## Errata

**Document Title:** High Speed DC Characterization of Semiconductor Devices From Sub pA to 1A (AN 356)

Part Number: 5950-2930

Revision Date: November 1987

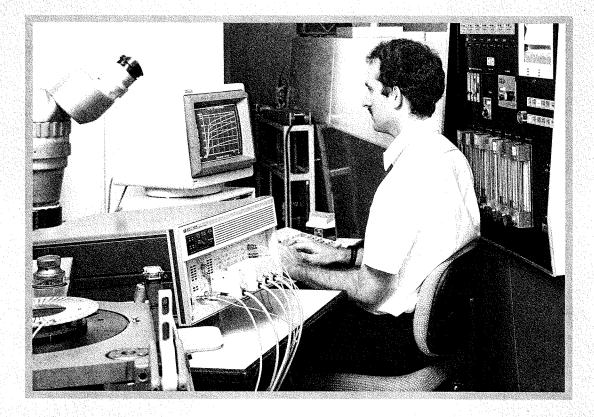
## **HP** References in this Application Note

This application note may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this application note copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

## **About this Application Note**

We've added this application note to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

## **Support for Your Product**


Agilent no longer sells or supports this product. You will find any other available product information on the Agilent website:

### www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

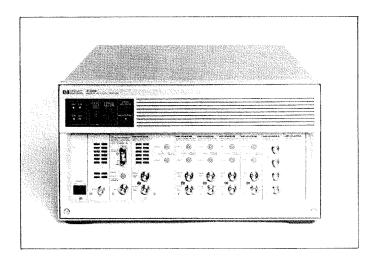


# —HP 4142B Modular DC Source/Monitor Practical Applications— High Speed DC Characterization of Semiconductor Devices from Sub pA to 1A





# CONTENTS


|      | Pa                                                                                                                                                                                                        | ge               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| INT  | RODUCTION                                                                                                                                                                                                 | 1                |
| 1.   | HP 4142B FEATURES                                                                                                                                                                                         | 1                |
| 2.   | USING THE HP 4142B                                                                                                                                                                                        | 2                |
| .ŧ   | <ul> <li>2.1 SMU Basic Usage Points</li> <li>2.2 Operation Speed Concepts and Optimization</li> <li>2.3 Using Pulse Mode to Reduce Thermal Drift</li> <li>2.4 Analog Feedback Unit (AFU) Usage</li> </ul> | 2<br>4<br>5<br>6 |
| 3.   | APPLICATION EXAMPLES                                                                                                                                                                                      | 14               |
|      | <ul> <li>3.1 Characteristic Curve Measurement Methods</li></ul>                                                                                                                                           | 16               |
| Refe | erences                                                                                                                                                                                                   | 22               |
| API  | PENDIX<br>GaAs MESFET Measurement Program Example                                                                                                                                                         | 23               |

# **INTRODUCTION**

The HP 4142B Modular DC Source/Monitor is a high speed, highly accurate computer controlled DC parametric measurement instrument for characterizing not only today's semiconductor devices–MOSFETs, bipolar transistors, GaAs devices, etc.–but tomorrow's as well. Whether used for semiconductor process monitoring, device development, or process development, the HP 4142B's wide measurement range and high resolution affords quick and efficient DC parameter evaluations from  $\pm 20$ fA to  $\pm 1$ A, and  $\pm 4\mu$ V to  $\pm 200$ V.

To facilitate application-specific system requirements, the HP 4142B's plug-in module architecture allows you to choose from a variety of modules to enable you to tailor your HP 4142B to suit your measurement needs. Table 1 lists presently available plug-in modules. The HP 4142B's modular design also allows you to easily expand your hardware if required, and to quickly upgrade your testing capabilities as new modules become available.

This application note describes how to take advantage of the HP 4142B's superior performance to obtain optimum measurement results. Included are detailed measurement technique descriptions, and GaAs MESFET, power MOSFET, and bipolar power transistor device characterization examples.



# 1. HP 4142B FEATURES

# (1) Wide measurement range and high resolution

There are two types of source monitor units (SMUs) available. You can program each SMU to function as a voltage source/current monitor (V source mode) or a current source/voltage monitor (I source mode).

The maximum output/measurement ranges are  $\pm 200V/\pm 1A$  for the HP 41420A, and  $\pm 100V/\pm 100$ mA for the HP 41421B. Output resolution is  $\pm 100\mu V/\pm 50$ fA, and measurement resolution is  $\pm 40\mu V/\pm 20$ fA. The HP 41424A Voltage Source/ Voltage Monitor Unit (VS/VMU) is also available, and includes two voltage sources (VSs) and two voltage monitors (VMs). You can use the voltage monitors together to perform  $4\mu V$  resolution differential measurements.

# (2) High speed measurement

The HP 4142B can improve measurement throughput. Voltage or current can be forced in approximately 3.5ms, and voltage or current measurements can be made in approximately 4ms. And with the HP 41425A Analog Feedback Unit, you can extract  $V_{th}$  or  $h_{FE}$  in only 12ms.

# (3) Pulsed output available

SMU and VS pulsed measurement modes provide voltage and current pulses (current pulses from SMUs only) to minimize thermal drift when characterizing devices. With pulse widths from 1ms to 50ms, you can accurately characterize high power devices such as power MOSFETs or GaAs devices.

# (4) Furnished control software allows easy programming

The HP 4142B is controlled by HP-IB commands. In addition, the furnished control software provides a variety of useful, frequently used subprograms that can be called from your program, thus reducing program development time. This software is divided into the Test Instruction Set, Parameter Measurement Library, and Data Processing Library (Data file and characteristic graph generation).

Table 1. HP 4142B Plug-in Modules

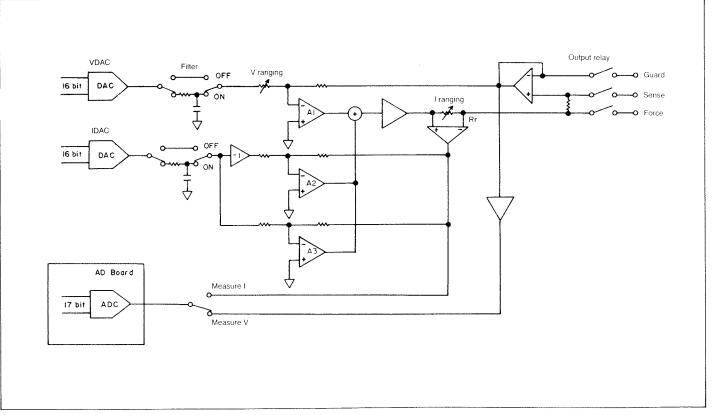
| Model number     | Voltage range                 | Current range                  | Measurement<br>resolution     | Accu<br>V       | iracy<br>I |
|------------------|-------------------------------|--------------------------------|-------------------------------|-----------------|------------|
| HP 41420A SMU    | ±100 µV to ±200 V             | $\pm 50$ fA to $\pm 1$ A       | 40 μV, 20 fA                  | 0.05%           | 0.2%       |
| HP 41421B SMU    | ±100 μV to ±100 V             | $\pm 50$ fA to $\pm 100$ mA    | 40 µV, 20 fA                  | 0.05%           | 0.2%       |
| HP 41424A VS/VMU | ±1 mV to ±40 V                | ±20 mA to ±100 mA              | 4 μV, 20 μA                   | 0.05%           | 0.3%       |
| HP 41425A AFU    | Searches for a specified curr | ent or voltage on one SMU by c | ontrolling the voltage output | of another SMU. |            |

# 2. USING THE HP 4142B

This section describes how to fully use HP 4142B features to riently perform measurements.

- (1) SMU Basic Usage Points
- Compliance function, filter, etc.
- (2) **Operation Speed Concepts and Optimization** Setup time, measurement time, range-changing time, averaging time, etc.
- ③ Using Pulse Mode to Reduce Thermal Drift Pulse mode reduces temperature rise at a junction.
- ④ Analog Feedback Unit (AFU) Usage Feedback integration time, ramp rate, and delay time.

# 2.1 SMU Basic Usage Points


Figure 1 (a) shows an SMU block diagram. Voltage and current are output from 16-bit digital-to-analog converters (VDAC and IDAC). The DACs can output 20,000 points, so the resolution for each range is 1/20,000 of the full range.

Measurements are made by a 17-bit analog-to-digital converter, and the resolution for each range is 1/50,000 of the full range. The error amplifiers  $A_1$ ,  $A_2$ , and  $A_3$  shown in the figure are used for setting voltage, source current ( $I_+$ ), and sink current ( $I_-$ ), respectively. When the SMU is set to V source mode,  $A_1$  controls the SMU voltage output. In this mode, current is monitored by range resistor Rr, fed back to  $A_2$  and  $A_3$ , and is limited to the value ( $\pm I$  compliance) set by IDAC (See Figure 1 (b)).

When the SMU is a current source,  $A_2$  controls the SMU current output from the SMU. V compliance will be positive in this case, and voltage is limited by  $A_1$ .

When the SMU is a current sink,  $A_3$  controls current input to the SMU. V compliance will be negative in this case, and voltage is limited by  $A_1$ .

If accuracy is more important than measurement speed, the filter at the DAC output should be set to ON to suppress spikes and overshoot caused by changing the output value or range. The filter should be used with devices that cannot handle voltage spikes, or with very high gain devices. The filter is set to ON at power ON. If measurement speed is more important than accuracy, turn the filter OFF. When the filter is OFF, the DAC output settling time is 1/40 of the filter ON value.



#### Figure 1 (a). SMU Block Diagram

The SMUs have separate Force and Sense terminals, allowing Force and Sense lines to be extended separately (Kelvin connections) up to the test device. This eliminates the effects of contact and cable residual resistance on measurement accuracy. Each Force and Sense terminal has a guard conductor to reduce leakage current, thus ensuring accurate low current measurements. Force and Sense terminals are connected internally by a resistor, allowing sensing and forcing via a single cable (non-Kelvin connection). SMU output is disabled by an output relay when the HP 4142B is turned ON, or by program commands to prevent damage to DUTs.

Table 2 lists SMU output voltage, current compliance, filter, and output relay settings, at POWER ON, and when the HP 4142B is set to the output enable state or the Zero Output state.

As Figure 2 (a) shows, you can set each SMU to function as a voltage source/current monitor by specifying V source mode, or as a current source/voltage monitor by specifying I source mode. In this equivalent circuit, the HP 4142B cannot measure current when in I source mode, and cannot measure voltage when in V source mode.

Figure 2 (b) shows an equivalent circuit that allows current to be measured when in I source mode, or voltage to be measured when in V source mode. This circuit is only

 Iset <0</td>
 Iset >0

 Icomp
 Icomp

 Icomp
 Icomp

Figure 1 (b). Compliance

|                        | Output<br>voltage                 | Current<br>compliance                                                                                                                                  | Filter             | Output<br>relay |
|------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|
| Power ON<br>(Reset)    | 0 V<br>@20 V<br>range             | 100 μA<br>@100 μA<br>range                                                                                                                             | ON                 | Open            |
| Output<br>enable state | 0 V<br>@20 V<br>range             | 100 μA<br>@100 μA<br>range                                                                                                                             | ON                 | Closed          |
| Zero output<br>state   | 0 V<br>(range does<br>not change) | If I range is<br>1 mA $\sim$ 1 A: 100 $\mu$ A<br>@ 100 $\mu$ A range.<br>If I range is<br>1 nA $\sim$ 100 $\mu$ A:<br>Full-scale @<br>present I range. | Does not<br>change | Closed          |

Table 2. SMU States

available when you use the TV or TI commands, or when using the ASM command during Analog Feedback Unit (AFU) measurements. For example, when using the AFU to determine FET threshold voltage V<sub>th</sub>, the AFU changes the FET gate voltage until a target drain current value is reached, and then measures the gate voltage to determine the threshold voltage.

You can specify the current measurement range when the SMU is in V source mode. If you do not specify the range, it is determined by the current compliance. Therefore, if the current compliance is large, the measurement resolution will be low.

Be aware of the following when making current measurements during a voltage sweep.

- (1) For staircase voltage sweeps, AUTO ranging for current measurements is available, allowing a wide range of currents to be measured automatically. A maximum of eight channels can be measured at the same time.
- (2) For pulsed voltage sweeps, only fixed range current measurements are available. The current measurement range for one sweep is limited to about 4 decades, so if a high fixed current measurement range is used, low current measurement resolution will suffer. Only one channel can be measured at a time.

