Practical Design and Evaluation of High Frequency Circuits

Using the HP4193A Vector Impedance Meter

CONTENTS

Page

1. INTRODUCTION 1
2. 1 Preface 1
1.2 4193A Outline 1
1.3 RF Circuit Design 1
3. MEASUREMENT OF DISCRETE COMPONENTS FOR HIGH FREQUENCY CIRCUITS 2
4. I General 2
5. 2 Component Frequency Characteristics Measurement 2
6. 3 4193A Test Fixture for Discrete Component Measurement 4
7. 4 Compensation for Test Fixture Residuals 5

- How to compensate for residual impedance 6

3. IN-CIRCUIT IMPEDANCE MEASUREMENT 7
3.1 Input/Output Impedance Measurement 7
(1) Impednace Matching 7
(2) Tuned Amplifier 8
3.2 Oscillator Circuit Design and Evaluation 9
4. 3 Power Source and Ground Pattern Impedance 10
3.4 Pattern Inductor Design and Evaluation 11
3.5 Measuring Assembled Circuit Impedance 12
(I) Circuit Measurement Fixture and Residual Impedance Compensation 12
(2) Probe Withstand Voltage 12
(3) Measurement Signal Level 12
(4) Effects of Operation Signals on Circuit Measurement 13
Appendixes
A. HP-IB System Applications 15
B. Measuring Impedance of Components Biased at Over 50V DC 17
C. How to Increase Test Frequency Resolution (External Synthesizer Application) 18
Sample Program for HP9845B 19

Figure 1.1. 4193A Vector Impedance Meter

1. INTRODUCTION

1. 1 Preface

Have you ever designed an electronic circuit only to find that once it was built, it didn't work the way you intended it to. You have probably run into this sort of problem when working with electronic circuits that will operate somewhere between the HF and VHF bands. Such differences can usually be accounted for by three factors which affect circuit performance in the high frequency band, but not in the low frequency band. These factors include the following:

- Circuit components do not always work across an actual operational frequency range the way they theoretically should.
- At high frequency bands, printed circuit board patterns exhibit high impedance that cannot be ignored.
- The way components are packaged or laid out on the board will affect circuit operation.

This Application Note explains how to use the 4193A Vector Impedance Meter (Fig. 1-1) to solve these problems, and to achieve reliable and efficient design of video electronic circuits, and circuits which operate in the VHF band. In explaining the circuit design application of the 4193A, many actual examples are used. These include measuring component impedance at the desired operating frequency, measuring the input/output impedance of an assembled circuit, and measuring the output impedance of a power supply. The information included in this Application Note should prove useful in designing and packaging circuits for VTR, TV and other communications equipment.

1.2 4193A Outline

The 4193A is a grounded probe-type vector impedance meter. lts measurement frequency is continuously vari-

Table 1-1. Key Specifications of $4193 A$

Test Signal	Frequency: 400 kHz to 110.0 MHz . 4 digit resolution Sweep: Manual or Automatic, Full Sweep or Partial Sweep
Measurement Range Resolution and Accuracy	$\|Z\|: 0.01 \mathrm{~s} 2$ to $120.0 \mathrm{k} \Omega$ Maximum resolution: $10 \mathrm{~m} \Omega$ on 10.00Ω range Best accuracy: 3.0% $\theta:-180.0^{\circ} \sim+180.0^{\circ}$ Resolution: 0.1° Best accuracy: 3.2°
Displays	4 digit frequency display. $31 / 2$ digit impedance magnitude and phase displays.
Data Output/ Remote Control	HP.IB and recorder output of $\|\boldsymbol{Z}\|$ θ and frequency

able from 0.4 to 110 MHz with 4-digit resolution. The instrument measures and digitally displays impedance magnitude $|Z|$ from 10 milliohms to 100 kilohms with 3.5 digit resolution, and phase from 0° to $\pm 180^{\circ}$ with 0.1° resolution. In addition, the automatic sweep feature provides many convenient functions for measuring frequency characteristics and operability. The 4193A can accurately measure impedance characteristics of not only individual circuit components, but also of entire assembled circuits, and can be effectively used at every stage of electronic circuit design. Main specifications are listed in Table 1-1.

1.3 RF Circuit Design

When designing an electronic circuit, the main components must first be selected. Careful selection is important because the characteristics of components at rated frequencies may be quite different from those at actual operating frequencies. Parts which greatly affect circuit performance must be carefully evaluated before circuit assembly to ensure they will perform as desired. The impedance of lead wires and stray capacitance between components also affect circuit performance, requiring components to be evaluated at the actual operating frequency or frequency band, and with the lead wire cut to the lengths that will actually be used. After evaluating the individual components, the pattern in which the selected parts will be mounted on the printed circuit board must be evaluated. This becomes especially important for circuits operating at frequencies above 10 MHz , because the impedance in the pattern and capacitance between patterns greatly affect circuit characteristics. Correct evaluation can effectively prevent unexpected phase shifts, signal attenuation, and oscillations. After assembling the components in the determined pattern, the circuit must be connected to a DC power source and tested for overall performance. Various problems may be encountered at this stage: the amplifier doesn't provide sufficient gain, the gain is not flat enough, or, for a filter, the cut-off frequencies do not match. One of the most common causes of these problems is that stray admittances generated between the packaged parts of patterns result in actual impedance values quite different from the expected ones. To solve this problem, input and output impedances and other characteristics must be measured with the circuit assembled, and without changing bias conditions. Thus, when designing an electronic circuit for operation in the RF band, the three most important factors to be evaluated are the characteristics of components at the actual operating frequency, the impedance of lead wires and printed circuit board patterns, and the stray capacitance between mounted circuit components. The 4193A Vector Impedance Meter measures component characteristics, pattern impedance, and stray capacitance easily and efficiently, and contributes greatly to reliable design of video circuits and circuits operating in the VHF band.

