

HP-IB Programming Hints for the HP 4194A

- HP 4194A Impedance/Gain-Phase Analyzer -

INTRODUCTION

The HP 4194A is an intelligent Impedance/ Gain-Phase Analyzer used for accurate evaluation of electronic components and circuits in the laboratory. In addition to the 4194A's uses in the lab, the HP 4194A's high measurement speed and internal Auto Sequence Program (ASP) will make a very effective contribution to high speed production line component testing.

This application note introduces programming techniques for building an HP 4194A HP-IB system controlled by an external computer. The techniques used to achieve high speed component testing and high speed data transfer to a computer are described. When used as a standalone instrument, through the use of ASP the HP 4194A has the capability to perform high speed measurements, parameter

extractions, go/no-go testing and interfacing through an 8 bit I/O path to externally connected equipment. An HP-IB system comprised of an HP 4194A, an external computer, and using ASP can, in addition to the test and measurement function, store the extracted parameters without increasing the measurement cycle time. The HP 4194A can use the IEEE 64 bit binary data format to perform high speed data transfer to a computer.

In this application note programming hints for performing high speed parameter transfer are illustrated using a filter testing system as the example. In addition, an upload/download ASP program for backing up ASP programs to a mass storage device (floppy disc) is included.

MEASUREMENT DATA TRANSFER

Depending on your application, you can choose from three of the HP 4194A's data formats to obtain the most efficient data transfer to an external computer.

FMT1: ASCII mode

FMT2: Binary mode, IEEE 64 bit format FMT3: Binary mode, IEEE 32 bit format

Format FMT1 is most commonly used for general data transfer. Formats FMT2 and FMT3 are floating point binary formats specified in IEEE Standard 728-1982, and are useful for high speed data transfer. Table 1 lists typical data transfer times. The highest data transfer rate is obtained by using format FMT3. but format translation is required to put the data into a format usable by the computer after the data is transferred if the computer does not use the IEEE 32 bit format, such as the HP 9000 series 300 computers. Format FMT2 is the data format used by HP Series 300 computers, so high speed data transfer and easy data manipulation are obtained without format translation. Program 1 demonstrates data transfer using data format FMT1, with the code in lines 140 and 150 performing the data transfer of 401 measurement points from the HP 4194A's A register to the computer.

Transferring data form the HP 4194A's internal registers to a computer can be performed in a manner similar to that shown in program 1. There are two types of registers in the 4194A which are described in Table 2. Type 1 registers are used for variable length data transfer like the A register, and the NOP command specifies the number of points to be transferred. If less than 401 points are to be transferred then use the Type 1 registers. Type 2 registers are used for fixed length data transfers, 401 points are always transferred.

Table 1 Data Transfer Speed (Typical)

Data Format	ENTER	TRANSFER		
FMT1	740ms			
FMT2	120ms	90ms		
FMT3	50ms	40ma		

These are the times required to transfer 401 data points using an HP 9000 Series 300 Model 310 Computer.

```
10
      I RE-STORE "FMT1_ENT"
20
      T-0
30
      Tt=0
40
      REAL A(0:400)
      ASSIGN @Io TO 717
50
50
      REMOTE #10
      OUTPUT @Io; "SWM2"
      OUTPUT @Io: "FMT1"
80
      FOR I=1 TO 10
90
100
      OUTPUT @Ic: "SWTRG"
110
      WAIT 2.5
120
      BEEP
      T0=TIMEDATE
130
      OUTPUT @Io: "A?"
140
150
      ENTER @IoiA(*)
      T1=TIMEDATE
160
170
      BEEP
180
      Tt=T1-T0
190
      DISP Tt
200
      T≠T+Tt
      NEXT I
210
220
      PRINT DROUND(T/10+1000.6); "msec"
230
```