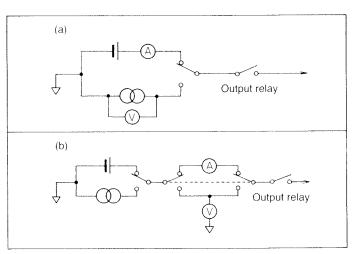



Figure 2. SMU Equivalent Circuit

# 2.2 Operation Speed Concepts and Optimization

Figure 3 shows a breakdown of the execution time elements or setting HP 4142B output and making measurements.  $T_1$ (about 2.5ms) is the time required to transmit the command from the controller to the HP 4142B, and convert the code into HP 4142B internal code.  $T_2$  and  $T_3$  are the actual setup times, and vary depending on the voltage or current range, output changes, and the filter ON or OFF status. Measurement time  $T_4$  varies depending on the voltage or current range.  $T_5$  is the time required for the measurement data to be transmitted from the HP 4142B to the controller, and is about 1.3ms for ASCII format.

 $T_2$  is the time it takes to change from one range to another. Voltage range changes take about 3ms, independent of the range. Current range changes depend on the range as listed in Table 3. For example, to change from the 1A range to the 1nA range takes about 36ms, which is about 1/3 that of previous equipment (HP 4141B).

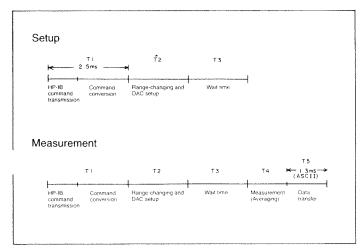



Figure 3. Execution Time Elements

| $\geq$                  | <          |    |       |      | Rang | je afte | r chan | ging (/ | A) 📖      |      |                  |
|-------------------------|------------|----|-------|------|------|---------|--------|---------|-----------|------|------------------|
|                         | $\nearrow$ | 1  | 100 m | 10 m | 1 m  | 100 µ   | 10 µ   | 1μ      | 100 n     | 10 n | 1 n              |
|                         | 1          |    | 13    | 15   | 17   | 19      | 21     | 25      | 29        | 32   | 36               |
| (A)                     | 100 m      | 13 |       | 10   | 12   | 14      | 16     | 20      | 23        | 27   | 31               |
| )<br>Du                 | 10 m       | 15 | 10    |      | 10   | 12      | 14     | 18      | 21        | 25   | 29               |
| ang                     | 1 m        | 17 | 12    | 10   |      | 10      | 12     | 15      | 19        | 23   | 26               |
| e ch                    | 100 µ      | 19 | 14    | 12   | 10   |         | 10     | 13      | 17        | 21   | 24               |
| efor                    | 10 µ       | 21 | 16    | 14   | 12   | 10      |        | 11      | 15        | 18   | 22               |
| d əf                    | 1μ         | 25 | 20    | 18   | 15   | 13      | 11     |         | 11        | 15   | 18               |
| I Range before changing | 100 n      | 29 | 24    | 21   | 19   | 17      | 15     | 11      | $\square$ | 11   | 15               |
| ц<br>Ц                  | 10 n       | 32 | 27    | 25   | 23   | 21      | 18     | 15      | 11        |      | 11               |
|                         | 1 n        | 36 | 31    | 29   | 26   | 24      | 22     | 18      | 15        | 11   | $\smallsetminus$ |

Table 3. Current Range-changing Times Unit: ms

*Conditions: DI4, 0, I, 10 (I is Full scale) is executed, and a resistor is connected so the output voltage is 1V.* 

 $T_3$  is the time it takes for a digital value input to the DAC to become a stable analog value at the SMU output. For current (IDAC), the wait time ranges from 0.1ms to 328ms (see Table 4), depending on the combination of the voltage and current ranges. For voltage (VDAC), the wait time ranges from 5ms to 500ms when the SMU filter is ON.

To decrease noise effects, use the averaging function  $(T_4)$ . Three averaging modes are available – AUTO, MANUAL, and POWER LINE CYCLE. To assure accurate HP 4142B measurements, a minimum number of samples is required. For voltage measurements, required minimum samples is 1. For current measurements, required minimum samples depends on the voltage output range and the current measurement range. In AUTO mode, the HP 4142B automatically guarantees that the minimum required samples are taken by multiplying the number of samples you specify by the required minimum samples.

actual number of samples taken

= (required minimum samples) (specified number of samples)

In MANUAL mode, the number of samples you specify is the actual number of samples taken, so you must be sure that the required minimum samples are taken.

In POWER LINE CYCLE mode, 32 samples are taken and averaged for each line frequency period that you specify. For further details about averaging, refer to the HP 4142B Operation Manual, Chapter 3.

To increase output and measurement speed, observe the following points.

- (1) Do not use a high voltage or low current range unless necessary: A 2V to 40V range or a  $100\mu$ A to 1A range is recommended.
- If the voltage and current output values are changed simultaneously, extra waiting time is needed.
   Compliance changes should be minimized.
- (3) If commands are stored in HP 4142B program memory,  $T_1$  (2.5ms) can be reduced to about 1ms.

Table 4. Wait Time after Changing IDAC Unit: ms

| V range   | 2 V   | 20 V  | 40 V  | 100 V | 200 V |
|-----------|-------|-------|-------|-------|-------|
| 1 mA~ 1 A | 0.1   | 0.5   | 0.8   | 1.9   | 2.7   |
|           | (2.5) | (2.8) | (3.1) | (4.2) | (5.1) |
| 100 µA    | 0.2   | 0.6   | 1.1   | 2.7   | 4.4   |
|           | (2.5) | (3)   | (3.5) | (5)   | (6.7) |
| 10 µA     | 0.4   | 2.6   | 5 ·   | 5     | 5     |
|           | (2.7) | (4.9) | (7.3) | (14)  | (26)  |
| 1 μA      | 0.8   | 2.3   | 4     | 5     | 5     |
|           | (3)   | (5)   | (6)   | (11)  | (19)  |
| 100 nA    | 3     | 5     | 5     | 5     | 5     |
|           | (5)   | (9)   | (14)  | (29)  | (53)  |
| 10 nA     | 5     | 5     | 5     | 5     | 5     |
|           | (12)  | (10)  | (22)  | (38)  | (63)  |
| 1 nA      | 5     | 5     | 5     | 5     | 5     |
|           | (29)  | (56)  | (87)  | (178) | (328) |

Conditions: IDAC changes from 0 to Full scale. () means Filter ON.

# 2.3 Using Pulse Mode to Reduce Thermal Drift

This section describes the relationship between pulse mode input and the temperature rise at a junction.

Let's assume that power pulse  $P_0$  (Figure 5 – pulse width t and period T) is applied to a device. The device model is cubic (Figure 4), and the section that generates heat due to power application is S in cross-sectional area and x in thickness. If all heat is assumed to be dissipated in the longitudinal direction, then the transient thermal resistance  $R_{th}$  and the thermal capacity  $C_{th}$  can be expressed by the following equations.

$$R_{th}(t) = \frac{1}{\varkappa} \cdot \frac{x}{S}$$
$$C_{th}(t) = c \cdot \varrho \cdot S \cdot x$$

where, x: Thermal conductivity

c: Specific heat

*ǫ*: Density

If power  $P_o$  is applied for t seconds, the temperature rise  $\Delta T_j$  at the junction is expressed by the following equation.

$$\Delta T_{j} \propto R_{th} \cdot P_{0} = \frac{P_{0} \cdot x}{\varkappa \cdot S}$$
$$\propto \frac{P_{0} \cdot t}{C_{th}} = \frac{P_{0} \cdot t}{c \cdot \varrho \cdot S \cdot x}$$
$$x^{2} \propto t$$

Therefore, the relation between the transient thermal resistance  $R_{th}$  and the pulse width t is as follows:

$$R_{th}(t) \propto x \propto \sqrt{t}$$

The temperature rise  $\Delta T_j$  at the junction when one power pulse is applied is the product of  $R_{th}$  and the power. Accordingly, the above equation shows that  $\Delta T_j$  is proportional to the square root of the pulse width.

The temperature rise at the junction when n pulses are applied is expressed by the following equation.

$$\Delta T_{j} = P_{0} \left\{ \frac{t}{T} R_{th} (nT) + R_{th} (t) \right\}$$

Table 5 lists  $\Delta T_j$  values as calculated by using various values in the above equation. For this calculation, the relation between the pulse width and R<sub>th</sub> need to be known. Figure 6 shows a graph of pulse width vs. R<sub>th</sub> when the device is a power transistor (in TO-126 package). Using the HP 4142B, you can set the duty ratio to a minimum of 0.2% (pulse width = 1ms and period = 500ms). As listed in Table 5,  $\Delta T_j$ is less than 10°C when the duty ratio is less than 1%. Therefore, use pulse mode when it is necessary to reduce thermal drift.

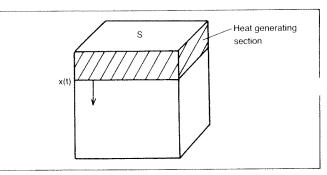



Figure 4. Device Model

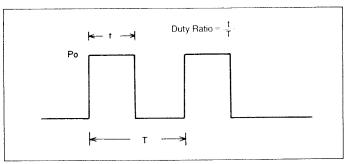



Figure 5. Power Pulse

Table 5.  $\Delta T_i$  at,  $P_0=10W$ , n=100, t=1ms

| Duty ratio (%) | R <sub>th</sub> (nT) (°C/W) | R <sub>th</sub> (t) | ⊿T <sub>j</sub> (°C) |
|----------------|-----------------------------|---------------------|----------------------|
| 100            | 120                         |                     | 1200                 |
| 10             | 10                          | 0.6                 | 16                   |
| 1              | 30                          | 0.6                 | 9                    |
| 0.2            | 100                         | 0.6                 | 7                    |

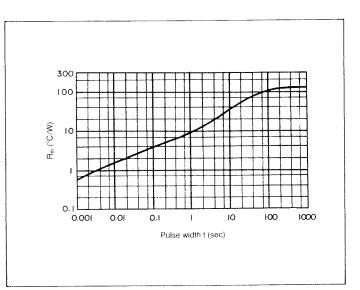



Figure 6. R<sub>th</sub>-t Pulse Width Curve

# 2.4 Analog Feedback Unit (AFU) Usage

# (1) Hardware configuration and description

Analog search measurements are performed by using an AFU and two SMUs. The AFU provides precision control via a feedback loop to obtain a previously specified target value at the DUT output.

Figure 7 shows a block diagram of the measurement circuit. Unless specified otherwise, the DUT is a bipolar transistor. Operations of each module are as follows:

#### (1) Search SMU

The search SMU forces a voltage modulated by AFU output to the base ⓐ.

#### (2) Sense SMU

The sense SMU forces the specified voltage to the collector, and measures collector current. The sense SMU transmits monitored output to the AFU (b).

#### 3 AFU

The AFU consists of a reference DAC (target value), an error amplifier that compares reference DAC output to the monitor output from the sense SMU, and an integrator. The integrator operates in one of two modes – ramp-wave voltage generation mode or analog feedback mode. Figure 8 shows how these two modes are inter-related. Analog feedback mode is switched to either positive or negative by the error amplifier.

Immediately after the measurement starts, the AFU integrator outputs a ramp wave to increase DUT base voltage from the search start voltage at the specified ramp rate. When the collector current approaches the specified target value, the integrator is switched to analog feedback mode. At this point, overshoot occurs at the DUT input and output due to delayed target value detection and the switching time of an internal switching circuit (about  $20\mu$ s). Negative feedback is used to settle the collector current to the target value (time constant  $\tau_{AF}$  determined by AFU integrator and DUT gain).

During negative feedback, oscillation may occur due to the DUT frequency characteristics. To prevent this, the feedback integration time should be set to  $\tau_{AF}$  as described later. Parameter setting procedures are as follows.

### (2) Parameter value calculations

When the AFU is used, the important parameters are the feedback integration time, ramp rate, and delay time. These three parameters all have default values, so if you do not specify them, the default values are automatically set. If an error, such as oscillation occurs, input the optimum

values, as determined by one of the following methods.

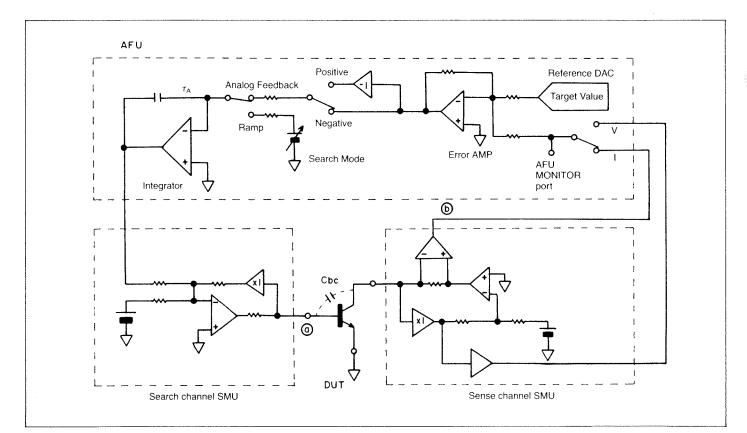



Figure 7. AFU Block Diagram

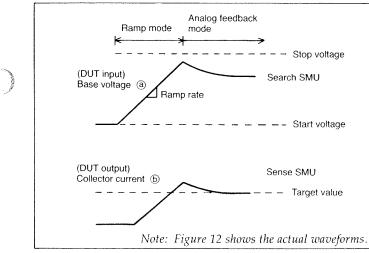



Figure 8. AFU-Related Waveforms

- Use the Control Software parameter calculation subprograms (Para\_\_vth, Para\_\_hfe) to calculate the optimum parameter values for V<sub>th</sub> and h<sub>FE</sub> measurements, respectively.
- (2) Understand the basic principles, and calculate the optimum parameter values.

