buffer is fu ll, we have not fin
ished the last transform , so we will have to stop tak ing
data. When the transform is fin ished , we can t ransfer
the time record to the FFT and begin to take another

T ime

	

Time

	

T ίme

	

time record. Th is means that we missed some input
Record 1

	

Record 2

	

Record 3

	

data and so we are said to be not operating in real time .

FFT 1

	

FFT 2

	

Recall that the time record is not constan t but
deliberately va ried to change the frequency span of the

Figure 3.47

	

analyzer . For wide frequency spans the time record is
Real time operation

	

shorter . Therefore, as we increase the frequency span
o f the an alyzer, we eventually reach α span wher e the
time record is equal to the FFT compu tat ion time. This
fre quency span is called the real time bandwidth . For
frequ ency spans at and below the real time bandwid th ,
the analyzer does not miss any data .

Real Time Bandwid th Requiremen ts

How wide α real time bandwidth is needed in α
Dynamic Signal An alyzer? Let us examine α few typical
measuremen ts to get α feel ing for the considerations
involved .



Ad ju st ing Devices

If we are measuring the spectrum or frequency
response of α device which we are adju st ing, we need to
watch the spectrum change in what might be called	Time

	

Tim¢

	

Time

	

Time

	

T'
'meRecord Record Record Record

	

Recordpsychological real time . Α new spectrum every few

	

ι
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tenths of α second is sufficiently fast to allow an operator
to watch ad ju stments in what he would consider to be

	

FFT 1

	

FFT2

	

Fετ 3
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FFTΝ
real time. However , if the response time of t he device
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ι-Time Νχ FFT Computation Time
under test is long, the speed of the analyzer is immaterial . Γ

	

=

We will have to wait for the device to respond to the

	

Figure 3.49
changes be fore the spectrum will be valid, no matter

	

RMS averaging timehow many spectrums we gene rate in that time . Th is is
what makes ad ju sting lightly damped (high Q)
resonances tedious .

RMS Averaging

Α second case of i nte rest in determining real time
bandwidth requ irements is measurements that require
RMS averaging. We migh t be interested in determi ning
the spectrum d istribution of the noise itself or in redu cing
the variation of α signal contaminated by noise . There is
no requirement in averaging that the records must be
consecutive with no gaps* . Therefore, α sm all rea l time
bandw idth will not affect the accuracy of the results .

However , the real time bandwid th will affect the
speed with wh ich an RMS averaged measurement can be
made. Figure 3 .49 shows that for frequency spans above
the real time bandwid th , the time to complete the
average of Ν records is dependen t only on the time to
compu te the Ν t ransform s. Rather than continu ally
reducing the time to compute the RMS average as we
increase our span, we reach α fixed time to compute Ν
averages .

Therefore, α smal l real time bandwidth is only α pro-
blem in RMS averaging when large spans are used with α
large numbe r of averages . Under t hese condit ions we mu st
wait longer for the answer . Since wider rea l time band-
widths require faster computations and therefore α more
expensive processor , there is α straight forward tradeoff of
time versus money . In the case of RMS averaging, higher
real time bandwidth gives you somewhat faste r measure-
ments at increased analyzer cost .

Transien ts

The last case of interest in determining the needed
real time bandwidth is the ana lysis of t ransient even ts . If
the en tire transient fits within the time record, the FFT
computation time is of little in te rest. The analyzer can be
t riggered by the transient and the event stored in the time
record buffer . The time to compu te its spectrum is not
important.

However , if α transien t event conta in s high frequen-
cy energy and lasts longe r than the time record necessary
to measure the high frequency energy, then the process
ing speed o f the analyzer is cr itical . As shown in Figure
3.50b, some of the transient wi ll not be analyzed if the
computation time exceeds the time record length .
'T his is because to average at all the signal must be periodic and the
noise stationary .
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α) Tra nsient fits in time record
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b) Transient longer than one time record

Figure 3.50
Transient analysis
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. . .Data Gathering

	

In the case of t rans ients longe r than the time record,
it is also imperative that there is some way to rapidly
record the spectrum . Otherwise, the information will be

FFT 1

	

FFT 2

	

El
. . . FFT Computation

	

lost as the analyzer updates the display with the spectrum
Time

	

of the latest time record. Α special display wh ich can
show more than one spectrum ("waterf all" di splay), mass

α) Non-overlapped processing is perform ed only on completely new

	

memory , α h igh speed link to α computer o r α h igh speed
data (time records) .

	

facsimile recorder is needed . The ou tpu t device mu st be
able to reco rd α spectrum every time record or inform a-
tion will be lost .

Time Recor d 1 Fortunately, there is an easy way to avoid the need
Time Record 2

	

for an expensive wide real time bandwidth ana lyzer and

Time Recor d 3

	

" " "Data Gath ering

	

an expensive, fast spectrum recorder . One-time transient
even ts like explosions and pass-by noise are usually tape

F 1

	

FT 2

	

FFT 3

	

" . " FFT Comp utation

	

recorded for later anaylsis because of the expense of
repeating the test . If this tape is played back at reduced

b) Overlapped process ing is performed on data that combines old

	

speed , the speed demands on the analyzer and spectrum

and new. The time between FFT 's represents display processing.

	

recorder are reduced. Timing markers cou ld also be
recorded at one time record intervals . This would allow

F igure 3.51

	

the analysis of one record at α time and pl otting wi th α
Understanding overlap processing

	

very slow (and commonly available) Χ-Υ plotter .

So we see that there is no clear cu t answer to what
rea l time bandwidth is necessary in α Dynam ic Signal
An alyzer . Except in analyzing long transient events, the
added expense of α wide real time bandwidth gives little
advantage . 1t is possible to analyze long transien t events
with α narrow rea l t ime bandwidth analyzer , but it does
require the recording of the inpu t sign al . Th is method is
slow and requires some operator ca re, but one can avoid
purchasing an expensive analyzer and fast spectrum
recorder . It is α clear case of speed of analysis ve rsus
dolla rs of capital equ ipment.

Section 9: Overlap Processing

In Section 8 we considered the case where the com-
putation of the FFT took longer than the collecting of the
time record . In th is sect ion we wil l look at α technique,
overlap processing, wh ich can be used when the FFT
computation takes less time than gathering the time
record .