2. MEASUREMENT OF DISCRETE COMPONENTS FOR HIGH FREQUENCY CIRCUITS

2. 1 General

The most frequently encountered problems in high frequency circuit design are insufficient gain (amplifiers) and incorrect cutoff frequency (filters), both of which are usually caused by differences between the impedances and admittances of the designstage circuit and those of the assembled circuit. At the component level, there are two main causes:

- Impedance frequency characteristics of the components themselves.
- Impedance of and capacitance between lead wires of individual circuit components.

In terms of the assembled circuit, there are also two main causes:

- Impedance of the printed pattern.
- Stray admittances between components and between patterns.

Components used in high-frequency electronic circuits should be evaluated for individual characteristics before assembly, and for impedance after assembly. The following explains how to make this evaluation.

2. 2 Component Frequency Characteristics Measurement

A great deal of useful infornnation can be obtained by measuring the impedance characteristics of circuit components at the frequency which they are to operate. Fig. 2.1 shows an example of using the 4193A to measure the impedance frequency characteristics of a ceramic capacitor. If the capacitor were ideal, the curve would go down at the right. Instead, it shows a V-shaped characteristic. This happens because the capacitor itself includes inductive and resistive components. If equivalent circuit elements do not greatly depend on frequency characteristics, the R, C, and L values given in Fig. 2.2 can easily be estimated from the measurement results shown in Fig. 2.1.

(a) Equivalent Circuit

(b) Simplified Equivalent Circuit

The L and C reactances can be ignored in the area indicating resistance near the resonant frequency f_{0} (approx. 5.8 MHz), where the phase is zero in Fig. 2.1. Since $1 / G \gg R$, the capacitor can be regarded as a simple equivalent resistive circuit, whose equivalent series resistance (ESR) is 0.57 ohm.

$$
\begin{equation*}
R=0.57 \mathrm{ohm} \tag{2.1}
\end{equation*}
$$

In the low-frequency capacitive area of Fig. 2.1, the L component can be ignored. Since parallel conductance G is also negligibly small compared to ωC, the capacitor can be regarded as an equivalent RC series circuit. Therefore, the value of C can be calculated from the following equation.
$C \simeq \frac{1}{\omega \sqrt{|Z|^{2}-R^{2}}}$
ω : Angular frequency $=2 \pi \mathrm{f}$
f : Measurement frequency $(\mathbf{H z})=0.4 \mathrm{MHz}$
$|Z|$: Impedance magnitude (ohm) displayed on the 4193A
$R \quad:$ Equivalent series resistance (ohm)

Figure 2.1. Frequency Characteristics of Ceramic Capacitor

Frequency Range	Equivalent circuit
Lower frequency	C
Around resonant frequency	$0\left(\frac{1}{\mathrm{G}} \gg \mathrm{R}, \frac{1}{\omega \mathrm{C}} \gg \mathrm{R}\right)$
Higher frequency	$0\left(\frac{1}{\mathrm{G}} \gg \mathrm{R},\left\|\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right\| \ll \mathrm{R}\right)$

(c) Example of Equivalent Circuit with Actual Values

Figure 2.2. Equival ent Circuits of Coramic Capacitor

The following equation can be used in the frequency range where $|Z| \gg R$.

$$
\begin{equation*}
C \simeq \frac{1}{\omega|Z|}=\frac{1}{2 \pi \times 0.4 \times 10^{6} \times 17.00}=23.4 \mathrm{nF} \tag{2.3}
\end{equation*}
$$

In the area of high-frequency inductance, the capacitive reactance can be ignored and an equivalent RL series circuit can be assumed. The value of L, then, is determined by the following equation.

$$
\begin{equation*}
L \simeq \frac{\sqrt{|Z|^{2}-R^{2}}}{\omega} \tag{2.4}
\end{equation*}
$$

The following equation can be used in the frequency range where $|Z| \gg R$, and $f=110 \mathrm{MHz}$.

$$
\begin{equation*}
L \simeq \frac{|Z|}{\omega}=\frac{17.85}{2 \times \pi \times 110 \times 10^{6}}=25.8 \mathrm{nH} \tag{2.5}
\end{equation*}
$$

From the above explanation, the equivalent circuit given in Fig. 2.2 can be expressed as \mathbf{b}) or c) if the results of equations 2.1 to 2.5 are used.

The measurement results given in Fig. 2.1 indicate that the capacitor works well at frequencies of about 5 MHz or below. The limitation of capacitor performance can be checked by calculating the equivalent circuit constants as described above, and then used as a basic value for selecting parts or design data.

This method of capacitor evaluation is also applicable to resistors and coils. Fig. 2.3 shows how to calculate each equivalent circuit constant.

Equivalent circuit value calculation

Frequency	Equivalent circuit	Equivalent circuit value
11	$\left\langle\frac{1}{2: f_{1} C} \gg k\right\rangle$	$\mathrm{R}=12 \mathrm{l}$
12	$\left\{18>\frac{1}{2-\frac{1}{2} \cdot}\right\}$	$c=\frac{1}{(1)\|2\|}$

(a) High Resistance

Equivalent circuit

L : Resistance of coil and lead wise

$$
|Z|=\sqrt{R^{2}+i \omega L^{1^{2}}}
$$

(b) Low Resistance

Equivalent circuit value calculation

Equivalent circuit value calculation

Frequeacy	Equivalent clscuit	Equivalent circuit value
f_{1}		$R=\|z\|$
f:	\xrightarrow{L} $\left\{\begin{array}{l} \omega L \gg \mathbf{R} \\ \omega L \ll \frac{1}{\omega C} \end{array}\right\}$	$L=\frac{181}{2 \pi E_{-}}$
1		$c=\frac{1}{2 \pi l_{3}\|2\|}$

Figure 2.3. Frequency Characteristics and Equivalent Circuit for Circuit Components

2. 3 4193A Test Fixture for Discrere Component Measurement

For reliable measurement of a circuit component in the video or VHF band, it is important to put the component in as close to actually assembled status as possible, and to use a suitable test fixture. The 4193A provides a variety of fixtures (Fig. 2.4) for measuring chip, radial lead, and axial lead components, and components of other shapes.