Program 1 Data Transfer Program using FMT1

```
10
      ! RE-STORE "FMT2_TRF"
20
      T≖Ø
30
      Tt-0
40
      REAL A(0:400) BUFFER
50
      DIM S$[4] BUFFFR
60
      ASSIGN @Ioo TO 717; FORMAT OFF
      ASSIGN @Io TO 717; FORMAT ON
80
      REMOTE @Io
      OUTPUT @Io: "SWM2"
90
      OUTPUT @Io: "FMT2"
100
110
      FOR I=1 TO 10
      OUTPUT @Io: "SWTRG"
120
      WAIT 2.5
130
140
      BEEP
150
      ASSIGN @I_buff TO BUFFER A(+)
160
      ASSIGN BASE TO BUFFER 58
170
      T0=TIMEDATE
180
      OUTPUT @[o;"A?"
190
      TRANSFER Ploo TO @Asc: COUNT 4
      TRANSFER @loo TO @I_buff;END,WAIT
200
210
      T1=TIMEDATE
220
      BEEP
230
      Tt=T1-T0
240
      DISP Tt
      T=T+Tt
250
260
      NEXT I
270
      PRINT DROUND(T/10*1000,6); "msec"
280
```

Program 2 Data Transfer Program using FMT2

Table 2. Number of Data Points to Transfer

Array Registers	Number of Data Points to Transfer		
A, B, SR. SX, OG, OB OFFSTA, OFFSTB, X	Number of points defined by the NOP command. Number of points defined in the Programmed Point Table when the Program Point Sweep is used.		
C, D, E ~ J, RA ~ RL, TYG, TYB, MYG, MYB, TZR, TZX, MZR, MZX, TSTDA, TSTDX, MSTDR, MSTDX	401 Points		

Sample Program 2 demonstrates high speed data transfer using data format FMT2. The TRANSFER command and BUFFER transfer is used to accomplish a higher data transfer rate than Program 1 which uses the ENTER command. Lines 150 and 160 assign an I/O path name to the buffer. At line 180, the data is ready to be output. Line 190 transfers 4 bits (the 4 bit header is stripped from the data) to the S\$ buffer. Line 200 need only to transfer 401 measurement point data only, no time is wasted transferring the header information. Program 2 can transfer 401 measurement point data in approximately 90 ms.

Sample Program 3 demonstrates high speed data transfer using data format FMT3. This program can transfer 401 measurement point data in approximately 40ms. However, after the data transfer is completed 7.3 SECONDS are required for format conversion when using an HP 9000 series 300 computer.

```
10
      ! RE-STORE "FMT3_TRF"
20
      T10-0
30
      T21=0
      INTEGER A(1:802) BUFFER Upper Lower
40
50
      REAL Aa(1:401)
60
      DIM S$[4] BUFFER
70
      ASSIGN @100 TO 717; FORMAT OFF
      ASSIGN @IO TO 717; FORMAT ON
80
90
      REMOTE @10
      OUTPUT @Io: "SWM2"
100
110
      OUTPUT @10: "FMT3"
120 FOR J=1 TO 10
130
      OUTPUT @Io; "SWTRG"
140
      WAIT 2.5
      ASSIGN @I_buff TO BUFFER A(+)
150
160
      ASSIGN @Asc TO BUFFER S$
170
      T0=TIMEDATE
180
      OUTPUT @Io; "A?"
190
      TRANSFER @Ioo TO @Asc; COUNT 4
200
      TRANSFER @Ioo TO @I_buff; END, WAIT
     T1=TIMEDATE
220 Conversion:
        FOR I=1 TO 401
230
240
            Upper=A(I+2-1)
250
            Lower=A(I+2)
            IF Upper=0 ANO Lower=0 THEN
280
770
                Aa(I)=0
280
                GOTO 380
290
            END IF
300
            Temo=Upper
310
            Expo=SHIFT(SHIFT(Temp,-f),8)
320
            Temp=SHIFT(SHIFT(Temp,-9),9)
330
            Low=Lower
            IF Lower<0 THEN Low=65536+Lower
340
350
            Manti=Temp+2^16+Low
            Aa(I)=DROUND($6N(Upper)+(2^(Expo-127)+Manti+2^(Expo-150)),8)
38€
370
        NEXT I
380
      TZ=TIMEDATE
390
      T10=T1-T0+T10
400
      T21=T2-T++T21
410 NEXT J
      PRINT "TRF =" ,DROUND(T10/10+1000,6); "msec"
420
      PRINT "CONU=", DROUND(T21/10*1000,6); "msec"
430
440
```

Program 3 Data Transfer Program using FMT3

HIGH SPEED FILTER TESTING

The following filter testing example is used to describe an efficient test system which includes device testing and data transfer on a production line environment, and for incoming/outgoing inspection.