To unde rstand overlap processing, let us look at
F igure 3 .51α. We see α low frequency an alysis where the
gather ing of α time record takes much longe r than the
FFT computation time . Our FFT processo r is sitting idle
much o f the time . If instead of wa i ting for an en ti rely n ew
time record we overlapped the new time record with
some of the old data, we would get α new spectrum as
often as we computed the FFT . Th is overlap processi ng
is illustrated in Figure 3.51b . To unde rstand the benefits
of overlap processing, let us look at the same cases we
used in the last sect ion .

Ad ju sting Devices

We saw in the last section that we need α new spec-
trum every few tenths of α second when adjust ing
devices. W ithout overlap processing this limits our resolu
tion to α few Hertz . With overlap processing our resolu -
tion is unlimited. But we are not gett ing something for



noth ing . Because our overlapped time record contains
old data from before the device adjustment, it is not com-
plete l y correct . It does indicate the di rection and the
amount of change, but we must wait α fu ll time record
afte r t he change for the new spectrum to be accurately
displayed .

None the less, by indicat ing the direction and
magnitude of the changes every few tenths of α second ,
overlap processing does help in the ad justment o f

	

Τ
devices .
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Overlap processing can give dramatic reductions in

	

Ι
the time to compute RMS averages with α given variance .
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Recal l t h at window functions reduce the effects of
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__overlap

	

\non-overlapped
leakage by weigh ting the ends of the time record to zero .
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Ι
Overlapping e l iminates most or all of the time that would

	

Ι
be wasted tak ing thi s data . Because some overlapped	~-

	

Relative Error
data is used twice, more ave rages must be taken to get α
given variance than in the non-overlapped case . Figure

	

Figure 3.52

3 .52 shows th e improvements that can be expected by

	

RMS averaging speed improvements with overlap processing

overlapping .

Trans i ents

For transients shorte r than the time record, overlap
processing is useless . For transients longer than the time
record the real time bandwidth of the analyzer and spec
trum recorder is usually α limitation . If it is not, overlap
processing allows more spect ra to be generated from the
transient, usually improving resolution of resulting plots .

Section 10: Summary

In this chapter we have developed the basic proper-
t i es o f Dynamic Signal Analyzers . We found that many
properties could be understood by considering what hap
pens when we transform α finite, sampled time record .
The length of this record determ ines how closel y our
fil te r s can be spaced in the frequency domain and the
number of samples determines the number of filte r s in the
frequency domain . We also found that unless we fil tered
the input we cou ld have errors due to al i asing and that
finite time records could cause α problem ca l led leakage
which we min imized by windowing .

We t hen added severa l features to our bas ic
Dynamic Signal Analyzer to enhance its capab i li ties .
Band Selectable Analysis allows us to make high resolu -
tion measurements even at high frequenc ies . Averaging
gives more accurate measurements when noise is pres-
en t and even allows us to improve the s i gnal to noise
ratio when we can use linear averaging . Finally, we
incorporated α noise source in our analyzer to act as α

40

	

stimulus for trans fer funct ion measurements .

F lat-top Window
90% Overlap



We begin with some common electronic and
mechanical measurements in the frequency domain .
Later in the chapte r we introduce time and modal

α) Logarithm ic amplitude scale

	

domain measurements .

6) Linear amplitude scale

Figure 4.1
Harmonic distortion of an Aud io Oscillator -

Flattop window used

Figure 4.2
Power line sidebands of an Audio Oscillator -

Band Se lectable Analysis and Harming window used
for maximum resolutio n

Chapter IV

Using Dynamic Signal Analyzers

In Chapters ΙΙ & III, we developed an understand-
ing of the time, frequency and mod al domain s and how
Dynamic Signal Ana lyzers operate. In this chapte r we
show how to use Dynamic Signal Analyzers in α wide
va riety of measuremen t situations. We introduce the
measurement functions of Dynam ic Sign al Analyzers
as we need them for each measurement situat ion .

Section 1: Frequency Domain Measurements

Oscillator C haracte rization

Let us begin by measur ing the characte rist ics of an
electronic oscillator . An important specification of an
oscil lator is its harmonic distortion . In Figure 4.1, we
show the fundamental t hrough fifth harmonic of α
1 KHz oscil lator . Because the frequency is not neces-
sarily exactly 1 KHz , windowing should be used to
reduce the leakage. We have chosen the flattop win-
dow so that we can accurately measure the amp l itudes .

Not ice that we have selected the input sen sitiv ity o f
the analyzer so that the fundamental isnear t he top of the
di splay . In gener al, we set the inpu t sen sitivity to the most
sensitive range which does not overload the analyzer .
Seve re disto r t ion o f the input s ignal wil l occur i f its peak
voltage exceeds the range of the analog to digital con -
ve rte r . Therefore, all dynam ic s ignal analyzers warn the
user o f th is condition by some kind of overload indicato r .

It is also important to make sure the analyzer is not
underloaded . If the s ignal going into the analog to di gital
converter is too sm all, much o f the usefu l inform ation of
the spectrum may be below the no ise level of t he
analyzer . Therefore, setting the input sen sitivity to the
most sensitive range that does not cause an overload
gives the best possible resu lts .

In Figure 4.1α we chose to display the spectrum
amplitude in logarithmic form to insure that we could
see distortion products far below the fundamental . All
s ignal amplitudes on th is d is play are in dBV, decibels
below 1 Volt RMS . However , since most Dynam ic Sig-
nal Analyzers have ve ry versatile display capab i lit ies,
we cou ld also display this spectrum linearly as in Figure
4.16. H ere the uni ts of amp litude are volts.

Power -L ine Sidebands

Another important measure of an oscil lator 's per-
formance is the level of its power-line sidebands . In
Figure 4.2, we use Band Selectable Ana lysis to "zoom



in" on the s ignal so that we can easily resolve and mea-
sure the sidebands which are only 60 Hz away from our
1 KHz s ign al . With some ana lyzers it is possible to mea-
sure signals only m illihertz away from the fundamenta l
if desired .