Method ① is recommended. For these subprograms, refer to the HP 4142B Control Software Manual. Method ② is described next.

Figure 9 (a) shows a model of the measurement circuit in analog feedback mode. Note that time constant  $\tau_{AF}$  shown in Figure 9 (a) differs from time constant  $\tau_A$  in Figure 7. The  $\tau_{AF}$  time constant includes the effects of the SMU and error amplifier gain.

Figure 9 (b) shows the frequency characteristics of this

circuit.  $G_{II}$  (curve II) is the gain from C to D in Figure 9 (a), and is equal to the product of the integrator gain  $G_I$  and the DUT gain. The feedback gain  $\beta$  (gain from D to C in Figure 9 (a)) is 1, therefore the closed loop gain ( $G_{III}$ ) can be expressed by the following equation.

$$G_{III} = \frac{V_I}{V_{set}} = \frac{G_{II}}{1 + G_{II}\beta} = \frac{G_{II}}{1 + G_{II}}$$

This loop will be stable if the phase shift is 180° or less when  $G_{II} \cdot \beta$  is 1. Therefore, the feedback integration time  $\tau_{AF}$ should be set so that the phase shift is 180° or less when  $G_{II}$ = 1 (0dB). In Figure 9 (b),  $f_1$  is the frequency when the integrator gain is 0dB, and  $f_2$  is the frequency when  $G_{II}$  is 0dB. The solid lines in Figure 9 (b) are asymptotes for the actual frequency characteristic curve  $G_{III} = G_{II}/(1 + G_{II})$ , and  $f_2$  is the frequency at which  $G_{III} = -3$ dB. If the DUT frequency characteristic curve extends past  $f_2$  without attenuation, then the phase shift at  $f_2$  is 90°, so the loop will be stable.

The feedback integration time is an AFU parameter, and should be set to the time constant  $\tau_{AF}$ . Feedback integration time determination is described in Table 6.

The ramp rate determines the slope of the ramp wave that is input to the DUT. If the ramp rate is set too high, the overshoot will be large and current compliance may be reached, or the measurement time will be increased because it will take longer for the value to settle to the target value. If the ramp rate is too low, it will take longer to reach the target value, thus increasing the measurement time. Set the ramp rate to the optimum value as described in Table 7.

After feedback starts, the HP 4142B waits  $100\mu$ s or the feedback integration time, whichever is longer. This allows time for the DUT output value to settle within target value tolerance, and also takes into account the delay due to an internal switching circuit (about  $20\mu$ s). After this, the HP 4142B waits the specified or default delay time before mak a measurement. The delay time should be set long enougl handle a long DUT output settling time.

Tables 6 to 8 describe how to determine the feedback integration time, ramp rate, and delay time, respectively.

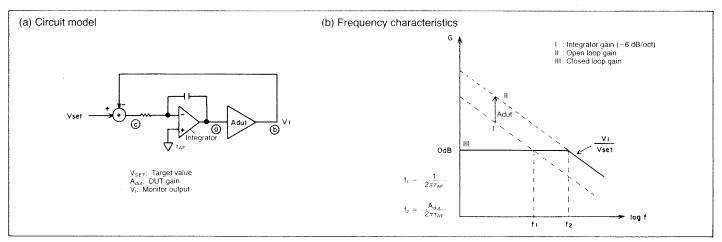



Figure 9. Analog Feedback Mode Circuit Model and Frequency Characteristics

If the feedback integration time is set to approximately  $\tau_{AF}$ , the loop will be stable. To determine  $\tau_{AF}$ , you must first calculate the time constants as determined by various parts of the system, and then choose the maximum value as shown by the following equations.

 $\tau_{AF} = 2A_{dut} \ \tau_{max} = 80\tau_{max}$ where  $\tau_{max} = Max\{\tau_1, \tau_2, \tau_3, \tau_4, \tau_5\}$ 

Calculations of the 5 time constants and Adut are shown below. DUT and SMU characteristics are necessary for the calculations.

## Search channel SMU time constant calculation

#### (i) Determined by DUT input resistance

This time constant is determined by the SMU frequency bandwidth, and the ratio of the current range resistance and the DUT input resistance.

$$\tau_1 = \frac{1}{2\pi f_v} \cdot \frac{R_{rs}}{R_{IN}} = \frac{32I_{bmax}}{I_{rs}} (\mu s)$$

where  $f_v$ : SMU frequency bandwidth (200 kHz)

- $R_{rs}$ : Search channel SMU current range resistance (=1/I<sub>rs</sub>)
- $I_{\rm rs}$ : Full scale of the search channel SMU current range
- $I_{bmax}$ : Maximum base current (=  $I_c/h_{FEmin}$ )

**R**<sub>IN</sub>: DUT input resistance

# (ii) Determined by the current range and DUT input capacitance $C_{IN}$ Select the proper $\tau_2$ value from Table 6-1.

|                       |     |      | Ta    | ble 6–1. 1 | t <sub>2</sub> Determir | iation Table |     |      |       | Unit: µs |
|-----------------------|-----|------|-------|------------|-------------------------|--------------|-----|------|-------|----------|
| C <sub>IN</sub> Range | 1nA | 10nA | 100nA | 1μΑ        | 10μΑ                    | 100µA        | 1mA | 10mA | 100mA | 1A       |
| 100pF                 | 20  | 18   | 13    | 12         | 20                      | 5.3          | 1.7 | 0.9  | 0.8   | 0.8      |
| 1000pF                | 200 | 80   | 45    | 32         | 23                      | 7            | 2   | 1    | 0.8   | 0.8      |

# Sense channel SMU time constant calculation

This time constant  $\tau_3$  is determined by the current range. Select the proper  $\tau_3$  from Table 6-2.

|          |     |      | Та    | ble 6–2. τ | <sub>3</sub> Determir | nation Table | 2   |      |       | Unit: µs |
|----------|-----|------|-------|------------|-----------------------|--------------|-----|------|-------|----------|
| Range    | 1nA | 10nA | 100nA | 1μΑ        | 10µA                  | 100µA        | 1mA | 10mA | 100mA | 1A       |
| $\tau_3$ | 60  | 25   | 25    | 16         | 11                    | 3            | 3   | 3    | 3     | 3        |

# **DUT time constant calculation**

#### (i) Determined by the h<sub>FE</sub> frequency characteristic

$$\tau_4 = \frac{h_{FEmax}}{2\pi f_T}$$

where  $f_T$ : Frequency when  $h_{FE} = 1$ 

(ii) Determined by the base-collector capacitance Cbc

$$\tau_5 = 2 R_{\rm rm} \cdot C_{\rm bc} = \frac{2 C_{\rm bc}}{I_{\rm rm}}$$

where  $R_{rm}$ : Current range resistance of the sense channel SMU (=1/I<sub>rm</sub>)  $I_{rm}$ : Full scale of the sense channel SMU current range

## (iii) DUT gain (See Figure 9.)

 $A_{dut} = g_m \cdot R_{rm} = 40I_c \cdot R_{rm} = 40$ 

K.

 $\tau_1$ 

 $\tau_2$ 

 $\tau_4$ 

 $T_{5}$ 

 $A_{dut} \\$ 

Calculate the four ramp rates indicated below, and select the minimum value.

 $RS = Min\{RS_1, RS_2, RS_3, RS_4\}$ 

# For preventing current compliance from being reached

(i) Determined by search channel SMU

When a ramp voltage is applied, current will flow into the DUT base and from the search SMU output to COMMON via capacitance  $C_{IN}$ . This combined current should not reach current compliance. As listed in Table 7-1, the appropriate ramp rate value  $RS_1$  is determined by the DUT input capacitance  $C_{IN}$  and the current range.

|           |     |      | Table 7 | $T-1. RS_1 D$ | etermination | Table |     |      | Unit: V/m |
|-----------|-----|------|---------|---------------|--------------|-------|-----|------|-----------|
| CIN Range | 1nA | 10nA | 100nA   | 1μA           | 10µA         | 100µA | 1mA | 10mA | 100mA     |
| 10pF      | 8 m | 83 m | 0.13    | 0.43          | 0.28         | 2.8   | 28  | 280  | 2800      |
| 100pF     | 1 m | 10 m | 59 m    | 0.31          | 0.28         | 2.8   | 28  | 280  | 2800      |

RS<sub>1</sub>

 $RS_2$ 

 $RS_3$ 

 $RS_4$ 

#### (ii) Determined by the sense channel SMU

If ramp rate is determined by the following equation, current compliance will not be reached when overshoot occurs.

 $I_c + g_m \cdot RS_2 \cdot D = I_c (1 + 40 \cdot RS_2 \cdot D) \leq I_{comp}$ 

The above equation yields the following equation.

$$RS_2 = (I_{comp}/I_c - 1)/(40 \cdot D)$$

where D: Time required for switching from ramp-wave voltage generation mode to analog feedback mode ( $\tau_1$ ,  $\tau_2$ , or 20ms, whichever is larger in Table 6).

I<sub>c</sub>: Collector current target value

Icomp: Sense SMU current compliance

# For suppressing overshoot

(i) Determined by DUT collector-base capacitance  $C_{bc}$ Calculate a ramp rate that keeps the current flowing in  $C_{bc}$  much smaller than  $I_{cr}$  as follows.

$$RS_3 = \frac{I_c}{100 \cdot C_b}$$

where  $I_c$ : Collector current target value 100: This factor makes the current flowing in  $C_{bc}$  less than 1% of  $I_c$ .

(ii) Determined to minimize the settling time

If RS<sub>4</sub> is determined by the following equation, the combined ramp-wave generation period and analog feedback period is minimized.

$$RS_4 = \sqrt{\frac{8 |V_{stop} - V_{start}|}{\tau_{AF} \cdot D}}$$

where V<sub>start</sub>: Ramp wave start voltage V<sub>stop</sub>: Ramp wave stop voltage

D is the switching time described in  $RS_2$  (above).

After feedback starts, the HP 4142B waits  $100\mu s$  or the feedback integration time  $\tau_{AF}$ , whichever is longer: this time is referred to as  $T_{do}$ . This allows time for the DUT output value to settle within target value tolerance, and also takes into account the delay due to an internal switching circuit.

$$T_{do} = Max (100 \ \mu s, \tau_{AF})$$

To determine the delay time  $T_d$ , there are two factors to be considered: one is the overshoot recovery time  $T_1$ , and the other is the settling time  $T_2$  in the analog feedback mode.

$$T_d = T_1 + T$$

 $T_1$  and  $T_2$  calculations are shown on the right.

If:

 $T_d > T_{do}$ 

specify  $T_d$  as the delay time.

If:

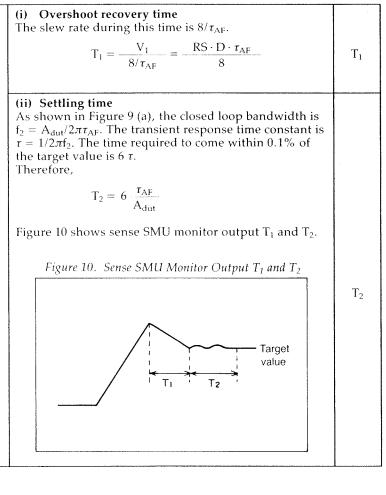
$$T_d \leq T_{do}$$

set the delay time to 0 (default value).

### (3) Parameter calculation example

#### (a) Bipolar transistor

Here, we'll use the AFU to measure the  $h_{FE}$  of a bipolar transistor with the characteristics shown in Table 9.


Table 9. Bipolar Transistor Characteristics

| Ve  | ا ن  | h <sub>FE min</sub> | h <sub>FE max</sub> | C <sub>IN</sub> | C <sub>bc</sub> | f <sub>T</sub> |
|-----|------|---------------------|---------------------|-----------------|-----------------|----------------|
| 5 V | 1 mA | 100                 | 300                 | 8 pF            | 4 pF            | 200 MHz        |

#### (1) Current range determination

To increase the measurement speed, the specified ramp rate should be as high as possible, and for analog feedback  $T_2 = 6 \tau_{AF}/A_{dut}$  should be as small as possible. To make  $T_2$  smaller, decrease  $\tau_{AF} = A_{dut}/2\pi f_2$  by making the frequency bandwidth  $f_2$  as large as possible. Table 6 shows that  $\tau_{AF}$  decreases if the current range increases. Therefore, make the current range as high as practically possible.