Until now, it has been necessary to use an external computer to control measurement setup, measurement, data transfer, and to calculate the desired parameters from the measurement data. Instrument measurement speed can be increased but instrument control and data transfer will become the throughput bottle neck when you try to optimize throughput.

You can realize high speed device testing using ASP and an external computer. ASP is used to control the measurement process and parameter extraction. System throughput is optimized by transferring only the extracted parameters.

Figure 1 shows an example of an HP 4194A HP-IB system for testing band-pass filters, including measurement, sorting, automatic handler interfacing through an 8-bit I/O, and transferring the extracted parameters. Figure 2 is the timing chart for this system. After the device under test (DUT) is contacted and ready to test, the handler sends a **READY** signal to the HP 4194A through the 8-bit I/O

Figure 1 Band Pass Filter Testing System

interface, and the computer sends the ASP RUN command to the HP 4194A. On receiving the RUN command the HP 4194A executes the ASP program which performs measurement, parameter extraction, go/no-go comparison and handler interfacing through an 8-bit I/O. The handler sorts the test devices according to binning signals from the HP 4194A, and readies the next device for test. By using the 8-bit I/O and HP-IB bus, testing can be accomplished without timing errors between measurements, data transfer and device setup.

The flowchart of a filter test program using a computer (A in Figure 1) with the HP 4194A is shown in Figure 3 and program 4 is a BASIC program based on this flowchart. The computer loads two ASP programs into the HP 4194A which initialzes the HP 4194A and performs the measurement. If the device to be tested requires a different instrument setup, you design, test, and debug an ASP program for the device, and then upload and store the ASP program on the computer's floppy disc. The ASP programs are developed in isolation from the computer program so debugging is simplified.