Phase Noise

The short term stabil ity of α high frequency oscilla-
tor is ve ry impo rtan t in communications and radar .
One measure of this is called phase noise. It is often
measu red by the technique shown in Figure 4.3α . This
mixes down and cancels the oscillator carrier leaving
only the phase noise sidebands . It is therefore possible
to measure the phase noise far below the carrier level
since the carrier does not lim it the range of our mea-
suremen t . Figure 4.3b shows the close-in phase noise of
α 20 MHz synthesizer. Here, since we are measuring
noise, we use RMS averaging and theHanning window.

Spectra like phase noise are usua lly displayed
against the logarithm o f frequency instead o f the linear
frequency scale. This is done in F igure 4.3c. Because
the FFT generates linear ly spaced fi lter s, the filters are
not equ ally spaced on the display . It is important to
realize that no information is missed by these seem ingly
widely spaced f ilters. We recall on α linea r frequency
scale that all the filte rs over lapped so that no part of the
spectrum was missed . All we have done here is to
change the presentation o f the same measurement.

In addition , phase noise and other noise measure-
ments are often normalized to the power that would be
measured in α 1 Hz w ide square filter . This measuremen t
is called α power spectra l density and is often provided
on Dynamic Signal Analyzers . It simp ly changes the
presentat ion on the disp lay to th is des ired form ; the data
is exactly the same in Figures 4.3b and 4 .3 ε , bu t the
latter is in the more conventional presentat ion .

-50

Dynam ic Signal Ana lyzers offer two main advan-

	

dBc
tages over swept signal analyzers in this application .
F ir st, the phase no ise can be measured much closer to
the carrier . Th is is because α good swept analyzer can
only resolve signals down to abou t 1 Hz, wh ile α
Dynamic Signal Analyzer can resolve signals to α few
millihertz . Secondly, the Dynamic Signal An alyzer can
determine the complete phase noise spectrum in α few
minutes where as α swept analyzer wou ld take hours.

	

-13ο

Reference
Oscillator

dBc/Ητ

Phase Lock Signal

α) Block diagram of phase noise measurement

b) Phase noise of α frequency synthesizer - RMSaverag ing and
Harming window used for noise measurements
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-130

100 Hz

	

100 kHz
ε) Logarithmic frequency axis presentation of phase noise

normalized to α 1Hz bandwidth(power spectral density)
Figure 4.3

Phase Noise Measurement



Figure 4.4
Spectrum of electrical motor vibration

Figure 4.5
Stator vibration and rotor imbalance measurement with

Band Selectable Analys is

Rotating Machinery Characterization

Α rotating machine can be thought of as α
mechanical osci llator .' Th erefore, many of the
measurements we made for an electronic oscill ator are
also important in characte rizing rotat ing machinery .

To characte ri ze α rotating machine we must f i rst
change its mechanical vibration into an electrical signal .
This is often done by mounting an accelerometer on α
bearing housing where the vibrat ion generated by shaft
imbalance and bearing imperfections wil l be the highest .
Α typical spectrum might look like Figure 4.4 . It is ob-
viously much more complicated than the relatively clean
spectrum of the electronic osci l lator we looked at
previously. There is also α great deal of random noise ;
stray vibrations from sources other than o ur motor that
the accelerometer picks up . The effects of this st ray
vibration have been minimized in Figure 4.4 by RMS
averaging.

In Figure 4.5, we have used the Band Selectab le
Analysis capability of our analyzer to "zoom-in" and
separate the vibration of the stator at 120 Hz from the
vibration caused by the rotor imbalance only α few tenths
of α Hertz lower in frequency . " This abi lity to resolve
closely spaced spectrum lines is crucial to o ur capabil ity to
diagnose why the vib rat ion levels of α rotating machine
are excessive . The actions we would take to correct an
excess ive vibration at 120 Hz are quite different if it is
caused by α loose stator pole rather than an imbalanced
rotor .

Since the bearings are the most unreliable part of
most rotating machines, we would also l ike to check our
spectrum for indicat ions of bearing fai l ure . Any defect in
α bearing, say α spall ing on the outer face of α ball bear-
in g, wi ll cause α smal l vibrat ion to occur each time α ball
passes it . This wi l l produce α characte ristic frequency in
the vibration called the passing frequency . The frequency

Figure 4.6

	

domain is ideal for separating this small vibration from all
Vibration caused by small defect in the bearing

	

the other frequencies present . Th is means that we can
detect impending bearing fai lures and schedule α shut-
down long before they become the loudly squealing pro-
blem that sign als an immediate shutdown is necessary .

In most rotating machinery monitoring situations,
the absolute leve l of each vibration component is not of
inte rest, just how they change with time. Themachine
is measured when new and throughout its li fe and these
successive spectra are compared. If no catastrophic

*Or , if you prefer, electronic oscillators can be viewed as rotating
machines which can go at millions of RPM's.
**The rotor in an AC indu ction motor always runs at α slightly lowe r
frequency than the excitation, an effect called slippage.



failures develop, the spectrum components will

	

Accelerometer
increase gradually as the machine wears out . However,
if an impending bearing failure develops, the passing fre-
quency component corresponding to the defect will

	

Μοτο r
increase suddenly and dramatically .
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An excellent way to store and compare these spectra

is by using a small desktop computer . The spectra can be

	

Figure 4.7
easily entered into the computer by an instrument inter-

	

Desktop computer system for monitoring
HP-113
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addi-
tion,n, the computer can easily check the trends against
limits, pointing out where vibration limits are exceeded or
where the trend is for the limit to be exceeded in the near ,
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determined . In addition, signal processing can be used

ι clarify the display .
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- ι ' - the plot, clarifying the presentation .

So far in this chapter we have been discussing only

	

DSA
single channel frequency domain measurements . Let us
now look at some measurements we can make with α
two channel Dynamic Signal Analyzer.

	

Pseudo-random
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Electronic Filter Characterization

In Section 6 of the last chapter, we developed most

	

Elect ronic
of the principles we need to characterize α low fre-

	

Input

	

Filter

	

output
quency electronic filter. We show the test setup we
might use in Figure 4.9 . Because the filter is linear we

	

Figure 4.9
can use pseudo-random noise as the stimulus for very

	

Test setup to measure frequency response of filter .
fast test times . The uniform window is used because
the pseudo-random noise is periodic in the time
record . **Νο averaging is needed since the signal is peri-
odic and reasonably large . We should be careful, as in
the single channel case, to set the input sensitivity for
both channels to the most sensitive position which does
not overload the analog to digital converters.