To allow an increased ramp rate, make the sense SMU current compliance/target value ratio as high as possible. Don't make the ratio too high, however, or the target value setting accuracy will be too low.



Considering the previous paragraphs, the sense SMU current range full scale (FS) value should be 1.15 to 10 times the target value.

The current range is determined by the current compliance value l<sub>comp</sub>. Therefore, current compliance should be set as determined by the following equation.

$$FS \cdot 0.115 < I_{comp} \leq FS \cdot 1.15$$

To specify a current range, use a current compliance value that is 1.15 times the full scale value of the range. In our example, the target value is 1mA, so 1.15mA should be specified for the sense SMU current compliance.

For the search SMU, the current range should be set according to the  $I_{bmax}$  value, which is determined by the following equation.

$$I_{bmax} = I_c / h_{FEmin} = 1 \text{ mA} / 100 = 10 \ \mu \text{A}$$

To set the search SMU current range, set the current compliance in the same way as you did for the sense SMU. For example, to specify the  $10\mu$ A range, set current compliance to  $11.5\mu$ A.

#### (2) Search start and stop voltage determination

The forward bias voltage of a bipolar transistor ranges from 0 to 1V. Therefore, set the start voltage and the stop voltage as follows:

Start voltage: 0 V Stop voltage: 1 V

(3) Feedback integration time determination Calculate  $\tau_1$  to  $\tau_5$  using Table 6.

 $\tau_1 = 32 \cdot I_{bmax}/I_{rs} = 32 \cdot 10 \ \mu A/10 \ \mu A = 32 \ \mu s$  $\tau_2 = 20 \ \mu s \ (C_{IN} = 8pF, which is less than 100pF, so use the 100pF row and 10 \ \mu A column in Table 6-1 to determine <math>\tau_2$ .)  $\tau_2 = 3 \ \mu s$ 

$$\begin{aligned} & \tau_4 = h_{FEmax} / (2\pi \cdot f_T) = 300 / 2\pi \cdot 200 \cdot 10^6 = 0.24 \ \mu s \\ & \tau_5 = 2 \cdot C_{bc} / I_{rm} = 2 \cdot 4 p F / 1 m A = 8 \ ns \end{aligned}$$

Therefore,

 $\tau_{\rm AF} = 80 \cdot \tau_{\rm max} = 80 \cdot 32 \ \mu s = 2.6 {\rm ms}$ 

#### (4) Ramp rate determination

Calculate  $RS_1$  to  $RS_4$  using Table 7.

 $RS_1 = 280 V/s (C_{IN} = 8pF, so use the 10pF row.$ Current range is 10  $\mu$ A).

$$\begin{split} RS_2 &= (I_{comp}/I_c-1)/(40\cdot\tau_1) \\ &= (1.15/1-1)/(40\cdot32\;\mu s) \\ &= 117\;V/s \\ RS_3 &= I_c/(100\cdot C_{bc}) = 1mA/(100\cdot4pF) \\ &= 2.5\times10^6V/s \\ RS_4 &= \sqrt{8\cdot \mid V_{stop} - V_{start}\mid / \tau_{AF}\cdot D} \\ &= \sqrt{8\cdot \mid 1.0 - 0\mid / 2.6ms\cdot32\;\mu s} \end{split}$$

From the above values, pick the minimum value as the ramp rate.

$$RS = min\{RS_1 \sim RS_4\} = RS_2 = 117V/s$$

#### (5) Delay time determination

Determine  $T_1$  and  $T_2$  from Table 8.

 $= 9.8 \times 10^{6} \text{ V/s}$ 

$$\begin{split} T_1 &= (RS \cdot D \cdot \tau_{AF})/8 \\ &= 117V/s \cdot 32 \; \mu s \cdot 2.6ms/8 = 1.2 \; \mu s \\ T_2 &= 6 \cdot \tau_{AF}/A_{dut} = 6 \cdot 2.6ms/40 = 390 \; \mu s \end{split}$$

As described in Table 8,  $T_{do} = \tau_{AF} = 2.6 \text{ms}$ ,

$$T_d = T_1 + T_2 = 391.2 \ \mu s < T_{do} = 2.6 ms$$

Therefore, the delay time should be the default value (0s).

#### 6 Programming example

#### (i) Using HP-IB commands to specify parameters

Figure 11 shows an example program for measuring the base current  $I_b$  (for calculating  $h_{FE}$ ) of a bipolar transistor using the AFU and two SMUs. This program sets the parameters that were calculated previously. Figure 12 shows waveforms related to Figure 11 program execution.

In Figure 11, Channel 3 is the source SMU (line 80–ASV3) and Channel 2 is the sense SMU (line 90–AVI2). Line 80 e the source SMU parameters – source start voltage, source stop voltage, ramp rate, and current compliance. Line 90 sets the sense SMU parameters – collector voltage, target current, and current compliance. Line 100 sets the search operation mode, search measurement mode, and feedback integration time.

If the DUT input and output are directly related, set the search operation mode to negative feedback search; if the DUT input and output are inversely related, set the search operation mode to positive feedback search. The default setting is negative feedback search. Our DUT is a transistor, so DUT input (base voltage) and the target (collector current) are directly related. Therefore, line 100 sets the search operation mode to negative feedback search.

You can specify one of four search measurement modes depending on the combination of search and sense SMU measurements that are necessary. For  $h_{FE}$  calculation, we need to measure the base current  $I_b$ , so line 100 sets search measurement mode 2, which measures search SMU current  $I_b$ . For further details, refer to the HP 4142B Operation Manual.

Line 110 specifies that this is an analog search measurement. Line 120 triggers the measurement. Line 131 transfers the measurement data from the HP 4142B measurement data buffer into the controller as an ASCII string. Line 132 converts the ASCII string (removes header) so it can be displayed as the measurement value. Line 134 displays the measurement value  $I_b$ .

(ii) Using the library subprograms to specify parameters. The furnished software contains subprogram Para\_\_\_hfe calculating AFU setting parameters (feedback integration time, ramp rate, and delay time) for  $h_{FE}$  measurements. Figure 13 shows an example program that uses this subprogram. Lines 64 through 72 assign the current compliance value, search start and stop voltages, maximum and minimum  $h_{FE}$  values, input capacitance  $C_{IN}$ , and feedback capacitance  $C_{bc}$ . Line 80 calls the subprogram that uses these values to calculate the feedback integration time, ramp rate, and delay time (Tau, Rs, Dt).

```
62 |

63 |

70 ;

80 OUTPUT 0Hp4142:"ASU3,0,1,117,11,5E=6"

90 OUTPUT 0Hp4142:"ASU1,2,5,1E=3,1.15E=3"

100 OUTPUT 0Hp4142:"ASU1,2,2.5E=3"

110 OUTPUT 0Hp4142:"ASU1,2,2.5E=3"

120 OUTPUT 0Hp4142:"ASU1,2,2.5E=3"

130 |

131 ENTER 0Hp4142:"ASU1,2,2.5E=3"

132 ID=VAL(AS(4,15))

134 PRINT ID

135 |

135 |

137 |
```

Figure 11. Programming Example (h<sub>FE</sub>) Using HP-IB Commands

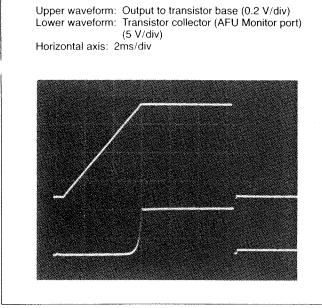



Figure 12. Waveforms Related to Figure 11 Program Execution

Line 90 sets the search SMU, and line 100 sets the sense SMU. Line 110 performs the  $I_b$  measurement, and line 120 displays the measurement value.

| ſ |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ŀ | 62  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ł | 63  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| l | 64  | Icmax=1.15E-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| l | 65  | Vstart=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | 66  | Vstop=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 67  | Hfemin=100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| L | 68  | Hfemax=300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| l | 70  | Ft=2.00E+8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ł | 71  | Cin=8.E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| l | 72  | Cbc=4.E-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| l | 73  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 80  | Para_hfe(5,1.E-3,Icmax,Vstart,Vstop,Hfemin,Hfemax,Ft,Cin,Cbc,Ib,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ŀ |     | Ibmax,Tau, Rs,Dt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ì | 90  | Set_asource(3,Vstart,Vstop,Rs,1.E-3,Dt,Ibmax)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| l | 100 | Set_amonitor(2,1,5,1.E-3,Icmax)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| l | 110 | Measure_asearch(1,2,Tau,Ib_meas)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ł | 120 | PRINT ID_meas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | 137 | I contraction of the second seco |
| ۱ | 138 | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Figure 13. Programming Example (h<sub>FE</sub>) using Furnished Subprograms

#### (b) FET

Here, we'll use the AFU to measure  $V_{\text{th}}$  of an FET with the characteristics shown in Table 10.

| Table 10. FET Characteristic |
|------------------------------|
|------------------------------|

| V <sub>d</sub> | l <sub>a</sub> | V <sub>TH min</sub> | V <sub>TH max</sub> | C <sub>iss</sub> | C <sub>rss</sub> | l <sub>gss</sub> |
|----------------|----------------|---------------------|---------------------|------------------|------------------|------------------|
| 6V             | 10µA           | 1V .                | 2V                  | 3pF              | 1.3pF            | 100pA            |

1 Search start and stop voltage determination The following search start and stop voltages should allow  $V_{th}$  to be reached.

Start voltage: 0 V Stop voltage: 2 V

(2) Current range determination

To determine  $V_{th}$ , it is not necessary to measure the search SMU current, therefore set the current range as large as possible to increase SMU response speed. We will set current compliance to 11.5mA to select the 10mA range.

For the sense SMU, select a current range using the same principles as described for bipolar transistors. Set the current compliance value to  $11.5\mu$ A to select the  $10\mu$ A range.

- **(3)** Feedback integration time determination (see Table 6) • Assuming that the FET input resistance is very high, then  $I_{bmax} = 0$ , thus  $\tau_1 = 0$ .
- $C_{ISS} = C_{IN} = 3pF$ , which is less than 100pF. Current range = 10mA. So using Table 6-1,  $\tau_2 = 0.9\mu s$ .
- •The sense SMU current range is  $10\mu$ Å, so using Table 6-2,  $\tau_3 = 11\mu$ s.
- $\tau_4$  does not apply to FETs.
- • $C_{rss}$  for an FET corresponds to  $C_{bc}$  for a bipolar transistor, so

 $\tau_5 = 2 \cdot C_{rss} / I_{rm} = 2 \cdot 1.3 \text{pF} / 10 \ \mu\text{A} = 0.26 \ \mu\text{s}$ 

•Assume that the DUT gain in the subthreshold region is 40.

Therefore,

$$\tau_{\rm AF} = 80 \cdot \tau_{\rm max} = 80 \cdot \tau_3 = 0.88 \rm ms$$

**(4)** Ramp rate determination (see Table 7)

• $\overline{C}_{ISS} = \hat{C}_{IN} = 3pF$  and the search SMU current range is 10mA, so using Table 7-1, RS<sub>1</sub> = 280V/ms = 280 × 10<sup>3</sup>V/s •D = max ( $\tau_1$ ,  $\tau_2$ , 20  $\mu$ s) = 20  $\mu$ s, and using Id for Ic,

$$RS_2 = (I_{comp}/I_d - 1)/(40 \cdot D) = (11.5/10 - 1)/(40 \cdot 20 \ \mu s) = 188 \ V/s$$

•Using  $C_{rss}$  and  $I_d$  for  $C_{bc}$  and  $I_c$ .

$$RS_3 = I_d / (100 \cdot C_{rss}) = 10 \ \mu A / (100 \cdot 1.3 \text{pF}) = 77 \times 10^3 \text{ V/s}$$

$$RS_4 = \sqrt{8 \cdot |V_{stop} - V_{start}| / \tau_{AF} \cdot D}$$
$$= \sqrt{8 \cdot 2/0.88 \text{ms} \cdot 20 \ \mu \text{s}}$$
$$= 30 \times 10^3 \text{ V/s}.$$

From the above values, pick the minimum value as the ramp rate.

$$RS = min{RS_1 \sim RS_4} = RS_2 = 188 V/s$$

#### (5) Delay time determination

Determine T<sub>1</sub> and T<sub>2</sub> from Table 8.

 $T_{1} = RS \cdot D \cdot \tau_{AF}/8 = 188V/s \cdot 20\mu s \cdot 0.88ms/8$ = 3.3 \mu s  $T_{2} = 6 \cdot \tau_{AF}/A_{dut} = 6 \cdot 0.88ms/40 = 132 \ \mu s$ 

As described in Table 8,  $T_{do} = \tau_{AF} = 0.88$ ms, so

$$T_d = T_1 + T_2 = 135.3 \ \mu s < T_{do} = 0.88 ms$$

Therefore, the delay time should be the default value (0s).