Figure 2 Example of Filter Testing Timing Chart

```
* RE-STORE "AN339_12"
10
20
      . ************************
                                                                                   START
30
          FILTER TESTING SAMPLE PROGRAM
40
      OPTION BASE 1
50
                                                                                    Initial
60
      Add*717
                                  1 ADDRESS FOR 4194A
                                                                                  definition
70
      N=10
                                  ! NUMBER OF MEASUREMENTS
80
      T10-0
90
      T21=0
                                                                              Load ASP for the
100
      REAL A(1:9) BUFFER
                                                                              4194A initial setup
110
      DIM Para(50,9)
      DIM S$[4] BUFFER
120
130
      ASSIGN @Ioo TO Add:FORMAT OFF
                                                                                 Execute ASP
140
      ASSIGN DIO TO Add; FORMAT ON
150
      REMOTE @Io
      OUTPUT @Io: "RST"
160
      170
      PRINTER IS 701
180
                                                                                  Compen ?
      60SUB Load_asp1
190
     BEEP
200
210
      INPUT "OFFSET COMPENSATION ? Y=1 / N='Continue'".2
220
                                                                                   Offset
      IF Z=1 THEN GOSUB Offset
230
                                                                                 compensation
240
      GOSUB Load_asp2
250
      GOSUB Testing
      PRINTER IS CRT
260
                                                                                  Load ASP
270
      STOP
                                                                                 for testing
280
      290 Load_asp1: 1
                       LOAD ASP FOR INITIAL SETUP
300
        Sp=SPOLL(@Io)
       OUTPUT @Io;"LOAD980"
310
                                                                                 Execute ASP
                                                                                                  ASP
320
       DISP "INITIAL SETTING !"
330
       OUTPUT @Io; "RUN"
340
       ON INTR 7 60TO 370
                                                                               Data transfer
350
       ENABLE INTR 7:2
                                                                               4194A → Computer
360
        60T0 360
370
       DISABLE INTR 7
380
        5p=SPOLL(@1o)
390
        IF BIT(Sp,S) THEN GOTO Error
                                                                                   Print
400
        RETURN
                                                                                  Darameters
410 Offset:
                        OFFSET COMPENSATION
        BEEP
420
430
        DISP "MAKE THRU FOR OFFSET COMPENSATION !"
                                                                                    END
440
        PAUSE
450
        OUTPUT @Io: "RQS2: ITM2"
       OUTPUT @Io: "SWTR6"
469
                                                                 Figure 3 BASIC Program Flow Chart
470
       ON INTR 7 GOTO 500
       ENABLE INTR 7:2
480
                                                                                    for Filter Testing
490
        60TO 49Ø
500
       Sp=SPOLL(@Io)
510
        OUTPUT @Io; "OFSTR"
520
        OUTPUT @Io: "RQS8: ITM:"
530
       RETURN
540 Load_asp2:
                         LOAD ASP FOR TESTING
                                                                             DATA TRANSFER
                                                    680 Data_trf: !
550
        OUTPUT @Io: "LOAD981"
                                                    590
                                                             TI=TIMEDATE
560
                                                    700
                                                              DISABLE INTR 7
       DISP "CONNECT DEVICE"
570
                                                    710
                                                              Sp=SPOLL(@Ioo)
580
       PAUSE
                                                              IF BIT(Sp.S) THEN GOSUB Error
                                                    720
590
       RETURN
                                                              ASSIGN @I_buff TO BUFFER A(+)
                                                    730
600 Testing: !
610 DISP "TESTING!"
                        TESTING
                                                              ASSIGN MASC TO BUFFER SS
                                                    740
                                                    750
                                                              OUTPUT @Io; "SR?
     FOR I=1 TO N
620
                                                              TRANSFER @Ioo TO @Asc; COUNT 4
                                                    760
630
      T0=TIMEDATE
                                                              TRANSFER #100 TO #I_buff; END, WAIT
                                                    770
640
      OUTPUT @Io; "RUN"
                                                            FOR N=1 TO 9
                                                    780
      ON INTR 7 GOTO Data_trf
650
                                                    790
                                                              Para(I,N)=A(N)
     ENABLE INTR 7:2
660
                                                    800
                                                            NEXT N
670
      GOTG 670
                                                          T2=TIMEDATE
                                                    810
                                                          T10=T10+(T!-T0)
                                                    820
                                                          T21=T21+(T2-T1)
                                                    830
                                                          NEXT I
                                                    840
                                                    850
                                                          DISP
                                                          PRINT .
                                                                     TESTING ="IDROUND(T10/N+1000,6);"msec"
                                                    860
                                                          PRINT "DATA TRANSFER=":DROUND(TZ1/N-1000,6); "msec"
                                                    870
                                                    880
                                                          RETURN
        Program 4 BASIC Program
                                                    890 Error:
                             for Filter Testing
                                                    900
                                                            BEEP
                                                    910
                                                            DISP "ERROR IN 4194A !
                                                                                       SPOLL IS1,Sp
                                                    920
                                                            PAUSE
                                                            RETURN
                                                    930
                                                    940
                                                          END
```

Program 5 is an ASP initialization program for the HP 4194A. Store this program in the HP 4194A as file number 980.

Figure 4 is the flowchart for the measurement ASP program (B in Figure 3), and Program 6 is the measurement program based on this flow chart. Nine extracted parameters, such as insertion loss and ripple are stored in the array register **SR**. Thus, nine parameters can be transferred at once. Store this program in the HP 4194A as file number 981.

```
I ! SETUP FOR 21.4 MHZ FILTER TEST

10 RST

20 CMT"21.4 MHZ CRYSTAL B.P.F. TEST"

30 FNC2;GPP!;ATR2;NOP=201;OPB0;SWM2;AMAX=0;AMIN=-130

40 START=21.35MHZ;STOP=21.45MHZ

50 FMT2;RQSB

60 OPA0

70 ITM1

80 END
```