* HP-113, Hewlett-Packard's implementation of IEEE-488-1975.

**See the uniform window discussion in Section 6 of the previous
chapter for details .

Dynamic
Signal

Analyzer
HP-113 Compu ter



DSA

b) F requency response magnitude and phase

Figure 4.10
Frequency response of electronic f ilte r

	

The frequency response of α linear network is α
using PRN and uni form window.

	

property so lely of the network, independent of the
stimulus used.

In Figure 4.11 and 4.12, we have been measuring

Noise

	

4
Ι

	

the accele ration of the structure divided by the force
Q appl ied . Th is qu al ity is called mechanical accelerance .

To properly scale the displays to the requ ired g's/lb, we
have entered the sen sit ivities of each transducer into
the analyzer by α feature cal led engineering units . Engi-
neer ing units simply changes the gain of each chann el
of the ana lyzer so that the display corresponds to the
physical parameter that the transducer is measur ing.

Pseudo-random

	

Ch Α

	

Ch Β

Accelerometer
E71-

Shaker

-^5" χ 7" PC Board
Force Xducer

Figure 4.11
Frequency response test of α mechanical structure.

With these considerat ions in mind, we get α fre-
quency response magn itude shown in F igure 4. 10a and
the phase shown in Figure 4.10b . The pr imary advan
tage of this measurement over trad ition al swept ana l y-
s is techniques is speed . This measurement can be
made in %8 second with α Dynamic Sign al Analyzer , but
wou ld take over 30 seconds with α swep t network ana-
lyzer . This speed improvement is particularly importan t
when the f i lte r under test is being adj usted or when
large volumes are tested on α production line.

Structural Frequency Response

The network under test does not have to be elec-
tronic. In Figure 4.11, we are measuring the frequency
response of α single structure, in th is case α printed
circu it board . Because this structure behaves in α l inear
fas hion, we can use pseudo-random no ise as α test
stimu lus. Bu t we might also des ire to use true random
noise, swept-sine or an impulse (hammer blow) as the
stimulus. In Figure 4.12 we show each o f these mea-
surements and the frequency responses. As we can
see, the results are all the same.

Since all the stimu lus techniques in Figure 4.12
give the same res ul ts, we can use whichever one is
fastest and eas iest. Usually this is the impact stimulu s,
since α shaker is not required.

	

0



Other frequency response measurements besides
mechanical accelerance are often made on mechanical
structures. Figure 4.14 lists these measurements. By

is

	

changing transduce rs we could measure any of these
parameters. Or we can use the computationa l capabil-
ity of the Dynamic Sign al Ana lyzer to compute these
measurements from the mechanical impedance mea-
surement we have already made.

Hammer

Force Xducer

For instance, we can compute velocity by integrat-
ing our acceleration measurement. Displacemen t is α

	

ED Acceleration
-

doub le integration of acce lerat ion . Many Dynamic Sig-
Forc -Υ

ηα1 Analyzers have the capability of integrating α trace
by simp ly pushing α button . Therefore, we can easily
generate all the common mechan ical measurements
without the need of many expensiveexpensive transducers.
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Up to this poin t, we have been measuring net-
works wh ich we have been able to isolate from the rest
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what we app ly and the on ly response is that caused by
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th is cont rol led stimu lus. This s i tuation is often encoun-
tered in testing componen ts, e.g ., electric filters or
parts of α mechanical structure. However , there are
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times when the components we wish to test can not be
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iso lated from other disturbances. For instance, in elec-
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tronics we might be trying-to measure the frequency

	

ε) Swept sine stimulus

response of α switching power supply which has α very
large component at the switching frequency . Or we

	

Figure 4.12

might try to measure the frequency response of part of	Frequency response of α linear network is independent
of the stimulus used .

α machine wh ile other machines are creating severe
vibration .

Sha k er

LGMAG
DB

Accelerometer ν/8
Channel Β g/ν

Sensitivity

F orce Xd ucer F------I--------I ν/1bf
Analyze r

l bf/ν Sensitivity
Channel Α

Figure 4.13
Engineering units set input sensitiv ities to properly scale results .

Accelerance
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Impedance

Dynamic Compliance

Dynam ic Stiffness

Acceleration
Force
Force

Accele ration

Velocity
Force
Force

Velocity
Displacement

Force
Force

Displacement

Figure 4.14
Mechanical frequency response measurements
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Figure 4.15
Simulation of frequency response measurement

in the presence of noise .

In Figure 4.15 we have simulated these situations
by adding noise and α 1 KHz s igna l to the output of an
electronic filter. The measured frequency response is
shown in Figure 4.16. RMS averaging has reduced the
noise contribution, but has not completely eliminated
the 1 KHz interference.* If we did not know o f the
interference, we would think that this filte r has an addi-
t ional resonance at 1 KHz . But Dynamic Signa l Analyz -
ers can often make an addit ional measurement that is
not availab le with tradit ional network analyzers cal led
coherence . Coherence measures the power in the
response channel that is caused by the power in the
reference chann el . I t is the ou tpu t power that is coheren t
with the inpu t power .

Figure 4.17 shows the same frequency response
magnitude from Figure 4.16 and its coherence . The
coherence goes from 1 (all the outpu t power at that
frequency is caused by the inpu t) to 0 (none of the
output power at that frequency is caused by the input) .
We can easily see from the coherence funct ion that the
response at 1 KHz is not causedby the input bu t by
interference . However , our filte r response near 500 Hz
has exce llent coherence and so the measurement here
is good .

Section 2: Time Domain Measurements

Α Dynamic Signal Analyzer usual ly has the capabil-
ity of displaying the time record on its sc reen . This is
the same wave form we would see with an oscilloscope,
α time domain view of the input. For very low frequency

Figure 4.16

	

or sing le-shot phenomena the digital time record stor
Magn itude of frequency response

	

age eliminates the need for storage oscilloscope. Bu t
there are other time domain measurements that α
Dynamic Signal Analyzer can make as well . These are
ca l led correlation measurements . We will begin th is sec-
tion by defining correlat ion and then we will show how
to make these measurements with α Dynamic Sign al
Analyzer .