Figure 2.4. Test Fixtures for the 4193A

Fig. 2.4 (a) shows the 4193A attached to the 16099 A Test Fixture Adapter, upon which is mounted a discrete component test fixture. Three types of component test fixtures are available, as shown in (b), (c) and (d) of Fig. 2.4. The numbers given in the figure indicate the distance betwoen terminals, or the maximum measurable component dimensions. Because its measurement terminals are movable, the 16092A Test Fixture, shown in (b) of Fig. 2.4, can be used to measure components with lead wires as long as those to be actually used. Fig. 2.5 shows the results of two measurements made on the same ceramic capacitor. Lead wire length differs by about 1 cm for purposes of measurement. Since there are big differences in resonance frequencies and impedance values, the lead wires must be as long as will actually be used.

Fig. 2.6 shows a component mounting adapter which connects directly to the probe. Components are connected between the center terminal and either of the two outer terminals. Spacing between the center terminal and each outer terminal is 13.5 mm and 20 mm , respectively.

Fig. 2.7 shows a probe socket designed for board mounting and for user-fabricated test fixtures. Alnost any type of fixture can be connected for measurement.

Figure 2.5. Lead-Length Dependency of Frequency Characteristics of Discrete Components

Figure 2.6. Component Mounting Adapter

Figure 2.7. Probe Socket

2. 4 Compensation for Test Fixture Residuals

In some cases, the residual impedance in a test fixture causes error when measuring the impedance of a circuit component. If this effect can be compensated, a more accurate measurement can be obtained. Fig. 2.8 compares values of impedance characteristics with and without residual impedance compensation. Compensation for residual impedance raises the resonant frequency by about 8 MHz , and lowers the resonant impedance by about 0.5 ohm. Eliminating the error caused by the test fixture results in the correct value. The impedance range in which correct values can be obtained if residual impedance is compensated is shown in Fig. 2.9. (A sample program for automatic residual impedance compensation via the HP-IB is given in the Appendix (p. 19).

Figure 2.8. Residual Impoedance Compensetion for Frequancy Charecteristics of Ceramic Capscitor

\square : Range where the residual error is less than 10%
\ldots : Range where the residual error is 10% or more (must be compensated)
Whenever the residual error caused by the fixture is to be minimized, compensation is necessary.

Figure 2.9. Additional Error due to Rasidual Impedance when the 16092A is attoched to the 16099A

- How to compensate for residual impedance

Measured impedance values displayed on the 4193A include the impedance of the DUT plus the residual impedance of the test fixture. See Fig. 2.10. To obtain the true impedance of the DUT, the following method can be used.

1. Short circuit terminals A and B, and note the values displayed on the 4193A as $\left|Z_{s}\right|$ and $\theta_{s}\left(R_{0}\right.$ and X_{0} measurements). Shorting rings are furnished with the 16092A and 16093A/B for this purpose.

$$
Z_{s} \simeq R_{0}+j X_{0} \quad \begin{align*}
& \text { Impedance of shorting } \\
& \text { ring } \left.\ll\left|R_{0}+j X_{0}\right|\right) \tag{2.6}
\end{align*}
$$

2. Perform measurement with terminals A and B open, and note the values displayed on the 4193A as $\left|Z_{0}\right|$ and θ_{0} (G_{0} and B_{0} measurements).

$$
\begin{equation*}
Z_{0} \simeq \frac{1}{G_{0}+j B_{0}} \quad\left(\left|G_{0}+j B_{0}\right| \ll \frac{1}{\left|R_{0}+j X_{0}\right|}\right) \tag{2.7}
\end{equation*}
$$

3. Connect the component to be measured to terminals A and B, and note the values displayed on the 4193A as $\left|Z_{m}\right|$ and θ_{m}.
4. The actual impedance of the component is Z_{x} / θ_{x}, and is calculated as follows:

$$
\begin{align*}
& \left|Z_{x}\right|=\sqrt{R^{2}+X^{2}} \tag{2.8}\\
& \theta_{x}=\tan ^{-1} \frac{X}{R} \tag{2.9}
\end{align*}
$$

where

$$
\begin{align*}
R= & \frac{\left(\left|Z_{0}\right| \cos \theta_{m}-\left|Z_{m}\right| \cos \theta_{0}\right) \cdot\left|Z_{m}\right| \cdot\left|Z_{0}\right|}{\left(\left|Z_{0}\right| \cos \theta_{m}-\left|Z_{m}\right| \cos \theta_{0}\right)^{2}+\left(\left|Z_{0}\right| \sin \theta_{m}\right.} \\
& \left.-\left|Z_{m}\right| \sin \theta_{0}\right)^{2}-\left|Z_{s}\right| \cos \theta_{s} \\
X= & \frac{\left(\left|Z_{0}\right| \sin \theta_{m}-\left|Z_{m}\right| \sin \theta_{0}\right) \cdot\left|Z_{m}\right| \cdot\left|Z_{0}\right|}{\left(\left|Z_{0}\right| \cos \theta_{m}-\left|Z_{m}\right| \cos \theta_{0}\right)^{2}+\left(\left|Z_{0}\right| \sin \theta_{m}\right.} \\
& \left.-\left|Z_{m}\right| \sin \theta_{0}\right)^{2}-\left|Z_{s}\right| \sin \theta_{s} \tag{2.11}
\end{align*}
$$

Figure 2.10. Equivalent Circuit of Test Fixture

3. IN-CIRCUIT IMPEDANCE MEASUREMENT

In addition to measuring discrete components, as explained in Section 2, it is also important to measure the impedance of the assembled circuit if it is to operate at high frequencies. The following explains how to use the 4193A for this kind of evaluation.