Program 5 ASP Program for Initial Setup

```
10 1 21.4 MHZ FILTER TEST
20 NOP=201;AOF1;OUTPUT 00000000;INPUT R50
30 IF R50-0 THEN GOTO 20
49 SWIRE
50 ANAO; MCF1: MKMXA; SR(1)=-MKRA; R9=MKR; DLCURS=-40; MCF4: R35=LCU
    RSL:R36=LCURSR;MCF0
60 MCF1:MKR=R9:DLCURS=-65:MCF4:WIDTH:SR(5)=WID:MCF0
70 MCF!;DLCURS=-6:MCF4;WIDTH;SR(3)=WID;SR(2)=SQR(LCURSR+LCURS
    L):MCF@
80
    MKR=R35;SMKR=START;MCF5;ARSTR;ANA1;LMN(A);MCF0
90 IF SMKR<STOP THEN GOTO 130
100 IF MKR>START THEN GOTO 120
110
    SR(6)=-R0-MKRA; SR(7)=MKR; G0T0 140
120 SMKR=START; MCFS; ARSTR; MKMXA; SR(B)=-R0-MKRA; SR(7)=MKR; MCF0;
    GOTO 140
130 MKR=START: MCF5: ARSTR: MKMXA: SR(6)=-RO-MKRA; SR(7)=MKR: MCF0
140 MKR=R36:SMKR=STOP:MCFS:ARSTR:LMN(A);MCF0
150 IF MKR>START THEN 60TO 170
160
    SR(8)=-R0-SMKRA; SR(9)=SMKR; GOTO 180
170 SMKR=STOP; MCFS; ARSTR; MKMXA; SR(8)=-R0-MKRA; SR(9)=MKR; MCF0
    MKR=LCURSL;SMKR=LCURSR;MCF5;ARSTR;LMX(A);MCF0
180
190 IF SMKR<STOP THEN GOTO 210
200 SR(4)=0:GOTO 220
210
    MCF5; ARSTR; MKMNA; SR(4)=-R0-MKRA; MCF0
220 IF SR(1)>5 OR SR(4)>2 THEN 60TO 280
230 IF SR(2)<21.3995M OR SR(2)>21.4005M THEN GOTO 280
240 IF $R(3)<15K OR $R(5)>35K THEN GOTO 280
250 IF SR(6)<60 OR SR(8)<60 THEN GOTO 280
260
    IF SR(7)>21.384M OR SR(9)<21.416M THEN GOTO 280
270 OUTPUT 00000001;NOP=9;GOTO 290
280 OUTPUT 00000010;NOP=9
290 END
```

Program 6 ASP Program for Testing

Figure 4 ASP Program Flowchart for Filter Testing

Figure 5 shows part of the data which is transferred. Using this sample program, it takes approximately 1.4s to sweep 201 measurement points, perform nine parameter calculations, perform comparison, and to output control signals to the handler. Approximately 27ms are required to transfer the parameters to the computer.

TESTING = 1414 msec DATA TRANSFER= 27.005 msec

Parameter	5	NO.1	NO.2	NO.3	NO.4
1L	[dB]	3.96085	3.96042	3.96245	3.96187
CF	[Hz]	21.4000E+5	21.4000E+6	21.4000E+6	21.4000E+6
6dB BAND	(Hr]	17.3065E+3	17.3069E+3	17.3082E+3	17.3095E+3
Ripple	[dB]	4.82853	4.82107	4.82192	4.81882
65dB BAND	[Hz]	41.6261E+3	41.8809E+3	40.9333E+3	41.7023E+3
Spurious L	(dB)	65.0209	65.2221	64.8565	65.9157
Spurious L	(Hz)	21.38155+6	21.3820E+6	21.3820E+6	21.3810E+6
Spurious R	(d6)	75.3262	75.3154	73,8715	74.1644
Spurious R	[Hz]	21.4485E+6	21,4500E+6	21,4175E+B	21.4175E+8

Figure 5 Filter Test Results

ASP UPLOAD/DOWNLOAD PROGRAM

The HP 4194A stores ASP programs in its 20K byte internal nonvolatile memory. Data can be stored for 2000 hours after the battery used in the nonvolatile memory circuit has been charged for 48 hours.