#### **(6)** Programming example

Figure 14 and Figure 15 show programming examples for specifying parameters using HP-IB commands and furnished library software subprograms, respectively. For explanations, refer to the previous bipolar transistor programming example paragraphs.

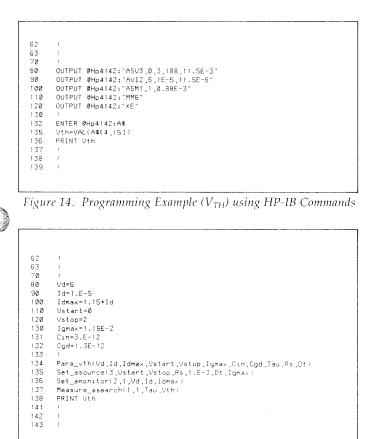



Figure 15. Programming Example (V<sub>TH</sub>) using Furnished Subprograms

# (4) AFU operation tips

#### **1** Changing parameters if errors occur

If the feedback integration time, ramp rate, and delay time are not specified, the following default values are automatically used.

Feedback integration time = 5msRamp rate = 500V/sDelay time = 0s

Usually no errors (oscillation, etc.) will occur if the above settings are used. However, if errors do occur, change the parameters as follows.

- •If the target value is not reached, make sure that the start and stop voltages are appropriate.
- •Set the ramp rate to 10% of its present value.
- •Double the feedback integration time.
- •If the measurement value ( $I_c$  or  $I_d$ ) is not within ±2% of the target value, repeat this sequence.

#### (2) Measurement range selection

#### ●Sense SMU<sup>1</sup>

To ensure accurate measurement sensitivity and a reasonable settling time, set a moderate current compliance/ target value ratio. The recommended ratio is 1.15 to 10.

#### Search SMU

To increase measurement speed, set the highest current range that still allows an acceptable resolution.

#### **③ AFU MONITOR port**

You can monitor the sense SMU measurement output at the AFU MONITOR port. If a low current range (less than  $10\mu$ A) is set, no overshoot may be observed at the AFU Monitor port due to measurement circuit delay<sup>2</sup>, even if overshoot occurs. Therefore, even if no overshoot is observed, do not set the feedback integration time too short or the ramp rate too high.

<sup>1</sup> If the condition indicated below is satisfied, change to the next higher range.

Target value > Range full scale and Current compliance value > Range full-scale × 1.15

<sup>2</sup> The measurement is not affected by this delay because it is corrected by the AFU error amplifier.

# **3. APPLICATION EXAMPLES**

# 3.1 Characteristic Curve Measurement Methods for Bipolar Transistors and FETs

Table 11 shows the force modes, measurement circuits, relevant HP-IB commands, and relevant library subprogram names that are necessary for performing various characteristic curve measurements.

Figure 16 shows the test fixture, DUT, and controller connections for measuring characteristics curves.

| Character                                                                                             | istic curve                     | Force mode                                                      | Measurement circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Associated                         | l command                                  |
|-------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------------|
| Bipolar transistor                                                                                    | FET                             |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HP-IB command                      | Subprogram name                            |
| I <sub>C</sub> -V <sub>CE</sub>                                                                       | I <sub>d</sub> V <sub>ds</sub>  | Staircase sweep<br>(from low to<br>medium current<br>region)    | $V_{g} = \bigvee_{c \in I} \bigvee_{c \in I} \bigvee_{d \in$ | WV<br>WI<br>WSV<br>WSI<br>WT<br>WM | Sweepiv<br>Sweepmiv<br>Set_iv<br>Sweepmode |
|                                                                                                       |                                 | Staircase sweep<br>with pulsed bias<br>(high current<br>region) | $I_{B} (I) (I) (I) (I) (I) (I) (I) (I) (I) (I)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WV<br>WI<br>WM<br>PV<br>PI<br>PT   | Pulsev<br>Pulsei<br>Setiv<br>Sweeppbias    |
| I <sub>C</sub> −V <sub>BE</sub><br>I <sub>B</sub> −V <sub>BE</sub><br>h <sub>FE</sub> −I <sub>C</sub> | I <sub>d</sub> -V <sub>gs</sub> | Staircase sweep<br>(from low to<br>medium current<br>region)    | $I_{B} \xrightarrow{A} I_{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WV<br>WI<br>WSV<br>WSI<br>WT<br>WM | Sweepiv<br>Sweepmiv<br>Setiv<br>Sweepmode  |
|                                                                                                       |                                 | Pulsed sweep<br>(high current<br>region)                        | $I_{B}$ $A$ $I_{C}$<br>$V_{BE}$ $P$ $V_{CE}$<br>Note: $I_{B}$ and $I_{C}$ cannot be measured at the same time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PWV<br>PWI                         | Set_piv<br>Sweep_piv                       |

Table 11. Characteristic Curve Measurement Methods

| Character                                                                          | istic curve                                                       | Force mode                               | Measurement circuit | Associated command |                      |
|------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------|---------------------|--------------------|----------------------|
| Bipolar transistor                                                                 | FET                                                               |                                          |                     | HP-IB command      | Subprogram name      |
|                                                                                    | g <sub>m</sub> -V <sub>gs</sub><br>g <sub>m</sub> -I <sub>d</sub> | Pulsed sweep<br>(high current<br>region) |                     | PWV<br>PWI         | Set_piv<br>Sweep_piv |
| V <sub>CE(sat)</sub><br>-I <sub>C</sub><br>V <sub>BE(sat)</sub><br>-I <sub>C</sub> |                                                                   | Pulsed spot<br>(high current<br>region)  |                     | PV<br>Pl<br>PT     | Pulse_⊥v<br>Pulsei   |

Table 11. Characteristic Curve Measurement Methods (continued)

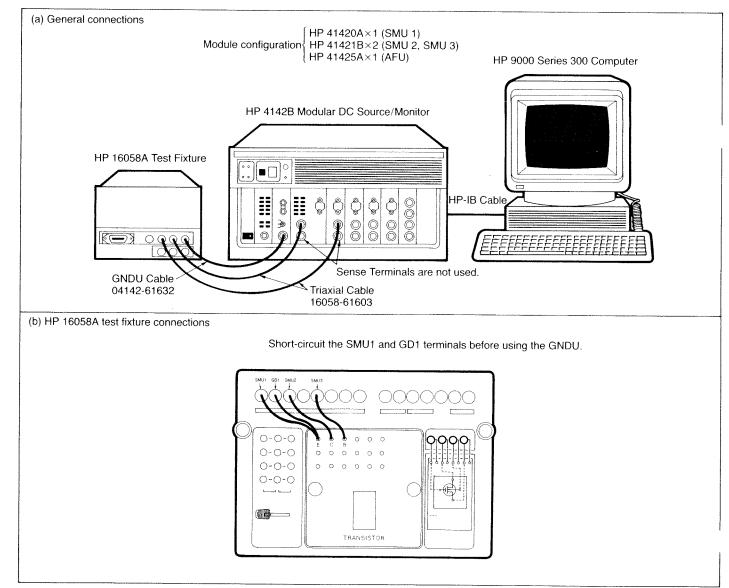



Figure 16. Test Fixture, DUT, and Controller Connections

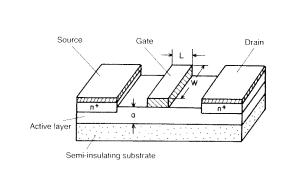
# 3.2 GaAs MESFET Characterization

Figure 17 shows that a GaAs MESFET has 3 electrodes (source, gate, and drain), a thin active layer, and a semiinsulating GaAs substrate. GaAs MESFETs can operate at a high frequency, and are thus used in microwave

pplications. GaAs MESFETs are very small, and the thermal onductivity is very low (about 1/3 that of silicon), so heat generated by high voltage or current application causes problems. Using the HP 4142B's pulsed output,  $I_d - V_{ds}$ characteristics in the high current region can be correctly measured because thermal drift is reduced.

Figure 18 shows a CURTICE model that is often used in circuit simulations for MESFETs. The rising edge drain current  $I_d$  is a hyperbolic function (tanh) of  $V_{ds'}$  which determines electron velocity saturation.

Sweep measurement techniques can be used to determine the circuit model parameters and the following property parameters.


- •K: Gain factor
- $\bullet V_{TO}{:} \quad Threshold \ voltage$
- •R<sub>s</sub>, R<sub>d</sub>, R<sub>g</sub>: Ohmic contact resistances
- •n: Ideal factor of Schottky junction
- •Igs: Saturation current at the Schottky junction
- $V_{bi}$ : Built- in potential
- •N<sub>N</sub>: Active layer electron density
- •a: Active layer thickness
- $\mu_0$ : Active layer electron mobility
- •g<sub>m</sub>: Mutual conductance
- • $\breve{F}_{min}$ : Minimum noise figure

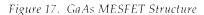
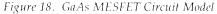

#### (1) K and V<sub>TO</sub> measurement


Figure 19 shows the K and  $V_{TO}$  measurement circuit. The device is a depletion-type FET. Apply about .05V to the drain, then perform a staircase sweep of the gate voltage, and measure the drain current for each step.


Plot measurement values on the  $\sqrt{I_d} - \dot{V}_{gs}$  graph (Figure 20). The gain factor K is the slope of the straight line section, and the threshold voltage  $V_{TO}$  is the voltage where the extrapolated straight line intersects the x-axis ( $V_{gs}$ ).

$$V_{TO} = -3.5V$$









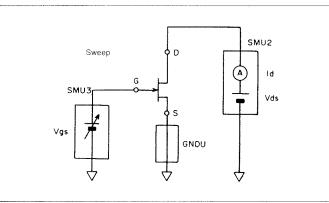
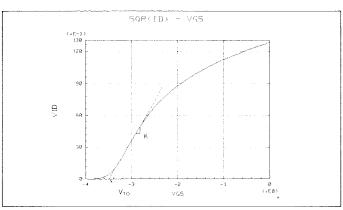
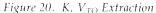





Figure 19. K, V<sub>TO</sub> Measurement Circuit





#### (2) R<sub>s</sub>, R<sub>d</sub>, and R<sub>g</sub> measurement

Figure 21 shows the  $R_s$  measurement circuit. With a  $100\mu$ A gate-source current, staircase sweep the drain voltage, and measure drain current and gate voltage. Plot the measured values on the  $V_{gs} - I_d$  graph (Figure 22).  $R_s$  is the slope of the straight line section. To determine  $R_d$ , switch the positions of SMU2 and GNDU, and perform the measurement in the same way.

Figure 23 shows the  $R_g$  measurement circuit and results. With  $I_d = 0$ , pulse sweep the gate voltage from 0V to 1.2V and measure  $I_g$ . Plot the results on an  $I_g - V_{gs}$  graph and determine the slope of the straight line section shown in Figure 23. This slope is the sum of  $R_s$  and  $R_g$ . Subtract  $R_s$ from this number to determine  $R_g$ .

#### (3) n, $I_{gs}$ , $V_{bi}$ , $N_N$ , and a

The current density at the Schottky junction between the gate and the source is expressed as follows:

$$J_{g} = A^{*} \cdot T^{2} \cdot \exp\left[-\frac{qV_{bi}}{kT}\right] \cdot \exp\left[-\frac{qV_{gs}}{nkT}\right]$$

where A\*: Effective Richardson constant (8.7 A/cm<sup>2</sup>/K<sup>2</sup>) n: Ideal factor

V<sub>bi</sub>: Schottky barrier built-in potential

The measurement circuit is the same as Figure 23, except the gate voltage sweep is a staircase sweep instead of a pulse sweep. For this measurement, the low current region is important, so pulse sweep is unnecessary.