3. 1 Input/Output Impedance Measurement

A high-frequency circuit often exhibits characteristics that differ significantly from theoretical ones because of board pattern impedances, and because of stray capacitances between mounted components. This results in, for example, insufficient amplifier output or incorrect filter cutoff frequency. One of the causes is that the actual input and output impedance values are different from the theoretical ones.

By measuring the input and output impedances, the following factors can be correctly evaluated:

- Amplifier or mixer impedance matching.
- Tuning amplifier frequency characteristics.

Two examples of how to solve the above problems are given below.

(1) Impedance Matching

Fig. 3.1 shows a hypothetical video amplifier circuit. Point (A) is designed to match at 50 ohms. The filter used in amplifier 2 eliminates noise in the 300 MHz region, and is designed so that the characteristic impedance becomes 50 ohms. With the 4193A, impedance matching was checked at 50 ohms in the frequency range of 1 to 100 MHz . The results shown in Fig. 3.2 were obtained.

The two circuits were found to match at frequencies up to 10 MHz . However, the output and input impedances were 53 and 40 ohms at 20 MHz , and 61 and 18 ohms at 50 MHz , respectively. That is, they were found not to match at high frequencies. This disparity results because the distributed capacitance of inductor L1 becomes larger as the frequency increases, and because the characteristic impedance value changes. In this circuit, the frequency range is from 1 to 100 MHz , and the input impedance of amplifier 2 must be between 25 and 75 ohms to obtain the initial output level of amplifier 2. To satisfy this condition, the value of the input filter capacitor of amplifier 2 must be changed, while measuring the input impedance with the 4193A, until the optimum value is obtained. The value of 20 pF was found to be best for the 47 pF capacitor (Fig. 3.3). Since the filter cutoff frequency is 205 MHz at that value, noise in the 300 MHz area from amplifier 1 can be sufficiently suppressed.

In a circuit which requires matching between stages, the 4193A can be used to measure the impedance, evaluate the results, and if mismatching occurs, to get rid of the cause.

Figure 3.4. Output Impedance-Frequency Characteristics of a Tuned Amplifier

Figure 3.5. Tuned Amplifier Circuit

(2) Tuned Amplifier

In a tuned amplifier, because output impedance is generally proportional to gain, by measuring output impedance, characteristics such as resonant frequency and bandpass can be evaluated. Fig. 3.4 shows the results of using the 4193A to measure output impedance in order to find frequency characteristics of the tuned amplifier shown in Fig. 3.5. This amplifler should theoretically resonate at 5.2 MHz , but actually resonates at 6.08 MHz . The measured resonant frequency differs from the expected one because of pattern inductance and stray capacitance between patterns and components. From the measurement results shown in Fig. 3.4, the pass band and resonant frequency can be calculated as follows.

```
- Pass Band . . . . . . . . Frequency range between the
    -3 dB points on the curve:
    5.99 MHz to 6.18 MHz
- Resonantfrequency .. Frequency at which output
    voltage and current are in
    phase: 6.08 MHz
```

When the tank circuit is mounted, the circuit Q can be calculated from bandwidth ΔF and resonant frequency f_{0} using the following equation.

$$
\begin{equation*}
Q=\frac{f_{0}}{\Delta F}=\frac{6.08}{6.18-5.99}=32.0 \tag{3.1}
\end{equation*}
$$

When $L=4.7 \mu \mathrm{H}$ and $C=200 \mathrm{pF}$, the characteristics are as shown in Fig. 3.4. To change the resonant frequency to the desired value of 5.2 MHz , the following measures can be taken.

By setting the 4193A measurement frequency to 5.2 MHz and continually changing the value of the tuning capacitor, the phase display can be checked. When the phase is 0 degrees, 254 pF is the capacitor value to be used. Fig. 3.6 shows the output impedance characteristics at that time.

Figure 3.6. Output Impedonce - Frequency Charecteristics of the Improved Tuned Amplifier

3.2 Oscillator Circuit Design and Evaluation

Oscillator circuits, such as crystal oscillators, often do not work as designed. One of the causes is that the negative impedance of the circuit could not be measured accurately after circuit assembly. The 4193A can be used to calculate stable oscillation conditions from the negative impedance measurement and to determine the optimum value of the load impedance. As an example, the following describes how to do so for the 100 MHz crystal oscillator shown in Fig. 3.7.

The 100 MHz crystal oscillator circuit in the figure can be represented by the equivalent circuit shown in Fig. 3.8.

Condition for oscillation:

$$
\begin{equation*}
-\frac{1}{r}+\frac{1}{R_{L}} \leqq 0\left(r \leqq R_{L}\right) \tag{3.2}
\end{equation*}
$$

Condition for no oscillation:

$$
\begin{equation*}
-\frac{1}{r}+\frac{1}{R_{L}}>0\left(r>R_{L}\right) \tag{3.3}
\end{equation*}
$$

When the condition given in equation 3.2 is satisfied, oscillation starts. When the condition given in equation 3.3 is satisfied, oscillation does not occur.

Figure 3.7. $\quad 100 \mathrm{MHz}$ Crystal Oscillator Circuit

L Negative impedance 」 Load circuit -
$-r$: Resistance of negative impedance circuit
$X:$ Reactance of negative impedance circuit
$R_{L}:$ Resistance of load circuit
X_{L} : Reactance of load circuit
Condition for oscillation,

$$
\frac{1}{-r}+\frac{t}{R_{L}} \leq 0 \quad\left(r \leq R_{L}\right)
$$

Condition for no oscillation,

$$
\frac{1}{-r}+\frac{1}{R_{L}}>0 \quad\left(r>R_{L}\right)
$$

Figure 3.8. Equivalent Circuit and Oscillation Condition of Negative Resistance Oscillator

By disconnecting point A in Fig. 3.8 and measuring the negative impedance and the load impedance with the 4193A, it can be checked whether the oscillation condition and design margin are satisfied. If the oscillation condition is not satisfied, constants $-r$ or R_{L} can be changed to stabilize oscillation.