Figure 4.17
Magnitude and coherence of frequency response

Correlation is αmeasure of the similarity between
two quantities . To understand the co rrelat ion between
two waveform s, let us start by multip lying these wave
forms together at each instant in time and adding up all
the products. If, as in Figure 4.18, the waveforms are
identica l, every product is pos itive and the resulting
sum is la rge . If however, as in F igure 4.19, the two
records are dissimi lar, then some of the products would
be posit ive and some wou ld be negative. There would
be α tendency for the products to cancel, so the fina l
sum wou ld be smaller .

*Additional averag ing wo u ld fu r ther reduce this interfe rence .



Now con sider the waveform in Figure 4.20a, and
the same waveform sh ifted in time, F igure 4 .20b . If the
time shift we re zero, then we would have the same
cond itions as befo re, that is, the waveforms would be in
phase and the final sum o f the products would be large .
I f the time sh if t between the two wave forms is made
large however , the waveforms appea r dissimilar and the
fin al sum is smal l .

Going one step farther, we can find the average
product for each time shift by dividing each final sum by
the numbe r o f products con tribu ting to it . If we now
plot the average product as α function of time shif t, the
resu lting curve will be largest when the time shif t is zero
and will diminish to zero as the time shift increases.
Th is curve is called the auto-correlat ion function of the
wave form . I t is α graph o f the sim ilarity (o r correlation )
between α wave form and itself, as α funct ion of the time
shift .

The auto-correlation fun ction is easiest to under-
stand if we look at α few examples . The random noise
shown in F igure 4.21 is not similar to itsel f with any
amount of time sh i ft (afte r all, it is random ) so its auto-
co rrelation has only α single sp ike at the po in t of 0 time
sh ift . Pseudo-random noise, however , repeats itself
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Correlation of two identical signals

Figure 4.19
Correlation of two different signals
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Correlation of time displaced signals
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F igure 4.21
Auto correlation of random noise
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This can be usefu l when trying to ext ract α signal
hidden by noise . Figure 4 .24α shows what looks l i ke
random noise, but there is actually α low level sine wave
buried in it . We can see this in Figure 4 .24b where we
have taken 100 averages of the auto-correlation o f this
signal . The noise has become the spike around α time

Delay τ

	

s hift of zero whereas the auto-correlation of the sine
~~ΔΤ

	

wave is clear l y vis ible, repeating itsel f with the period of
Figure 4.22

	

the sine wave .
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Figure 4.23
Auto corre lation of periodic waveforms

α )

b)

Figure 4.24
Auto corre lation of α sine wave buried by noise

periodically, so when the time shi ft equa ls α multiple of
the period , t he auto-correlat ion repeats itself exactly as in
Figure 4.22 . These are both special cases of α more
gener al statement ; the auto-correlation of any periodic
waveform is periodi c and has the same period as the
waveform itself .

If α trigger signal that is syncronous with the sine
wave is available, we can extract the signal from the
noise by linear averaging as in the last sect ion . But the
important point about the auto-correlation function is
that no synchronizing t rigger is needed . In sig nal identifi-
cation problems like radio astronomy and passive
sonar , α syncron iz ing s ignal is not available and so auto-
correlat ion i s an important tool . The disadvantage o f
auto-corre l ation is that the input waveform is not pre-
served as it is in li near averaging .

Since we can trans fo rm any time domain waveform
into the frequency domain , t h e reader may wonder what
i s the frequency t rans form of the auto-correlation func
tion? It t urns ou t to be the magnitude squared of the spec-
trum of the input . Thus, there is really no new informa-
tion in the auto-correlation function , we had the same in-
formation in the spectrum of the signal . But as always, α



ch ange in perspective between these two dom ains often
clarifies problems . In gener al, impu lsive type s ignals like
pu lse tr ain s, bearing p ing or gear chatter show up bette r
in co rrelat ion measurements, wh ile signa ls with sever al
sine waves of differen t frequencies like structural vibra-
tions and rotating machinery are clea rer in the frequency
domain .

Cross Correlation

If auto-correlation is concerned with the similarity
between α sign al and α time sh ifted ve rsion of itsel f ,
then it is reasonable to suppose that the same tech
nique could be used to measure the similarity between
two non-identical wave form s . Th is is called the cross
correlation function . If the same signal is present in
both waveform s, it will be reinforced in the cross corre-
lation function, wh ile any uncorrelated noise will be
reduced . In many network analysis prob lem s, the stim-
ulus can be cross correlated with the response to
reduce the effects of noise . Radar , active sonar , room
acoustics and transmission path delays all are network
analys is problems where the stimulus can be measured
and used to remove contaminating noise from the
response by cross corre lation.*
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Figure 4.25
Simulated radar cross correlation

Figure 4.26

α)

b)

ε)

α ) `Transmitted' sign al, α swept-frequency sine wave .
b) `Received ' signal, the swept sine wave p lus noise.
ε) Result of cross correlating the transm itted and received

signals. Distance from left edge to peak represents transm is-
sion delay .
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*T he frequency t ran s form of the cross correlation fun ctio n is the
cross powe r spectrum , α function discussed in Append ix Α .

	

Cross co rre lation shows multiple transmission paths.



Figure 4.27
Modal analysis example - Determine the modes in this

simple plate

Actual Mode

Section 3: Modal Domain Measurements

In Section 1 we learned how to make frequency
domain measurements o f mechanical structures with
Dynamic Signal Analyzers . Let us now analyze the
behavior of α simple mechanical structure to under-
stand how to make measurements in the modal
domain . We will test α simple metal plate shown in Fig-
ure 4.27 . The plate is fr eely suspended using rubber
cords in order to isolate it from any object which would
alter i ts properties .