Plot Log  $I_g - V_{gs}$  as shown in Figure 24, and n is determined by the slope of the straight line section.  $I_{gs}$  is the current where the extrapolated straight line intersects the y-axis ( $I_g$ ).

$$n = 1.197$$
  
 $I_{gs} = 3.13 \times 10^{-12}$ 

The built-in potential  $V_{bi}$ , electron density  $N_N$ , and active layer thickness can be calculated from  $I_{gs}$ , the channel length L, and the channel width W, using the equations in Table 12. Assuming  $L = 1.5\mu m$  and  $W = 1,500\mu m$ , these parameters are calculated as follows:

$$V_{bi} = 26 \times 10^{-3} In \left[ \frac{8.7 \cdot 300^2 \cdot 1.5 \cdot 1500 \times 10^{-8}}{3.13 \times 10^{-12}} \right]$$
$$= 0.763 V$$
$$N_{N} = exp \left[ \frac{0.763 - 0.706}{0.026} \right] = 8.96 (10^{16} / cm^{3})$$

$$a = \sqrt{\frac{3.5 + 0.763}{7.23 \cdot 8.96}} = 0.26 \ \mu m$$

$$V_{bi} = \frac{kT}{q} \cdot \ln\left[\frac{A^* \cdot T^2 \cdot L \cdot W}{I_{gs}}\right]$$
$$N_N = \exp\left[\frac{-V_{bi} - 0.706}{kT/q}\right]$$
$$a = \sqrt{\frac{|V_{TO}| + V_{bi}}{7.23 \cdot N_N}}$$

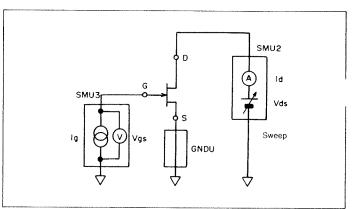



Figure 21. R<sub>s</sub> Measurement Circuit

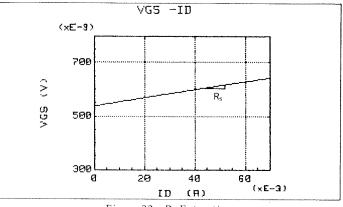



Figure 22. R<sub>s</sub> Extraction

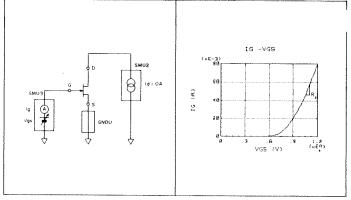



Figure 23. R<sub>g</sub> Measurement Circuit and Extraction

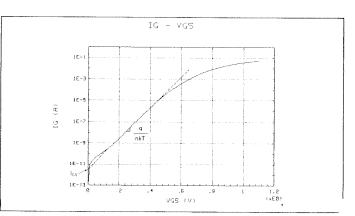
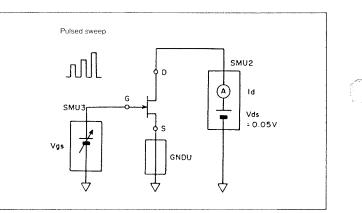
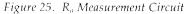
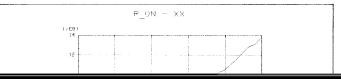



Figure 24. Igs, n Extraction

## (4) $R_o$ and $\mu_o$


When the drain voltage is about 0V in the nonsaturation region, the approximate drain current expression is as follows:


$$I_{d} = G_{0} \cdot \left\{ 1 - \sqrt{\frac{V_{bi} - V_{gs}}{V_{bi} - V_{TO}}} \right\} \cdot V_{ds}$$


where  $G_o = \frac{1}{R_o}$  = open channel conductance.

Using XX 
$$\equiv \left[ 1 - \sqrt{\frac{V_{bi} - V_{gs}}{V_{bi} - V_{TO}}} \right]^{-1}$$
  
then  $R_o = \frac{V_{ds}}{I_d XX}$ 

Figure 25 shows the measurement circuit. With a constant voltage of 0.05V applied to the drain, pulse sweep the gate voltage and measure the drain current. Plot the measurement values on the  $V_{ds}/I_d$ -XX graph (Figure 26). If the characteristic curve is not a straight line, it means that the  $V_{bs}$ 







| 4 |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |

where K: Constant with value 0.25 to 0.3

- f: Operation frequency (GHz)
- L: Channel length
- $R_g$ : 3.96 $\Omega$  and  $\bar{R}_s = 1.5\Omega$  from previous measurement (See Figures 22 and 23, respectively).

Using f = 5.92GHz and  $g_m$  obtained above, and assuming K = 0.27, the minimum noise figure is calculated as follows:

$$F_{min} = 10 \cdot \log [1 + 0.27 \cdot 5.92 \text{GHz} \cdot 1.5 \mu \text{m} \\ \cdot \sqrt{0.11 \cdot (3.96\Omega + 1.5\Omega)}]$$
  
= 4.5 (dB)

# 3.3 Power MOSFET Characterization

Unlike general MOSFETs, the power MOSFET has a vertical structure (Figure 29) and a parasitic capacitance between the source and the drain as shown in the circuit model in Figure 30.

The drain current expressions are as follows:

I. Linear region (nonsaturation region)

$$I_{\rm D} = 2 \cdot K \cdot V_{\rm ds} \cdot \left[ (V_{\rm gs} - V_{\rm T}) - V_{\rm ds}/2 \right] (1 + \lambda V_{\rm ds})$$

II. Saturation region

$$I_{\rm D} = K \cdot (V_{\rm gs} - V_{\rm T})^2 \cdot (1 + \lambda V_{\rm ds})$$

The gain factor K, threshold voltage  $V_T$ , channel length modulation parameter  $\lambda$ , source resistance  $R_s$ , and drain resistance  $R_D$  are determined as follows:

#### (1) K and $V_T$

Figure 31 shows the measurement circuit. Perform a synchronous staircase sweep of the gate-source and the drain-source voltages. Measure the drain current I<sub>d</sub>, and plot measurement values on the  $\sqrt{I_d} - V_{gs}$  graph (Figure 32).

The gain factor K is the slope of the straight line section, and the threshold voltage  $V_T$  is the voltage where the extrapolated straight line intersects the x-axis ( $V_{gs}$ ).

#### (2) λ

Figure 33 (a) shows the measurement circuit. With pulsed voltage applied to the gate, staircase sweep the drain voltage. Plot measurement values on the  $I_d - V_{ds}$  graph (Figure 33 (b)). Select a point on the characteristic curve, and call the coordinates of this point ( $V_{ds1}$ ,  $I_{d1}$ ). Extrapolate a straight line from this point to the y-axis ( $I_d$ ), and call the intersection point  $I_{do}$ . Determine  $\lambda$  from the following equation:

$$\lambda = \frac{I_{d1} - I_{do}}{I_{do} \cdot V_{ds1}}$$

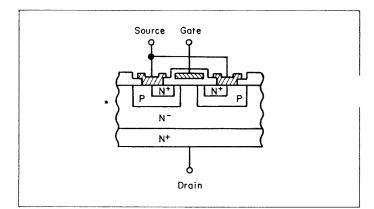



Figure 29. Power MOSFET Structure

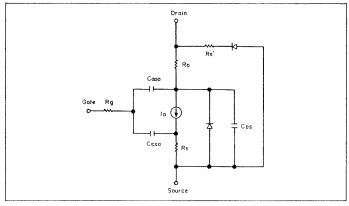



Figure 30. Power MOSFET Circuit Model

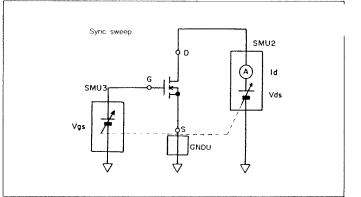



Figure 31. K, V<sub>T</sub> Measurement Circuit

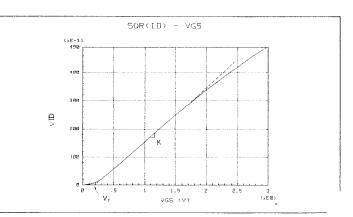
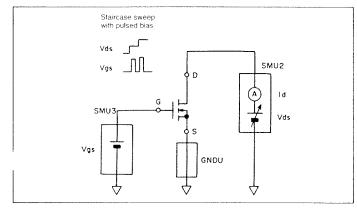



Figure 32. K,  $V_T$  Extraction


#### (3) R<sub>s</sub>

To include the voltage drop due to the ohmic contact resistances  $R_s$  and  $R_{d_r}$  replace  $V_{gs}$  and  $V_{ds}$  in Equations I and II (previous page) with the following expressions.

where V'<sub>gs</sub> and V'<sub>ds</sub> are the measurement values. Using the measurement circuit in Figure 33 (a), perform measurements for two V'<sub>ds</sub>-l<sub>d</sub> characteristic curves and plot the curves (Figure 34). Each curve has constant V'<sub>gs</sub>. Choose a saturation region point from each curve (V<sub>ds1</sub>, I<sub>d1</sub>) and

 $(V_{ds1}, I_{d2})$ , and substitute these points to make 2 versions of Equation II. If these two versions are combined, the following equation can be derived. Plug in the values to calculate  $R_s$ .

$$R_{s} = \frac{V_{gs1} - bV_{gs2} - V_{T} (1-b)}{I_{d1} (1-1/b)}$$
$$b = \frac{I_{d1}}{I_{d2}}$$



- Figure 33 (a). λ Measurement Circuit

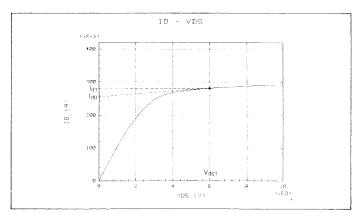



Figure 33 (b).  $\lambda$  Extraction

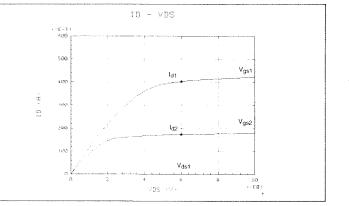



Figure 34. R<sub>s</sub> Extraction

#### (4) R<sub>D</sub>

Figure 35 shows the measurement circuit for determining  $R_D$ . With 0.1V applied to the drain, pulse sweep the gate voltage, and mesure  $I_d$ . Plot the measurement values on the  $V_{gs} - R_{ON}$  graph.  $R_{ON} = V_{ds}/I_d$ .

$$R_{ON} = R_s + R_D + \frac{1}{2 \cdot K \cdot (V_{gs} - V_f)}$$

Determine the drain resistance  $R_D$  from the following equation:

$$R_{\rm D} = R_{\rm ON} - R_{\rm s} - \frac{1}{2 \cdot K \cdot (V_{\rm gs} - V_{\rm T})}$$

Use the values of  $R_s$ , K, and  $V_T$  that you measured previously.

Use Figure 36 to select the  $R_{\rm ON}$  and  $V_{\rm gs}$  values. Use the  $R_{\rm ON}$  value in the region where  $R_{\rm ON}$  has become fairly constant.  $V_{\rm gs}$  corresponds to the  $R_{\rm ON}$  you choose.

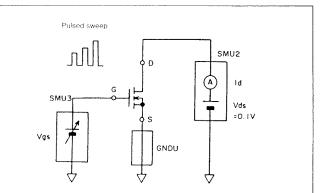



Figure 35. R<sub>ON</sub> Measurement Circuit

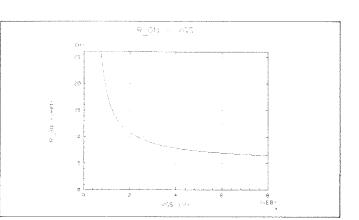



Figure 36. R<sub>ON</sub> Measurement Plot

# 3.4 Bipolar Power Transistor Characterization

The knee current  $I_K$ , which produces high injection effects in the high current region, emitter resistance  $R_E$ , and collector resistance  $R_C$  are determined as follows.

#### (1) $I_K$

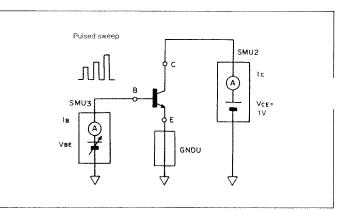
Use the circuit in Figure 37 to measure values for the high current  $I_c-V_{BE}$  and  $I_B-V_{BE}$  characteristic curves. With  $V_{CE}=1V$ , pulse sweep the base voltage, and measure  $I_B$  and  $I_C$ . Plot measurement values on a semilogarithmic graph. In the high current region (>10mA), the curve is not a straight line. This is caused by the ohmic resistance at the base and emitter terminal and by voltage drop due to the base-spreading resistance. The drop-away voltage  $\Delta V_{BE}$  is expressed by the following equation:

$$\Delta V_{BE} = V_{BE} - V'_{BE} = I_B R_B + I_E R_E$$

where V<sub>BE</sub>: Measured value

 $V'_{BE}$ : Transistor intrinsic value (Ignoring  $R_B$  and  $R_E$ )

The theoretical expression for the base current is:


$$I_{B} = I_{BS} \cdot exp \left[ \frac{-qV'_{BE}}{nkT} \right]$$

You can determine the saturation current  $I_{BS}$  and the ideal factor n from the  $I_B-V_{BE}$  characteristic curve in the medium and low current region. Perform a synchronous staircase sweep of the base-emitter and collector-emitter voltages to obtain measurement values for plotting an  $I_B-V_{BE}$ characteristic curve. Plot measurement values on a semilogarithmic graph (Figure 40). Determine n from the slope of the straight line section in the medium current region.  $I_{BS}$  is the current where the extrapolated straight line intersects the y-axis ( $I_B$ ).

Intrinsic voltage  $V'_{BE}$  can now be determined by the following equation.

$$V'_{BE} = \frac{-nkT}{q} ln \left[ \frac{I_B}{I_{BS}} \right]$$

Pick  $I_B - I_C$  pairs (same  $V_{BE}$ ) from Figure 38, and use the  $I_B$  values in the above equation to calculate corresponding  $V'_{BE}$  values. Then, plot  $I_C$  and  $I_B$  vs.  $V'_{BE}$  as shown in Figure 39. The  $I_B$  curve is now corrected to a straight line, and the  $I_C$  curve has a discontinuity (slope changes drastically). The current at this discontinuity is the knee current  $I_K$ .