Refer again to the circuit diagram given in Fig. 3.7. Circuits R1 and U1 on the load side can be removed to check the oscillation condition and to measure the negative output impedance at point (A). The result is shown in Fig. 3.9. Oscillations may occur at points $(B)(100 \mathrm{MHz})$ and (C) $(100.04 \mathrm{MHz})$ where the phase is -180°. Since the negative resistance $\left(-r_{1}\right)$ at point (B) is 320 ohms and $\left(-r_{2}\right)$ at point (B) is 820 ohms, the following two conditions must be satisfied to cause oscillation at 100 MHzat point (B), and not at 100.04 MHz at point (C). From the oscillation condition of equation 3.2,

$$
\begin{equation*}
320 \text { ohms } \leqq R_{L}\left(r_{1} \leqq R_{L}\right) \tag{3.4}
\end{equation*}
$$

and from equation 3.3,

$$
\begin{equation*}
820 \text { ohms }>R_{L}\left(r_{2}>R_{L}\right) \tag{3.5}
\end{equation*}
$$

99.99100 .00100 .01100 .02100 .03100 .04100 .05100 .06 Frequency (MHz)
Figure 3.9. Negative Impedance Cheracheristics of Crystal Oscillator

Thus, a load impedance, R_{L}, which satisfies both conditions, must be used. The optimum value is about 600 ohms, which is between 320 and 820 ohms, taking into account design margins such as the diverse impedances of the crystal resonator and circuit components, and ambient temperature.

Value R1 can then be determined from value R_{L} (600 ohms). The impedance on the load side from point A is about 16 times R1 (connected by transfonner T1; turns ratio 4 : 1) because the U1 input resistance can be ignored. Therefore, R1 is 37.5 ohms ($=600 \mathrm{ohms} / 16$). If $R 1$ is a discrete resistor with a standard value, 38.3 ohms, R_{L} is 612.8 ohms (38.3 ohms $\times 16$) and fully satisfies the stability conditions at point A (equations 3.4 and 3.5).

Finally, R1 and U1, whose values are now known, can be installed, the negative impedance can be removed, and the impedance on the load side can be measured using the 4193A. The result is converted to the resistance shown in Fig. 3.10. The figure indicates that value R_{L} is around 600 ohms, and that stable oscillation can be obtained.

The 4193A can easily measure the usually hard-to-determine impedance characteristics of an assembled oscillator circuit such as this, or at least to determine circuit constants for securing stable oscillation, for preventing abnormal oscillations, and for designing highly reliable oscillator circuits. Figures 3.9 and 3.10 show measurements made with an external synthesizer connected and the frequency resolution raised. For details, refer to the apppendix (p. 18).

Figure 3.10. Frequency Characteristics of Load Resistance (R_{L}) Derived from Lood Circuit Impedance

3.3 Power Source and Ground Pattern Impedance

In a hybrid circuit with both analog and digital sections, noise in the digital section may have adverse effects on the analog section when transmitted through the power source or ground line. In this case, the impedances of the power source and ground patterns can be used to prevent noise from getting through. To eliminate interference between circuits, power source line evaluation using the 4193A is especially important. In actual applications, the AC impedance should be large enough to attenuate noise on a line if the line lets noise pass easily, or absorbs noise because of the decoupling capacitor. The 4193A is useful for designing a pattern which does not transmit noise. This is done by measuring pattern impedances of the power source and ground systems over a frequency range of 0.4 to 110 MHz by simple probing.

Figure 3.11. DC Power Supply Configuration for Mixed Analog and Digital Circuit

Fig. 3.11 shows frequency divider (digital) and amplifier (analog) circuits mounted on a printed circuit board. They are both powered from the same +5 V power source. Z_{1} contains decoupling capacitor C 6 , and Z_{5} contains decoupling capacitor C 7 . The impedance value is large at high frequencies, and switching noise generated at Z_{1} goes to point (B) through the +5 V power source pattern, and appears in the amplifier output as spurious noise. To check how much noise gets through, the switching frequency of the divider circuit, pattern impedances Z_{3} and Z_{4} between points (A) and (C), and between points (B) and (C), respectively, at the second harmonic, and ground impedances Z_{1}, Z_{2}, and Z_{3} at points (A), (B), and (C), respectively, were measured with the 4193A. The results are listed in Table 3.1 (1). Using equation 3.6 to determine the noise transfer ratio, gave results of 16% to 70%.

$$
\begin{equation*}
B(t)=\frac{Z_{2} \cdot Z_{5} \cdot A(t)}{Z_{3}\left(Z_{2}+Z_{4}+Z_{5}\right)+Z_{2}\left(Z_{4}+Z_{5}\right)} \tag{3.6}
\end{equation*}
$$

$A(t)$: Noise generated at Z_{1}
$B(t)$: Noise transferred to Z_{5}
If the AC impedance of Z_{3} is increased, noise can be attenuated. By inserting an inductor in series with the Z_{3} pattern, and a bypass capacitor between the grounds (see Fig. 3.11), the resultant values become as listed in Table 3-1 (2). The noise transfer ratio improves to about 1% or less, spurious noise at the amplifier output decreases at the same ratio, and high-quality signals are thereby obtained.

Since the 4193A measures pattern impedances and quantitatively evaluates noise, it is a valuable tool for achieving more logical and efficient circuit design.