The fir st decision we must make in analyzing th is
structure is how many measurements to make and
where to make them on the structure . There are no
firm rules for this decision ; good engineer ing judgment
must be exercised instead . Measur ing too many points
make the calculations unnecessarily complex and time
consuming . Measur ing too few points can cause spat ial
aliasing ; i .e ., the measurement points are so far apart
that high frequency bending modes in the structure can
not be measured accurately . To decide on α reasonable
number of measurement points, take α few tri al fr e-
quency response measurements of the st ructure to
determine the h ighest significant resonant frequenc ies
present . The wave length can be determined empirically
by changing the distance between the stimulus and the
sensor until α fu ll 360° phase shi ft has occurred from the
original measurement poin t . Measurement point spac-
ing should be approximately one-quarte r o r less o f t his
wavelength.

Μeαsure ιnen τ # ι

	

Apparent Mode

	

κ2

	

#s

	

Measurement points can be spaced uniformly over
the structure using this guidelin e, bu t it may be desir -

F ίgure 4.28

	

able to modify this procedure s lightly . Few structu res
Spacial Aliasing - Too few measurement points lead to

	

are as uniform as this simple plate example,* but com-
inaccurate analysis of high frequency bending mode .

	

plicated structures are made of simpler, more un i form
parts . The behavior of the structure at the junction o f
these parts is often of great inte rest, so measurements
should be made in these critical areas as well .

Once we have decided on where the measure-
ments shou ld be taken , we number these measurement
points (the order can be arbi t ra ry) and enter the coordi
nates of each point into our modal analyzer . This is
necessary so that the analyzer can correlate the mea-
surements we make with α position on the structure to
compute the mode shapes .

The next decision we must make is what s ignal we
should use for α stimulus . Our plate example is α linear
structure as it has no loose rivet joints, non-linear
damping mate rials, or other non-linear iti es . There fore,
we know that we can use any of the stimuli described in
Chapter III, Section 6 . In this case, an impulse would be
α par ticular ly good test signa l . We could supp ly the
impulse by h itting the structure with α hammer
equipped with α force transducer . This is probably the
easiest way to excite the structure as α shaker and its
associated driver are not required . As we saw in the last
chapter , however , i f the structure were non-linear, then

* If all stru ctures we re th is sim ple, there would be no need for modal
analysis .



random noise would be α good test s ignal . To supply
random noise to the structure we would need to use α
shaker . To keep our example more gener al, we will use
random noise as α stimulus .

The shaker is connected firmly to the plate via α
load cell (force transducer) and excited by the band-
limited noise source of the an alyzer . Since th is force is

'

	

the network stimulus, the load cell ou tput is connected
through α suitable ampli fie r to the reference chann el of
the analyzer . To begin the experiment, we connect an

'

	

accele rometer* to the plate at the same point as the
load cel l . The acce lerometer measures the structure's
response and its ou tput is connected to the other ana-
lyzer channel .

Our simple plate supports α number of diffe rent
modes of νίbrαtίοη , αΙ 1 of ωhίch are well separated in
frequency . Structures with wide ly separated modes of
vibration are relative ly st raight fo rwa rd to analyze since
each mode can be treated as if it is the on ly one pres-
en t . Tightly -spaced , but lightly-damped v ibrat ion
modes can also be easily analyzed if the Band Se lecta-
ble Analysis capabil ity is used to narrow the analyzer 's
filter sufficiently to resolve these resonances. Tigh tly-
spaced modes whose damping is high enough to cause
the responses to overlap c reate computational difficu l-
ties in trying to separate the effects of the vibrat ion
modes . Fortunately, many structures fall into the first
two catego ries and so can be easily analyzed .

Because we are using random noise, we wil l use α
Hanning window and RMS averaging just as we did in
the previous section.

Hav ing inspected the measurement and deciding
that it met all the above criteria, we can store it away .
We store similar measurements at each point by mov
ing our accelerometer to each numbered poin t . We will
then have all the measurement data we need to ful ly
characterize the structure in the modal domain.

*D isplacemen t, ve locity or strain t ransducers could also be used , but
accelerometers are often used because they are small and light, and
thereforedo not affect the response of the st ructure. In addition, they
are easy to mou nt on the struct ur e, reducing the total measu rement
time.

51

5.000

The resu lting frequency response of th is measure-
ment is shown in Figure 4.29. The ratio of accele ration	-4 ο.ο0οΤ~

to fo rce in g's/lb is plotted on the vertical axis by the

	

0.0

	

Hz

	

3.0000 κ
use of enginee r ing units, and the data shows α number

	

Figure 4.29
of distinct peaks and valleys at particular frequencies.

	

Α frequency response of the plate.
We con clude that the plate moves more freely when
subjected to energy at ce rtain spec ific frequencies than
it does in response to energy at other frequencies . We
recall that each of the resonant peaks correspond to α
mode of vibrat ion o f the structure .



α) Fir st Mode

	

Recall from Chapte r ΙΙ that each frequency response
will have the same numbe r of peak s, with the same

Mode

	

resonan t frequencies and dampings . The nex t task is to
ι

	

determ ine these resonant frequency and damping values
for each resonance of interest. We do th is by ret rieving
our stored frequency responses and , using α cur ve-fitting

Freq (Hz)

	

routine, we calculate the frequency and damping of each
784.00

	

resonance of interest .

b) Second Mode

ε) Third Mode

Figure 4.30
Mode shapes of α rectangular plate.

Damp (%)
84.84 m

Mode
2

Freq (Hz)
1.03 Κ

Damp (%)
118.33 m

Mode
3

Fτeq (Hz)
1.69 Κ

Damp (%)
142.60 m

C

With the structur al information we ente red ea rlier ,
and the frequency and damping of each vibration mode
wh ich we have just determined , the ana lyzer can
calculate the mode shapes by curve fitting the responses
of each poin t with the measured resonances . In Figure
4.30 we show several mode shapes of our simp le rec-
tangular plate . These mode shapes can be animated on
the di splay to show the relative mot ion o f the various
parts of the structure . The graph s in Figure 4.30,
however , on ly show the maximum de flection .

Section 4: Summary

Th is note has attempted to demonstrate the
advantages of expanding one's analys is capabi lities
from the time domain to the frequency and modal
domains. Problems that are dif ficult in one domain are
often clarified by α change in perspective to another
domain . The Dynamic Signal Analyzer is α par t icula r ly
good analys is tool at low frequencies . It can not only
wo rk in all three domain s, it is also very fast .