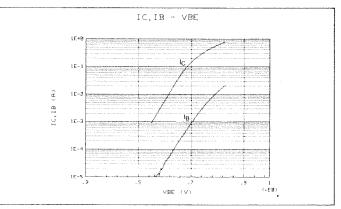



Figure 38. Measured  $I_C$ ,  $I_B-V_{BE}$ 

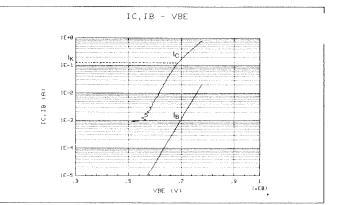



Figure 39. Corrected  $I_C$ ,  $I_B - V'_{BE}$  ( $I_K$  Extraction)

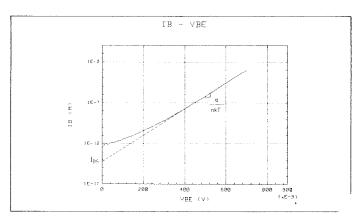
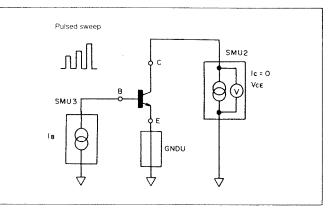



Figure 40. n, I<sub>BS</sub> Extraction

#### (2) $R_E$

Figure 41 shows the measurement circuit. With collector current set to 0 (open collector), pulse sweep current to the base, and measure  $V_{CE}$ . Plot measured values on the  $V_{CE}-I_B$  graph. Determine the emitter resistance  $R_E$  from the slope of the straight line section.


#### (3) R<sub>C</sub>

The output resistance ( $V_{CE}/I_C$ ) in the saturation region is expressed by the following equation:

$$R_{o} = R_{C} + (1 + \frac{I_{C}}{I_{B}}) R_{E}$$

Plot the V<sub>CE</sub>-I<sub>C</sub> characteristic curve with I<sub>C</sub>/I<sub>B</sub> constant. Figure 43 shows the measurement circuit. For various values of I<sub>B</sub>, but with I<sub>C</sub>/I<sub>B</sub> = 10, perform repeated pulsed spot mode measurements. Plot measured values on the V<sub>CE</sub>-I<sub>C</sub> graph. The slope of the curve in the high current region is R<sub>o</sub>, and collector resistance R<sub>c</sub> can be calculated from the following equation.

$$R_{\rm C} = R_{\rm o} - (1 + \frac{I_{\rm C}}{I_{\rm B}}) R_{\rm E}$$
$$= R_{\rm o} - 11R_{\rm E}$$





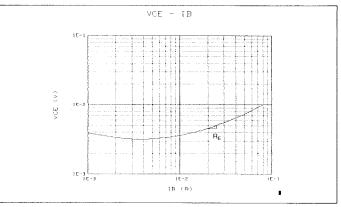
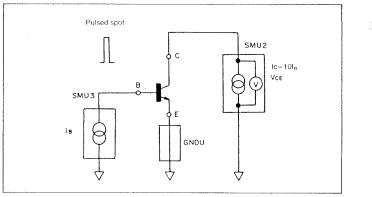
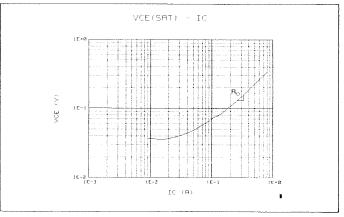





Figure 42.  $R_E$  Extraction



)

Figure 43. R<sub>C</sub> Measurement Circuit



#### Figure 44. R<sub>C</sub> Extraction

# References

- 1. T. Imai, "Compound Semiconductor Device (I)"
- M. Ohmori, "Ultra High Speed Compound Semiconductor Devices", 1986
- 3. H. Fukui, "Determination of the Basic Device Parameter of a GaAs MESFET"
- BSTJ, Vol. 58, No. 3, pp. 771–797, 1979 4. W.R. Curtice, "A MESFET Model for Use in the Design of
- GaAs Integrated Circuits" MTT-28, No. 5, pp. 448–455, 1980
- . "SPICE-2 Computer Models for HEXFETs®" IR Corp. Application Note 954A
- 6. I. Getreu, "Modeling the Bipolar Transistor"

# APPENDIX GaAs MESFET Measurement Program Example

#### (1) Program description

This program example uses subprograms from the furnished library. For parameter meanings, see the text. 70, 80: Loads furnished library. 130 to 190: Main program. 131, 132: Assigns GaAs channel length and width (cm). 140: Extracts K and V<sub>TO</sub>. Extracts R and  $R_{g}$ . Extracts R, and  $R_{g}$ . Extracts n,  $I_{gs}$ ,  $V_{bi}$ ,  $N_{N}$ , and a. Extracts  $R_{o}$  and  $\mu_{o}$ . 150: 160: 170: 180: Extracts gm and Fmin. 190: Prepares results report.

Subprograms:

 $\textcircled{1} Extract\_k\_vto$ 

This subprogram extracts K and V<sub>TO</sub>.

| 324 to 340: | Sets $V_{ds} = 0.05V$ , sweeps $V_{gs}$ from $-5V$ to $0V$ , |
|-------------|--------------------------------------------------------------|
|             | and measures I <sub>d</sub> .                                |
| 400 to 440: | Plots results on graph.                                      |
| 460:        | Searches for straight line section, and                      |
|             | determines regression coefficient.                           |
| 600:        | Calculates K.                                                |
| 610:        | Calculates V <sub>TO</sub> .                                 |
| 614:        | Resets output to 0V.                                         |
|             | 1                                                            |

#### ② Extract\_r

This subprogram extracts R<sub>s</sub> and R<sub>g</sub>.

| 873 to 880:   | Sets $I_g = 100\mu A$ , sweeps $V_{ds}$ from 0 to 0.2V, |
|---------------|---------------------------------------------------------|
|               | and measures $V_{gs}$ and $I_d$ .                       |
| 936 to 970:   | Plots results on graph.                                 |
| 1001:         | Searches for straight line section, and                 |
|               | determines regression coefficient.                      |
| 1130:         | Calculates R <sub>s</sub> .                             |
| 1160 to 1170: | Sets $I_d = 0A$ (Drain open), pulse sweeps $V_{gs}$     |
|               | from 0 to 1.2V, and measures Ig.                        |
| 1240:         | Searches for straight line section, and                 |
|               | determines regression coefficient.                      |
| 1250:         | Calculates Rg.                                          |
|               |                                                         |

#### ③ Extract\_n\_igs

| 9 =                                                              | ······································                    |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| This subprogram extracts n, $I_{gs}$ , $V_{bi}$ , $N_N$ , and a. |                                                           |  |  |  |
| 1560:                                                            | Sets number of samples for averaging.                     |  |  |  |
| 1510 to 1580:                                                    | Sets $I_d = 0A$ (Drain open), staircase sweeps $V_{gs}$   |  |  |  |
|                                                                  | from 0 to 1.1V, and measures Ig.                          |  |  |  |
| 1595 to 1630:                                                    | Plots results.                                            |  |  |  |
| 1651 to 1683:                                                    | Determines n from the straight line section III           |  |  |  |
|                                                                  | the intermediate current region.                          |  |  |  |
| 1684:                                                            | Extrapolates straight line to determine I <sub>gs</sub> . |  |  |  |
| 1691 to 1701:                                                    | Calculates V <sub>bi</sub> , N <sub>N</sub> , and a.      |  |  |  |
| (4) Extractro                                                    |                                                           |  |  |  |
| 0                                                                |                                                           |  |  |  |
| This subpro                                                      | gram extracts $R_0$ and $\mu_0$ .                         |  |  |  |
|                                                                  | Sets $V_{ds} = 0.05V$ , pulse sweeps $V_{gs}$ from        |  |  |  |
|                                                                  | $(V_{TO} + 0.8V)$ to 0.5V, and measures I <sub>d</sub> .  |  |  |  |
| 1810 to 1811:                                                    | Converts parameters for plotting.                         |  |  |  |
| 1860 to 1910:                                                    | Plots results on graph.                                   |  |  |  |
| 1940:                                                            | Searches for straight line section, and                   |  |  |  |
|                                                                  | determines regression coefficient.                        |  |  |  |

1950:Calculates  $R_o$ .1960:Calculates  $\mu_o$ .

#### **5** Extract\_\_gm\_\_fmin

| This subpro   | gram extracts g <sub>m</sub> and F <sub>min</sub> .      |
|---------------|----------------------------------------------------------|
| 2020 to 2060: | Sets $V_{ds} = 1.5V$ , pulse sweeps $V_{gs}$ from        |
|               | $(V_{TO} + 0.2V)$ to 0V, and measures I <sub>d</sub> .   |
| 2080 to 2100: | Calculates g <sub>m</sub> values.                        |
| 2140 to 2180: | Calculates g <sub>m</sub> moving average for each point, |
|               | and plots results on graph.                              |
| 2200:         | Calculates R <sub>s</sub> -corrected value for gm        |
|               | $(at V_{gs} = 0V).$                                      |
| 2210:         | Calculates F <sub>min</sub> .                            |
|               |                                                          |

#### 6 Rline

Searches for straight line section, and determines the regression coefficient.

#### 7 Least

Determines regression coefficient by the least squares method.

#### (8) Report

This subprogram prepares the results report.

```
1
     ! APPLICATION SAMPLE PROGRAM
10
     I GAAS MESFET
20
     ·
30
     ASSIGN @Hp4142 TO 717
40
50
     COM @Hp4142
60
     ILOADSUB ALL FROM "HP4142_DRV"
70
80
     ILOADSUB ALL FROM "GRAPHICS"
90
100
     Init_hp4142
110
     Init_computer
120
     IMAIN PROGRAM
130
     L=1.5E-4
                       ! CHANNEL LENGTH (cm)
131
132
     W=.15
                      ! GATE WIDTH (cm)
133
     Ch_sw_on
     Extract_k_vto(K,Vto)
140
150
     Extract_r(Rs,Rg)
     Extract_n_igs(L,W,Vto,N,Igs,Vbi,Nn,A)
160
170
     Extract_ro(L,W,Vto,Vbi,Nn,A,Ro,U)
180
     Extract_gm_fmin(L,Vto,Rs,Rg,Gm,Fmin)
183
     WAIT 2
190
     Report(L,W,K,Vto,Rs,Rg,N,Igs,Vbi,Nn,A,Ro,U,Gm,Fmin)
200
     1
210
     1
     END
220
230
     240
     SUB Extract_k_vto(K,Vto)
     241
     !EXTRACTION K(Gain factor),VTO(Threshold voltage)
242
     ICONNECTION DRAIN: SMU2, GATE: SMU3, SOURCE: GNDU
250
251
     OPTION BASE 1
252
     COM @Hp4142
     REAL Id(101), Vgs(101), X(5), Y(5), Sid(101)
254
270
     Set smu(1)
     Ht=1.E-2
                                        I HOLD TIME
280
281
     Dt=1.E-3
                                        ! DELAY TIME
                                        I GATE V.SWEEP START VOLTAGE
290
     Vg_start=-5
300
                                                     STOP VOLTAGE
     Vg_stop≠Ø
                                        ŧ
310
323
324
     Force_v(2,.05,2,.1)
                                        I SET DRAIN VOLTAGE
     Set_iv(3,1,20,Vg_start,Vg_stop,100,Ht,Dt,1.E-2) !LINEAR SWEEP
330
     Sweep_iv(2,2,0,Id(*),Vgs(*))
                                       I MEASURE DRAIN CURRENT
340
350
360
     Xmin=-4
370
     Xma×=Ø
380
     Ymin≖Ø
     Ymax=SQR(ABS(Id(100)))
390
     Lingraph(Xmin,Xmax,Ymin,Ymax,"VGS","/ID","SQR(ID) - VGS",1)
400
     IF Id(1)=0 THEN Id(1)=1.E-13
401
     MOVE Vgs(1),SQR(ABS(Id(1)))
410
      FOR I=2 TO 100
420
        IF Id(I)=0 THEN Id(I)=1.E-13
421
422
         Sid(I)=SQR(ABS(Id(I)))
        DRAW Vgs(I),Sid(I)
430
440
       NEXT I
450
     1
451
     I=20
     Rline(I,Vgs(*),Sid(*),A,B,L)
                                   I REGRESSION LINE
460
600
     K=B∗B
610
     Vto=-A/B
     Zero_output
614
620
     SUBEND
621
```