Table 3-1. Impedance Evaluation of DC Power Supplys

Frequency		$72: 2$	23 \%	2,13:	2 SIS	Noise level at paint (B) Norse level at point (A)
7.5 MHHz	(1)	50	1.5	2	9	$-3.08 \mathrm{~dB}$
	(2)	50	450	2	9	-35.9d8
10 MHz	(1)	65	2.5	2.6	1.5	$-13.1 \mathrm{~dB}$
	(2)	65	600	2.6	1.5	$-52.6 \mathrm{~dB}$
15 MHz	(1)	120	4	3.7	1.5	$-15.9 \mathrm{~dB}$
	(2)	120	970	3.7	1.5	$-56.6 \mathrm{~dB}$
20 MHz	(1)	235	5.6	4.8	2.5	-14.3dB
	(2)	235	1420	4.8	2.5	$-55.4 \mathrm{~dB}$

3.4 Pattern Inductor Design and Evaluation

Circuits often do not operate as designed at high frequencies because of pattern impedances. However, this need not always be a problem. Pattern impedances can sometimes be utilized for more effective circuit design because of three factors:

- They have high resonant frequencies, are stable as inductive elements, and are not frequency dependent.
- Not all desired inductor values can be created by coils.
- They are cheap and do not take up much board space.

The following explains how the 4193A is used to measure the pattern inductance of an LC filter.

In the low-pass filter for input to the video amplifier shown in Fig. 3.12, pattern type series inductor L1 (Fig. 3.13) was chosen in order to match the previous stage at 50 -ohm impedance. This match is necessary because the filter's cut-off frequency is over 100 MHz and cannot be increased any further. The designed value is 60 nH , but lead inductance, distributed capacitance, pattern inductance, and other factors make it difficult to obtain the exact value when initially assembling the circuit. Here, the 4193A can be used to solve the problem. By making a trial pattern inductor value larger than the designed value, the initial impedance value can be found by shifting the 4193A probe tip (Fig. 3.14).

Figure 3.12. Low-pass Filter Circuit Used in Video Amplifier

Figure 3.13. Printed Pattern Inductor

Figure 3.14. Pattern Impedance Measurement
Using Test Probe of the 4193A

Conversely, by making the pattern area gradually smaller, the impedance can be measured step by step. In the 4193A, parameter conversion can be easily done by a controller via the HP-IB. The optinnum value can be obtained by monitoring the inductance value directly. When designing a pattern with high inductance ($\geqq 1 \mu \mathrm{H}$), the stray capacitance of the probe may affect measurement. The correct value can be obtained by compensating for the residual impedance (see paragraph 3.5 and appendix A (p. 15)). Fig. 3.15 shows the measured values of the trial pattern inductor created by using the parameter conversion program given in the appendix ($\mathbf{p} .19$) and gradually changing the measurement point. The point at which the measured value is alınost the same as the designed value, 60 nH , is found in the frequency range of 1 to 100 MHz . The 4193A proves very useful for measuring pattern inductance of a high-frequency electronic circuit like this or any other hybrid IC because of its high resolution (10 milliohms), wide measurement range, and easy-to-use probe.

Figure 3.15. Helical Pattern Inductance Evaluation at Different Points on Patern

3.5 Measuring Assembled Circuit Impedance

There are several points to note when measuring assembled circuit impedance, especially active circuits which must have high reliability. The four most important points for making measurements with the 4193A are as follows:

(1) Circuit Measurement Fixture and Residual Impedance Compensation

In addition to the component measurement test fixtures explained in Section 2.3, there are also circuit measurement test fixtures for the 4193A. Fig. 3.16 (a) shows a ground adapter which measures by directly probing circuit, and Fig. 3.16 (b) shows a ground lead used when there is no ground point near the measurement point.

When the circuit measurement teminal is a BNC connector, the BNC adapter shown in Fig. 3.17 is used. The BNC adapter ground can be used as an N -type ground if removed. Residual impedances can be compensated for these fixtures in the same way as for discrete component test fixtures described in Section 2.4.

Figure 3.16. Ground Adapter (a) and Ground Lead (b)

Figure 3.17. BNC Adapter

(2) Probe Withstand Vollege

When the probe is used to measure impedances in an active circuit the bias voltage of the circuit may have an adverse affect. The 4193A probe can handle up to 50V DC, and can measure almost any circuit without being damaged. However, this limit may be exceeded when measuring a circuit driven by high voltage or a high output electronic amplifier. In this case, correct measurement can be obtained without damaging the probe by using a blocking capacitor (refer to the appendix for the measurement method). Note that the AC withstand voltage of the probe is 5 V nns .

(3) Measurement Signal Level

The 4193A measurement signal level changes according to the impedance measurement range, as listed in Table 3-2. If the range is fixed, the current level does not change regardless of the impedance measured. Therefore, a voltage equal to the product of displayed impedance value and measurement current is applied to the component being measured, and reaches its peak when the impedance value is highest.

Table 3-2. Relation between Measurement Signal Level and Impedance Range

lmpedance range	10Ω	100Ω	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$100 \mathrm{k} \Omega$
Measurement current	$100 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$
Maximum signal level	2 mV	20 mV	200 mV	1 V	1.2 V

If measured impedance value overrange (Or) is displayed, the voltage applied to the component exceeds the value in the table. This may reach 100 to 230 mVrms on 10Ω to $1 \mathrm{k} \Omega$ ranges, and 1 to 1.2 Vrms on other ranges. Therefore, care must be taken when measuring voltage sensitive components. When measuring an assembled circuit, the measurement signal level must be carefully considered, especially for circuits that contain an amplifier. If the circuit saturates, or if the active point of an active element is changed drastically, the impedance may be measured under circuit conditions different from actual operating conditions. To guard against this, use an oscilloscope, and check the measurement points of the circuit before actual measurement to make sure that there is no distortion in the wavefonns.
(4) Effects of Operation Signals on Circuit Measurement When measuring circuit impedance with the 4193A, ideally, the circuit should be free from operating signals or noise. However, this is impossible for some circuits. For circuits with AC signals (e.g., active circuits such as synthesizers or signal generators), the measured value may become unstable. To obtain stable results with the 4193A despite the AC signals or noise, the following two points should be considered.