We have developed heuristic arguments as to why
Dynamic Sign al Analyzers have certain properties
because unde rstanding the principles of these analyz
ers is importan t in mak ing good measurements . Finally,
we have shown how Dynamic Signal Analyzers can be
used in α wide range of measurement s ituations using
relatively simple examples . We have used simp le exam-
ples throughout this text to develop understanding of
the analyzer and its measurements, but it is by no
means limited to such cases. It is α powerful instru-
men t, that in the hands of an operator who under-
stands the prin ci ples developed in th is note, can lead to
new insights and an alysis of problems.



0

0

The Four ie r Transform

	

The last problem is that even with this summation
approximation to the integr al, we must sum samples

The transformation from the time domain to the

	

over all time from m inus to plus inf in ity . We wouldhave
frequency domain and back again is based on the Four-

	

to wait fo rever to get α result. Clearly then, we must
ier Transform and its inve rse . Th is F ourier Trans form

	

limit the transform to α fin ite time inte rval.
pair is defined as :

	

Ν-1

SX(f) =f--- χ (t) e -:2πf`dt (Forward Transform) Α.1

Χ(t) =f-'- SX(f)ej2nft dt

	

(Inve rse Transform) Α.2

where
χ(t) = time dom ain representation of the s ignal χ

S X(f) = frequency dom ain representation of the
sign al χ

The Four ie r Transform is valid for both periodic*
and non-periodic χ(t) that satisfy ce rtain m in imum con-
ditions. All signals encounte red in the real wo r ld easily
satisfy these requ irements .

The D iscrete Fourie r Trans form
Figure Α.1

Nume rical integration used in the Fourie r Transform
To compute the Fourier Transform dig ita lly, we

must perform α numer ical integration . This wi ll give us an
approximation to α true Fourier Transform called the
Disc rete Fourier Transform .

	

As developed in Chapte r ΙΙΙ , the frequency spacing
between the lines mu st be the reciprocal of the time

There are three distinct di fficult ies with computing

	

record length . Therefore, we can simplify Α.5 to our for-
the Fourier Transform . First, the desi red resu lt is α

	

mu la for the Discrete Fourίer Transform , Sχ .
con tinuous function . We will only be able to calculate

	

Ν-1
its value at discrete points . With this const r ain t our

	

SX (mΔf) =ΝΣ χ (πΔt)e-' 2πmη/Ν

	

Α.6
t ransform becomes,

	

η=ο

Sx (mΔf) = fα χ(t)e -j2nΜΔ ftdt

	

Α.3

	

The F ast F our ie r Transform

where m=0,± 1,± 2 . . .

andΔ f = frequency spacing of our lines

The second problem is that we must evaluate an
integral . This is equivalen t to compu ting the area under
α curve. We will do this by adding together the areas of
narrow rectangles under the curve as in F igure Α.1 .

O ur trans form now becomes :

SX (mΔf) = At Σ χ( ηΔ t) e- j 2 πm Δ fηΔt
n=--

whereAt = time interval between samples

*The Four ier Series is α special case of the Fou rie r T ransform.

Appendix A

The Fourier Transform:
Α Mathematical Background

Α.4

SX (mΔf) = At Σ Χ (πΔt)e-'2πmΔfηΔt

	

Α.5
η=ο

At

Χ(t)¢ -j2nmΔft

Time

The Fast Fourier Transform (FFT) is an algor ithm
for computing th is Disc rete Fo urier Transform (DFT) .
Before the development of the FFT the DFT requ ired
excessive amounts of computation time, particularly
when high resolution was requ ired (large Ν). The FFT
forces one further assumption , that Ν is α mu ltiple of 2 .
This allows certain symmet ries to occur redu cing t he
number o f calc ulat ions (speci fica l ly mu ltiplications)
which have to be done.

It is important to recall here that the Fast Four ier
Transform is on ly an approximation to the desired
Fourie r Trans form. F irst, the FFT on ly g ives samples of
t he Fourίer Transform . Second and more important, it
is only α transform of α finite time record of the input.



Two Channe l Frequency Domain M easu rements

	

_

	

If instead we average the cross power spectrum we
will elim inate th is noise error . Using the same examp le,

As was pointed ou t in the main text, two chann el

	

S
measurements are often needed with α Dynamic Sign al

	

G νχ = SyS.* = (S ιχΗ + S,)S.* = Gx.H + S � χ'

Analyzer . In thi s sect ion we will mathemat ically def ine

	

so
the two channel transfer function and coherence mea-
surements introduced in Chapter IV and prove their
more importan t properties .

	

G νχ = Η (f) + S�SX'

However , be fore we do th is, we wish to introduce
one other function , the Cross Power Spectrum, Gxv.
This function is not often used in measurement s itua
tion s, bu t is used internally by Dy namic Signa l Analyz -
ers to compute transfer functions and coherence .

So

G χν (f) = SX(f) S* ν(f)

whe re * indicates the complex conjugate of the
function .

With th is function , we can define the Transfer
Function , Η ( f ), using the cross power spectrum and
the spectrum o f the input chann el as follows :

Η(f) = G νχ (f)
G ..(f)

where - denotes the aver age o f the funct ion .

Sν(f) = S,x (f)Η (f) + S�(f)

G νν =S,,Sν* =G xx ΙΗ 12 +SxHSn+SX*Η*S�+ 1S"12

If we RMS average this resu lt to try to eliminate the
noise, we find the SxS n terms approach zero because
Sx and Sn are uncorrelated . However , the Ι Sη 1 2 term
remains as an error and so we get

G νν =_

	

1 Η 12+ 1Sn12
Gxx G

_
xx

Therefore if we try to measure ~Η 1 2 by this single
channel techn iques, our value will be high by the noise
to sign al ratio .

The Cross Power Spectrum , G χy, is defined
as taking the Four ie r Transform of two signals
separately and mult iplying the resu lt together	S*
as follows :

Because Sr, and Sx are uncorrelated , the second
term will average to zero, making th is funct ion α much
better estimate of the transfer funct ion .

Η(f)

Figure Α.2
Transfe r function measurments with noise present.