631 780 SUB Extract\_r(Rs,Rg) 781 790 **I EXTRACTION OHMIC RESISTANCE** 791 OPTION BASE 1 INTEGER Ch(2),Mm(2) 792 793 REAL Mdata(2,101),Range(2),Id(101),Vgs(101),Ig(101) 794 796 Igb=1.00E-4 861 V\_start=0 862 V\_stop=.2 863 Ht=1.0E-2 HOLD TIME 864 Dt=1.E-3 IDELAY TIME 865 Ch(1)=2 866 Ch(2)=3 867 Mm(1)=2868 Mm(2) = 1869 Range(1)=0870 Range(2)=2 871 873 Force\_i(3,Igb,0,1) 874 Set\_iv(2,1,2,U\_start,V\_stop,100,Ht,Dt,.1) 880 Sweep\_miv(Ch(\*),Mm(\*),Range(\*),Mdata(\*)) 890 FOR I=1 TO 100 Id(I)=Mdata(1,I) 900 Vgs(I)=Mdata(2,I) 910 920 NEXT I 930 ł. 931 GCLEAR Id1=Id(100) 933 934 Vgs0=Vgs(1)-.2 Vgs1=Vgs(100)+.2 935 936 Lingraph(0,Id1,Vgs0,Vgs1,"ID (A)","VGS (V)","VGS -ID",1,2) 940 MOVE Id(1), Vgs(1) 950 FOR I=1 TO 100 960 DRAW Id(I),Vgs(I) 970 NEXT I 980 991 T=10 1001 Rline(I,Id(\*),Vgs(\*),A,B,L) 1120 1 1130 Rs=B 1134 Zero\_output 1150 | CALCULATE RG 1152 P\_width=1.E-3 1153 Period=1.E-2 1154 Ht=1.E-2 1156 V\_start=0 1157 V\_stop=1.2 1158 1160 Force\_i(2,0,0,1) 1161 Set\_piv(3,1,2,0,V\_start,V\_stop,100,P\_width,Period,Ht,.1) 1170 Sweep\_piv(3,2,0,Ig(\*),Vgs(\*)) 1180 1 1181 Igmax=Ig(100) 1185 Lingraph(0,V\_stop,0,Igmax,"VGS (V)","IG (A)","IG -VGS",1,4) 1190 MOVE Vgs(1), Ig(1) 1200 FOR I=1 TO 100 1210 DRAW Vgs(I), Ig(I) 1220 NEXT I 1230 ! 1231 I=50 1240 Rline(I,Vgs(\*),Ig(\*),A,B,L) 1250 Rg=1/8-Rs

- 25 ---

S.MA

, J

1260 1 1264 Zero\_output 1270 SUBEND 1480 SUB Extract\_n\_igs(L,W,Vto,N,Igs,Vbi,Nn,A) 1483 OPTION BASE 1 1484 REAL Ig(101), Vgs(101), Lig(101) 1490 1491 Q=1.602E-19 1492 K=1.38E-23 1493 Temp=300 1494 Vt=K\*Temp/Q 1495 1 1497 Ht=1.0E-2 Dt=1.0E-3 1500 1501 V start=Ø 1502 V\_stop=1.1 1510 Force\_i(2,0,0,1) 1550 Set\_smu(10) 1560 1570 Set\_iv(3,1,2,V\_start,V\_stop,100,Ht,Dt,.1) 1580 Sweep\_iv(3,2,0,Ig(\*),Vgs(\*)) 1590 1591 GCLEAR Ymin=1.E-13 1593 1594 Ymax=.1 1595 Loggraph(0,1.2,Ymin,Ymax,"VGS (V)","IG (A)","IG - VGS",1,1) 1596 IF Ig(1)=0 THEN Ig(1)=1.E-13 MOVE Vgs(1),LGT(ABS(Ig(1))) 1600 1610 FOR I=2 TO 100 1611 IF Ig(I)=0 THEN Ig(I)=Ig(I-1) 1612 Lig(I)=LGT(ABS(Ig(I))) 1620 DRAW Vgs(I),Lig(I) 1630 NEXT I 1640 1641 N=2 1650 I=10 1651 WHILE N>1.3 1660 Rline(I,Vgs(\*),Lig(\*),A,B,L1) N=1/(B\*Vt\*LOG(10)) 1680 1681 I=Ll END WHILE 1683 1684 Igs=EXP(LOG(10)\*A) 1690 1691 Aa=8.7 ! RICHARDSON CONSTANT (AMP/cm^2/k^2) Vbi=Vt\*LOG(Aa\*Temp\*Temp\*L\*W/Igs) 1694 Nn=EXP((Vbi-.706)/Vt) 1697 ! ELECTRON DENSITY (10^16/cm^3) 1701 A=SQR((ABS(Vto)+Vbi)/(7.23\*Nn)) ! THICKNESS OF ACTIVE LAYER (um) 1704 1705 Zero\_output 1707 SUBEND 1710 1720 SUB Extract\_ro(L,W,Vto,Vbi,Nn,Aa,Ro,U) 1730 1731 OPTION BASE 1 1732 REAL Id(101), Vgs(101), Xx(101), Ron(101) 1733 Q=1.602E-19 1735 Ht=1.0E-2 Dt=1.E-3 1736 1737 P width=1.E-3 1738 Period=1.E-2 1740 1741 Vd1=.05 1748 Force\_v(2,Vd1,2,1) 1750 V\_start=Vto+.8

```
1760
      V_stop=.5
1761
      P_base=Vto-.5
1770
1780
       Set_piv(3,1,20,P_base,V_start,V_stop,100,P_width,Period,Ht,.1)
1790
       Sweep_piv(2,2,.1,Id(*),Vgs(*))
1791
        FOR I=1 TO 100
1800
1810
         X \times (I) = 1/(1 - SQR((Vbi - Vgs(I))/(Vbi - Vto)))
1811
          Ron(I)=ABS(Vd1/Id(I))
        NEXT I
1820
1823
        GCLEAR
1824
       X \times max = X \times (1)
1830
1840
        Ymax=Ron(1)
1850
1860
       Lingraph(0,Xx_max,0,Ymax,"XX","R_ON (OHM)","R_ON - XX",1)
1870
1880
        MOVE Xx(1),Ron(1)
1890
        FOR I=2 TO 100
1900
          DRAW Xx(I),Ron(I)
1910
        NEXT I
1920
        1
1.921
        I=1Ø
1940
        Rline(I, X \times (*), Ron(*), A, B, L1)
1950
       Ro=B
1960
       U=L/(Ro*Q*Nn*1.E+16*Aa*1.E-4*W)
                                           MOBILITY (cm^2/V-SEC)
1970
1971
        Zero_output
1980
        SUBEND
1990
        2000
        SUB Extract_gm_fmin(L,Vto,Rs,Rg,Gm0,Fmin)
2010
        2011
        OPTION BASE 1
2012
       REAL Id(101), Vgs(101), Gm(101)
2013
       F=5.92
2014
       Kk = .27
2016
       Ht=1.E-2
2017
       Dt=1.E-3
       Force_v(2,1.5,2,1)
2020
2041
       P_base=Vto-.5
       V_start=Vto+.2
2042
2043
       V_stop=0
2044
       P_width=1.E-3
2045
       Period=1.E-2
2050
        Set_piv(3,1,20,P_base,V_start,V_stop,100,P_width,Period,Ht,.1)
2060
        Sweep_piv(2,2,.1,Id(*),Vgs(*))
2070
2080
       FOR I=2 TO 98
2090
        Gm(I)=(Id(I+1)-Id(I-1))/(Vgs(I+1)-Vgs(I-1))
2100
       NEXT I
2110
2111
       GCLEAR
2120
       Xmin=V_start-1
       Ymax=6m(90)+1.E-1
2130
2140
       Lingraph(Xmin,0,0,Ymax,"VGS (V)","GM (S)","GM - VGS",1)
2150
        MOVE Vgs(2),Gm(2)
2160
        FOR I=4 TO 96
2165
          Gm(I) = (Gm(I+2)+Gm(I+1)+Gm(I)+Gm(I-1)+Gm(I-2))/5
2170
          DRAW Vgs(I),Gm(I)
2180
        NEXT I
2190
        ŧ
2200
       Gm0=Gm(96)/(1-Gm(96)*Rs)
2210
       Fmin=10*LGT(1+Kk*F*L*1.E+4*SQR(Gm0*(Rs+Rg)))
2220
2230
       Zero_output
2240
       SUBEND
```

2250 ł 2251 2260 SUB Rline(I,X1(\*),Y1(\*),A,B,K) 2261 OPTION BASE 1 2270 2280 REAL X(5), Y(5) 2290 R2=0 2300 K=I WHILE R2<.9995 AND K<93 2310 2320 X(1) = X1(K)2330 X(2)=X1(K+2) 2340 X(3)=X1(K+4) 2350 X(4)=X1(K+6) 2360 Y(1)=Y1(K) 2370 Y(2) = Y1(K+2)2380 Y(3) = Y1(K+4)Y(4)=Y1(K+6) 2390 2400 Least(X(\*),Y(\*),A,B,R2) 2410 K≃K+6 2420 END WHILE 1 2430 2431 SUBEND 2432 2440 SUB Least(X(\*),Y(\*),A,B,R2) 2441 \*\*\*\*\*\*\*\*\* 2450 OPTION BASE 1 2460 Ců 2470 D=Ø 2480 E=Ø 2490 F=0 2500 6=0 FOR I=1 TO 4 2510 2520 C=C+X(I) D=D+Y(I) 2530 2540 E=E+X(I)\*X(I) 2550 F=F+Y(I)\*Y(I) 2560 G=G+X(I)\*Y(I)NEXT I 2570 2580 A = (E \* D - C \* G) / (4 \* E - C \* C)2590 B=(4\*G-C\*D)/(4\*E-C\*C) 2600 R2=(A\*D+B\*G-D\*D/4)/(F-D\*D/4) 2610 SUBEND 2620 2630 SUB Report(L,W,K,Vto,Rs,Rg,N,Igs,Vbi,Nn,A,Ro,U,Gm0,Fmin) 2640 \*\*\*\*\*\*\*\*\*\*\* 2641 GCLEAR 2650 PRINT PRINT " GAAS MESFET PARAMETER (L=";L\*1.E+4;"(um)) W=";W\*1.E+4;"(um))" 2660 PRINT " K (Gain factor) = ";K 2680 PRINT " VTO (Threshold voltage) = ";Vto 2700 PRINT " RS (SOURCE res.) = ";Rs 2720 PRINT " RG (GATE res.) = ";Rg 2740 PRINT " IGS (GATE SOURCE Saturation current) = ";Igs 2750 PRINT " N (Ideality factor) = ";N 2760 2770 PRINT PRINT " Vbi (Built\_in voltage) = ";Vbi 2780 2800 PRINT " No (Electron density) = ";Nn\*1.E+16;" (/cm^3)" PRINT " 2810 а (Active layer thickness) = ";A;" (um)" PRINT " Ro (Open channel res.) = ";Ro 2820 PRINT " Uo (Electron mobility) = ";U;" (cm^2/V-sec)" 2840 PRINT " Gm (Mutual conductance) = ";6m0 2860 2870 PRINT PRINT " Fmin (Minimum noise figure) = ";Fmin;" (DB)" 2880 2890 SUBEND 2900 1

```
6AAS MESFET PARAMETER (L= 1.5 (um) W= 1500 (um))
K (Gain factor) = .00543758513218
UT0 (Threshold voltage) = -3.50556265484
RS (SOURCE res.) = 1.52642028301
R6 (GATE res.) = 3.96724287099
IGS (GATE SOURCE Saturation current) = 3.13104866241E-12
N (Ideality factor) = 1.1967456158
Ubi (Built_in voltage) = .758703994078
Nc (Electron density) = 7.6861147595E+16 (/cm^3)
a (Active layer thickness) = .277012646203 (um)
R0 (Open channel res.) = 1.07935779521
Uo (Electron mobility) = 2716.22408226 (cm^2/V-sec)
Gm (Mutual conductance) = .110592771787
```

Fmin (Minimum noise figure) = 4.57705672169 (DB)



For more information, call your local HP sales office listed in the telephone directory white pages. Ask for the Electronic Instrument Department, or write to Hewlett-Packard: U.S.A. -P.O. Box 10301, Palo Alto, CA 94301-0890. Europe-Hewlett-Packard S.A., P.O. Box 529. 1180 AM Amstelveen. The Netherlands. Canada-6877 Goreway Drive, Mississauga, L4V 1M8, Ontario, Japan-Yokogawa-Hewlett-Packard Ltd., 3-29-21, Takaido-Higashi, Suginami-ku, Tokyo 168, Far East-Hewlett-Packard Asia Headquarters, 47/F China Resources Building, 26 Harbour Road, Wanchai Hong Kong, Australasia-Hewlett-Packard Australia Ltd., 31-41 Joseph Street, Blackburn, Victoria 3130 Australia. Latin America-Hewlett-Packard Latin America Headquarters, 3495 Deer Creek Rd., Palo Alto, CA 94304. For all other areas, Please write to: Hewlett-Packard Intercontinental Headquarters, 3495 Deer Creek Rd., Palo Alto, CA 94304.