However, ASP programs should be backed up in the following cases:

- Many ASP programs for device testing are used.
- One HP 4194A is used by many people who have their own ASP programs.

```
1 4194A ASP UPLOAD PROGRAM
      DIM Prog#(300)(100)
30
      DIM S$[20],Name$[10]
      Add=717
40
50
60
      BEEP
      INPUT "Input ASP File number",No
70
      OUTPUT Add: "LOAD" : No
80
90
      OUTPUT Add: "EDIT"
100
      OUTPUT Add: "QUIT"
110
      REEP
130
      INPUT "Enter File name to be stored", Name$
130
      OUTPUT Add; "CPYM2"
140
150
      OUTPUT Add; "COPY"
160
      ENABLE INTR 7:2048
170
      ON INTR 7 GOTO Store_disk
190
      ENTER Add USING "X,20A" (St
190
      ENTER Add: Prog$(X)
200
210
      X = X + I
320
      6010 200
230 Stone_disk:1
240
      DISABLE INTR 7
      FOR I=1 TO X-1
250
        Progs(I)="FR0G"&CHRs(39)&Progs(I)&CHRs(39)
260
        PRINT Progs(I)
270
280
      NEXT I
298
      L=X-1
300
310
      CREATE BOAT Names, L+1,100
      ASSIGN @File TO Name$
320
      EOR I=1 TO L
330
        OUTPUT @File,I:Prog$(I)
340
350
      NEXT I
350
      GUTPUT @File,L+1;"Eof"
370
      BEEP
      DISP " Up Load Complete"
380
390
      END
```

Program 7 BASIC Program for ASP Upload

APPENDIX

Reference

Application Note 339-11

Filter Test for Production and Incoming Inspection using the HP 4194A

Programs 7 and 8 are useful utility programs for the above situations.

Program 7 is a BASIC program to upload and store ASP programs to the computers mass storage device, (floppy disc). Uploading is performed using the HP 4194A's COPY command, which prints out a listing of an ASP program and measurement data on a printer.

Program 8 downloads an ASP program from the computers mass storage device to the HP 4194A.

Use these BASIC programs to backup your library of ASP programs and to expand your uses for the HP 4194A.

```
1 4194A ASP DOWNLOAD PROGRAM
10
       DIM Prog$(300)[100]
20
       DIM 5$[20],Name$[10]
40
       Add=717
       Falcon=717
70
       INPUT "Input File Name to be downloaded", Name$
80
90
       ASSIGN OF LLE TO Names
100
       I = 1
       ENTER @File,1;Prog$(1)
110
120
       PRINT Prog$(1)
130
       IF Progs(I)="Eof" THEN 160
140
       I = I + i
150
       G0T0 110
160
       L=I-1
170
180
       BEEP
       DISP "Ready to SCRATCH, and prees CONT"
190
200
       PAUSE
210
       OUTPUT Add: "SCRATCH"
       FOR I=1 TO L
220
        OUTPUT Add:Progs(I)
230
240
       NEXT I
       OUTPUT Add: "QUIT-
250
270
       INPUT "Input ASP file number to be stored",Asp_no$
280
      INPUT "Input program comment",Comments
OUTPUT Add; "STORE"&Asp_no$&1," "&Comment$&""
290
300
310
       BEEP
       DISP "Down Load Complete"
320
330
```

Program 8 BASIC Program for ASP Download

Instruments used in this Application Note

HP 4194A Impedance/Gain-Phase Analyzer HP 9000 Series 300 Model 310 Computer HP 9122D 3.5 Inches Floppy Disc Drive HP 2225A Think Jet Printer

For more information, call your local HP sales office listed in the telephone directory white pages. Ask for the Electronic Instrument Department, or write to Hewlett-Packard U.S.A. - P.O. Box 10301, Palo Alto, CA 94303-0890. Europe - Hewlett-Packard S.A., P.O. Box 529, 1180 AM Amstelveen, The Netherlands. Canada - 6877 Goreway Drive, Mississauga, L4V 1M8, Ontario. Japan - Yokogawa-Hewlett-Packard Ltd., 3-29-21, Takaido-Higashi, Suginami-ku, Tokyo 168, Far East - Hewlett-Packard Asia Headquarters, 47/F China Resources Building, 26 Harbour Road, Wanchai Hong Kong, Australiate - Hewlett-Packard Latin America Headquarters, 3495 Deer Creek Rd., Palo Alto, CA 94304. For all other areas, please write to: Hewlett-Packard Intercontinental Headquarters, 3495 Deer Creek Rd., Palo Alto, CA 94304.