1. Difference between frequency of operating signal in the circuit and the 4193A measurement frequency.
2. Level of operating signal going through the circuit.

1. Frequency condition

If the operating frequency of the circuit to be meas. ured is too close to the 4193A measurement frequency, measured values fluctuate and the correct value cannot be obtained. Therefore, it is necessary to set a difference between them. This difference, called ΔF, changes according to the signal level of the circuit to be measured. Fig. 3.18 gives reference data indicating the relationships between signal level and ΔF. Note how much difference must be set between their frequencies when the signal level does not change. This is near the fundamental wave of the 4193A measurement signal, but also applies to harmonics. Therefore, the following harmonics and signal frequency of the circuit to be measured must have at least the ΔF shown in Fig. 3.18.

$$
\begin{aligned}
F=n \times K & (n=1,2, \ldots) \\
F: & \text { 4193A harmonics } \\
K: & \text { See Fig. } 3.19
\end{aligned}
$$

($\Delta \mathrm{F}$: Frequency diffesence between test frequency of the 4193A and operating sigul frequency of cincuit under cest)
Figure 3.18. Relation between Minimum Frequency Difference (ΔF) and Operating Signal Leved of Circuit under Test

Figure 3.19. Relation of Constant K to Test Frequency of 4193A
2. Level of operating signal passing through circuit

The second point necessary for stable measurement is the level of the signal passing through the circuit. The maximum allowable signal level in the circuit loosely depends on the impedance of the component to be measured, as shown in Fig. 3.20. For example, if the impedance is 10.0 hm , the level of the signal passing through the circuit must be lower than -10 dBm . If higher, measurement values may fluctuate.

Check whether the following example satisfies the above condition (indicated by dashed lines in Fig. 3.18 to 3.20).

```
Measurement conditions:
    Operating frequency . . . 10MHz (assume there
                are no harmonics)
    Operation signal level . . . -30 dBm
    Impedance . . . . . . . . . . 10 ohms
```

If the measurement is made at a frequency as close to the operating frequency as possible, ΔF is 30 to 35 kHz as calculated from Fig. 3.18. Then, suppose that the 4193A measurement frequency is set to 10.04 MHz . Here, 8.3748 and 10.0498 MHz are found to be the 4193A harmonics closest to 10 MHz from equation 3.7 and Fig. 3.19. These values satisfy the ΔF condition because they are more than 35 kHz away from the operating frequency, 10 MHz , of the component to be measured. Also, since the $10-\mathrm{ohm}$ impedance is in the stable area of Fig. 3.20 when the operation signal is -30 dBm , stable measurement is possible at 10.04 MHz . Note that measurement is always stable if the level of a signal passing through a circuit is -80 dB or lower than the 4193A measurement signal.

Figure 3.20. Relation between Operating Signal Level and Impedance Value of Circuit under Test

APPENDIXES

A. HP-IB System Applications

By connecting the 4193A to a controller via the HP-IB, measurement and data processing can be done automatically. The following describes a measurement example in which the residual impedance of a test fixture is compensated by a simple system structure as shown in Fig. A-1. Parameter conversion is also done. Residual impedance compensation was already explained in Section 2.4. Parameter conversion can be calculated from the 4193A measurement data ($|Z|$ and θ) given in Table A-1. Fig.

A-2 (p. 16) is a flowchart for compensation and conversion using the 9845B desk-top computer, and shows six cases of representative automatic parameter conversion. The results are given in Fig. A-3. This program is very efficient because parameter conversion can be done without having to compensate for residual impodance. For a device or test fixture which does not require such compensation, parameter conversion can be done immediately.

Figure A-3. Effect of Residual Compensation

9845 B
OPT. 311 (98411A) GRAPHICS ROM OPT. 312(98412A) I/O ROM

Line number

Figure A-2. Flow Chart for Residual Impedance Compensation and Parameter Conversion Program

B. Measuring Impedance of Components Biased at Over 50V DC

The 4193A probe can safely handle up to 50V DC or 5 Vrms AC. Use the following methods for values over 50 V DC to prevent damage to the probe.

(1) Circuit Measurement

If a circuit has a bias voltage of over 50 V , insert a blocking capacitor $\left(C_{B}\right)$ between the probe and circuit before measurement (Fig. B-1). The impedance $\left[1 /\left(2 \pi . f C_{B}\right)\right]$ of capacitor C_{B} must be negligible at the measurement frequency in order to compare it with that of the circuit to be measured. Note that a 4193A measurement value includes C_{B} if the value is not small enough. When this occurs, apply the same voltage to be applied to the circuit

when the impedance of blocking capacitor is negligible compared to that of circuit under test:
$\left(\left|Z_{C B}\right| \ll\left|Z_{C}\right|\right)$

$$
Z_{C} \simeq Z_{m}
$$

when the impedance of blocking capacitor is not negligible:

$$
Z_{C}=Z_{m}-Z_{C B}
$$

Figure B-1. Measurement of Active Circuits Biased at Over 50V DC
to C_{B}, and check that it does not fail. Then measure with the 4193A to obtain the value of vector impedance $Z_{C B}$. After that, measure circuit impedance Z_{m} through capacitor C_{B} and compute $Z_{m}-Z_{C B}$ to obtain the value of component impedance Z_{C}.

(2) Component Measurement

When measuring a component with a voltage over 50 V , use the bias circuit shown in Fig. B-2. Here, the impedance of capacitor C_{B} must be negligible as described in (1). If the C_{B} impedance is too large, compensate in the same way as described in (I). Conversely, the impedance, $\sqrt{R^{2}+\omega^{2} L^{2}}$, of the bias circuit must be sufficiently large in comparison with that of the component, because the two are in parallel.