The Coherence Function , γΖ , is also derived
from the cross power spectrum by :

Υ2(f) = Gyx(f) Gχν '(f)
G..(f) G νν (f)

As stated in the main text, the cohe rence function
At fi rst glance it may seem more appropriate to

	

is α meas ure o f the powe r in the ou tpu t signal caused
compute t he transfer function as follows:

	

by the input. If the coherence is 1, then all the ou tpu t
power is caused by the inpu t . If the coherence is 0, then

Ι Η(f) 12 = G νν

	

none of the ou tput is caused by the inpu t . Let us now
look at the mathematics of the coherence function toG χχ

	

see why this is so .
This is the ratio of two single channel, averaged

measurements . Not only does th is measurement not

	

As be for e, we will assume α measurement condi-
give any phase informat ion, it a lso will be in error when

	

tion like Figure Α.2 . Then, as we have shown befor e,
there is noise in the measuremen t . To see why let us

	

_

	

_
solve the equations for the special case where noise is

	

G νν = Gχχ ΙΗ Ι 2 + S κΗS � * + S**Η*S � + 1S Ι 2
injected into the outpu t as in Figure Α.2 . The outpu t is :

G ,X = GxxH + S�S,,*

As we average, the cross terms SnS,, approach
zero, assum ing that the sign al and the noise are not
related . So the coherence becomes

Υ2 = (Η
Gxx)2

Gxx (I H 12
Gxx + 15 n

12)

ΙΗ 1 2 G χχ +s~

S.

Sιν

ι

We see that if there is no no ise, the coherence
function is uni ty . If there is noise, then the coherence
will be reduced . Note also that the coherence is α func
tion o f frequency . The coherence can be unity at fre-
quencies where t here is no interference and low where
the noise is high .



Time Domain Measurements

Because it is sometimes easier to unde rstand mea-
surement probl ems from the perspective o f the t ime
domain, Dynamic Signal Analyzers often include sev
eral time domain measurements . These include auto
and cross correlation and impulse response .

Auto Correlation , Rxx( τ ), is α comparison o f α
signal with itself as α function of time shift . I t is de f ined
as :

R== (τ ) =Tim Τ f χ (t) χ (t+ τ) d t
τ

That i s, the auto correlation can be found by tak -
i ng α signa l and multip lying i t by the same s ignal dis-
placed α time τ and averaging the product over all time .
However , most Dynamic Signal An alyz ers compute
this quantity by taking advantage of i ts dual in the fr e-
quency domain . I t can be shown that

R =χ ( τ ) = F -' [SX(f)S =`(f) ]

where F- ' is the inverse Fourie r Trans form and S% is
the Fourie r Transform o f χ (t)

Since both techniques yield the same answer , the
latte r is us u al ly chosen for Dynamic Signal Analyz er
since the Frequency Transform algor ithm is al ready in
the instrument and the results can be computed faster
because less multiplications are requ i red .

Cross Correlat ion , R .y( τ ), is α comparison of
two signals as α function o f α time sh i ft between t hem. I t
is de f i ned as :

R%ν ( τ ) = Tim Τ 1τχ (t) Υ (t+ τ)dt

As in auto correlation , α Dynamic Signa l Analyzer
computes this quantity indirectl y, in thi s case from the
cross power spectrum.

R= ν ( τ ) = F -' [G= ν ]

Lastly , the Impulse Response, h(t), i s the dual of
t he t ransfer function,

h(t) = F- ' [ Η (f)]
Note that because the t rans fe r function normal-

ize d the stimulus, the impulse response can be com-
puted no matter what stimulus is actuall y used on the
network .



Appendix B

Related Hewlett-Packard
Application Notes

AN 240-2 Improving the Accuracy of Structural	AN 245-1 Signal Averaging with the HP 3582Α
Response Measurements

	

Spectrum Analyzer

Mass loading and accelerometer loading errors often hamper fre-

	

Provides an understanding of the signal averaging techn iques com-
quency response studies of mechanical systems . This 12-page αρρkα-

	

monly used in digital signal analysis and how they relate to the cor-
tίοη note discusses the identification and correction of this problem.

	

respond ing swept analyzer techn iques . The specific topics covered
The note includes 12 figures and photographs .

	

include : power spectrum averaging and its relationship to video filter

O rdering Number : 5952-7118

	

ing for smoothing measurements of random signal, time averaging and
its relationship to narrow band analysis for enhancing signal-to-noise
ratios, time averaging of recurrent transients, and peak-hold opera-

AN 243-1 Effective Machinery Maintenance Using

	

tion which is not str ictly an averaging technique . Examples of the

Vibration Analysis

	

various techniques are included to help clarify the theory involved.

Vibration analysis is α proven technique for increasing the availabi l-
ity and reducing maintenance expense of rotating machinery. Dynamic
Signal Analyzers use digital signal processing techn iques to provide
insight into machinery vibration - removing much of the guesswork
from analysis . This note provides information on the four key steps
in analysis : 1) converting vibration to an electrical signal with
transducers, 2) using the frequency domain to reduce the signal to
simp le components, 3) identify ing the defect causing abnormal com-
ponents, and 4) implementing necessary repairs and documenting
results . 60 pages, 103 illustrations .

Order ing Number: 5953-5113

AN 243-2 Control System Development Using
Dynamic Signal Analyzers

Α two part document which describes how the measurement and
analysis capabilities of α Dynamic Signa l Analyzer (DSA) can be ap-
plied to the development and production of contro l systems . Α DSA
can be used to reduce testing and analysis time, and to provide more
complete i nform ation from measurements . Part 1 is α review of the
basic concepts associated with control systems and linear control theory .
Part 2 is an introduction to the features and functions of DSAs which
di rectly contribute to development of control systems . Each feature
or function is brief ly described with example applications provided .
2 page glossary, 64 pages total, 48 illustrations .

Ordering Number: 5953-5136

Ordering Number : 5952-8767

AN 245-2 Measuring the Coherence Functionwith
the HP 3582Α Spectrum Analyzer

Provides α theoretical and pract ical introduction to the coherence
function . The specific topics covered include the use of the coherence
function as an ind icator of the statistical qu ality of α transfer function
measurement, the use of the coherence function as an indicator of
quality, the theoretical details of the coherence function and its calcula-
tion . Examples of the uses of the coherence function are included
to help clarify the theory involved .

Ordering Number: 5952-8768
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