Condition that the measured value is equal to the im. pedance value of DUT is as follows:

$$
\begin{aligned}
& \left|Z_{C B}\right|<\left|Z_{x}\right| \\
& \sqrt{R^{2}+(2 \pi f L)^{2}} \gg\left|Z_{x}\right|
\end{aligned}
$$

Figure B-2. Measurement of ComponentsBiased atDver 50 VDC

C. How to Increase Test Frequency Resolution (External Synthesizer Application)

The 4193A frequency resolution is 4 digits, but must be improved when measuring high Q devices, such as crystals. The frequency resolution can be improved by connecting an external synthesizer to the 4193A as shown in Fig. C-1. The external synthesizer affects only the frequency resolution. The measurement signal level and other characteristics are all determined by the 4193A. It is best to make the synthesizer frequency as close to that of the 4193A as possible, but, for the absolute impedance value $|Z|$, a difference of 10 MHz or less is small enough for accurate measurement. The phase should be compensated using the following equation.

$$
\begin{aligned}
& \theta_{r}= \theta_{m}+0.72\left(f_{0}-f_{1}\right) \\
& f_{0}: 4193 \mathrm{~A} \text { set frequency in } \mathrm{MHz} \\
& f_{1}: \text { External synthesizer set frequency in } \mathrm{MHz} \\
& \theta_{m}: 4193 \mathrm{~A} \text { display value } \\
& \theta_{r}: \text { Compensated real phase value }
\end{aligned}
$$

The limit of frequency resolution provided by an external synthesizer depends on the residual FM in the 4193A internal synthesizer (Fig. C-2).

Notes

If a synthesizer capable of generating a frequency of 110 MHz or over is connected, the 4193A may be able to measure up to 140 MHz . Also, if a synthesizer with higher frequency resolution than residual FM in the 4193A internal synthesizer us used, measurement is possible with lower frequency resolution than residual FM. In this case, however, accuracy of the measured value cannot be guaranteed.

Figure C-1. How to Connect an External Synthesizer

4193A Frequency resolution of 4193A internal synthesizer
Residual FM of 4193A test signal
(Band width 400 Hz)
(Band width 100 Hz)

Figure C-2. Residual FM of Test Signal of 4193A
Sample Program Listings for 9845B (Residual Impedance Compensation and Parameter Conversion)


```
93* FOF \(1=\boldsymbol{A}\) TO 10 STEF
```



```
95* CSI2E +,.5
```



```
1980 LABEL \(+2+1+<k 1-K-C 310\)
1980
```



```
-30 CSIDE 4,.5
CSIZE 4,
204日 LBIP
2050 DE
2058
2060
2080
2080
2080 LDIP Haming
2090 FOR \(1=0\) TO 10 STEF 2
```



```
2110 CSEE 4,.5
- 120 LORU 8
2120
2130
\(\begin{array}{ll}2130 & \text { IF L2^-499 THEN } 2160 \\ 21+0 & \text { LABEL L2+1 }\end{array}\)
2150 GOREL L2 2170
2150 LOTO 2170
```



```
218*
```



```
\(\begin{array}{ll}2220 & \text { LSI } \\ 203 \\ 2.30 \\ \text { DEG }\end{array}\)
240 LORG 4
\(\begin{array}{ll}250 & \text { GOSLIB Natne } \\ 250 & \text { FOF } I=0 \text { TC. } 10 \text { STEP: }\end{array}\)
```



```
280 CSIZE 4..S
```



```
2300 IF K \(2<-+44\) THEN \(23=0\)
\(\begin{array}{ll}2310 & \text { L.nBEL } \\ 2320 & \text { COTO } 2340\end{array}\)
```



```
2330
2340
2340
2.350
HEラ:T।
```



```
CSIEE 4..5
Se CsIEE A.
zseu
2ラड0 DEC
\(\begin{array}{ll}23 S O & \text { DEG } \\ 2390 & \text { LORG } \\ 2+00 & \text { GOSUB }\end{array}\)
\(2+00\) COSUB \(H\) anilion
2+10 LDF: -
```



```
tio LABEL L2*1-:LI-L \(1+14\)
470 LABEL L20
GOTEI 2500
```



```
25* LEAELT, L
```



```
E530 ANES \((k+1 / 2)\) 14, MLI-LZ; \(10, k 1,0\)
554 MOYE k \(2+(1: 1-k 2) *\). O1, (L2-LIい, 20
254* MOYE K \(2+\cdots 1\)
\(\begin{array}{ll}2550 & \text { CSI2E } \\ 25: 0 \\ 250 & \text { DE }\end{array}\)
\(\begin{array}{ll}2550 & \text { DEG } \\ 2576 & \text { LORG } 3 \\ 2580 & \text { COSUB Hame }\end{array}\)
\(\begin{array}{ll}2580 & \text { GOSUR Hane } \\ 2590 & \text { FOR } 1=0 \text { Ti., } 10 \text { E.TEF } 2\end{array}\)
```



```
2600 MOVE *2+1*
2610 CSIEE 4,.5
2610 CSIEE 4,
2620 LORG 6
```


5350

 k2-:
$\because 0$ -
禺号
4010
$10 \cdot L 1-L Z \cdot 101000$

10

Haming
 ำ


```
*)
```


 $A=1$ THEN GOSUE Fraquency
$A=1$ THEN 5830

 1F THEN $:=.4$

For more informotion, call your local HP Sales Ollict or vearest Regional Office - Eastern 12011 265-5000; - Midwostern 1312) 255.9900; - Southern 1404l 955-1500: - Western〔2131970.7500: - Canadian (4161 678.9430. Ask the operator lor instrument sales. Or write Hewtett.Packard, 1501 Page Mill Rosd, Palo Alto, CA 94304. In Europe: Hewlett.Packard S.A., 7. rue du Boisdu-Lan, P.O. Box, CH 1217 Meyrin 2, Geneva, Switzerland. In Japan: YokOgaws. Hewle 11.Packard Lid., 29.21, Takaido. Higashi 3.choule, Suginami.ku. Tokyo 168

