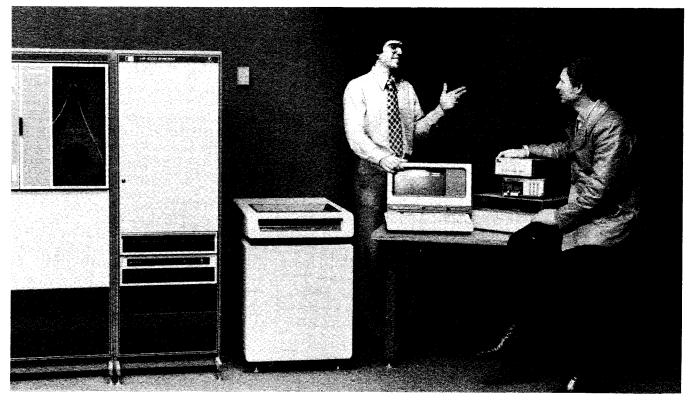


HP 1000/HP-IB Programming Procedures


Application Note 401-1

The AN 401 Series

This Application Note 401-1 is supplemented by detailed instrument-specified programming guides. You can select the modules pertinent to your system and obtain them from your local HP sales representative. You can also obtain copies by writing to Hewlett-Packard Company, Sales Literature Center, 1820 Embarcardero Rd., Palo Alto, CA 94303.

Application Note	Content	Document Number
401-2	59307 VHF Switch/HP 1000 Computer	5953-2801
401-3	5345A Counter/HP 1000 Computer	5953-2802
401-4	5342A Microwave Counter/HP 1000 Computer	5953-2803
401-5	5328A Counter/HP 1000 Computer	5953-2804
401-6	3438A Digital Multimeter/HP 1000 Computer	5953-2805
401-7	3455A Digital Multimeter/HP 1000 Computer	5953-2806
401-8	59309A Digital Clock/HP 1000 Computer	5953-2807
401- 9	6002A Power Supply/HP 1000 Computer	5953-2808
401-10	3437A Digital Voltmeter/HP 1000 Computer	5953-2809
401-11	3495A Scanner/HP 1000 Computer	5953-2810
401-12	3582A Spectrum Analyzer/HP 1000 Computer	5953-2811
401-13	3325A Function Generator/HP 1000 Computer	5953-2812
401-14	4262A Digital LCR Meter/HP 1000 Computer	5953-2813
401-15	8672A Synthesized Signal Generator/HP 1000 Computer	5953-2814
401-16	436A Microwave Power Meter/HP 1000 Computer	5953-2815
401-17	8620A Sweep Oscillator/HP 1000 Computer	5953-2816
401-18	59306A Relay Actuator/HP 1000 Computer	5953-2817
401-19	8660C Synthesized Signal Generator	5953-2818
401-20	9871A Character Impact Printer	5953-2819
401-21	6942A Multiprogrammer II	5953-2820

Welcome to the world of HP-IB. We hope you'll find that the interface bus is the most flexible, simple, standardized interface on the market today. This application note is intended to stimulate new HP-IB ideas in a typical HP-IB environment.

Table of Contents

Page

いたいのであるのであるのである

leaders of a start of	,-
Introduction	1
Chapter 1. Getting Started	2
Adopting a Procedure	2
Device Introduction	2
Addressing	2
Multiple Addresses	
System Preparations	
Programming	
SRQ Processing	
Performance	7
Session Monitor Users	7
Bus Status and Configuration Utility Program	
Summary	8
Chapter 2. System Preparations	9
System Considerations	9
HP-IB Device Considerations	9
System Preparations Using File Manager 1	0
Setting the Device to Remote	1
Configuring the Device	1
SRQ Priority Processing in DVR37 1	2
Clearing the Device	2
Standard Procedure Summary 1	3

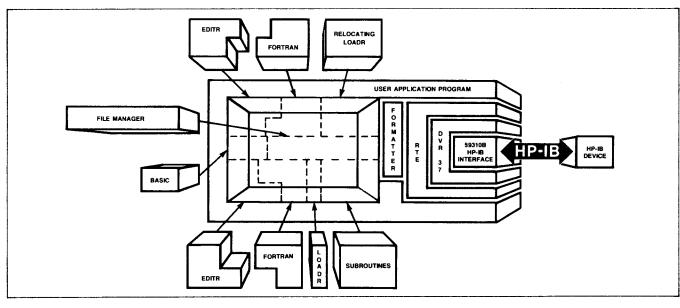
Chapter 3. The Bus Status and Configuration Utility	14
Chapter 4. HP-IB Performance Measurements	24
Describing I/O Performance Characteristics	
I/O Operations	
Processing Very Fast Input	
CPU Free Time (TF)	
Linear Approximations	29
Obtaining Measurement Rate (RT and %UTL)	30
Chapter 5. HP-IB Performance Programs	
Program Descriptions	33
Obtaining Operating System Overhead	34
Program PERF	43
System Overhead Procedure	45
Program Loading Procedures	47
Chapter 6. Assigning HP-IB Logical Unit Numbers	48
Subroutine INPRM	48
Subprogram GTDLU	51
Function GTADD	57
Function RCORD	58
Function AVAIL	58
Function ASNLU	58
Function AVEQT	
Function GIBLU	
Function FLASS	61
Subroutine CNVRT	
Block Data Subprogram	63
Function ERROR	
Program AUTLU	
Automatic LU Assignment when Using the Session Monitor	
Transfer File *AUTOP	
Program GTSLU	
SRQ Priority Processing in DVR37	68

Introduction

Generally, HP 1000 software is modular. The many different options allowed for HP-IB and other I/O subsystems provide much freedom and user program flexibility, but difficulties can arise unless procedural conventions are adopted which provide an organizational structure to this mass of paraphenalia.

Distributing intelligence to peripheral devices within the system environment has taken its toll on documentation. Two manuals are now needed where one used to be adequate. Unfortunately, the system manual proports to solve the problem from one end of the spectrum whereas the device (or instrument) manual works from the opposite end. Solving the problem requires an implementation of the products which is application-specific and user-oriented, which neither manual seems to address.

The fact remains that a basic procedural method can be adopted for the HP-IB controller and its devices. This method can make the marriage of the two, a simple one.


This application note has been designed to assist you in bringing up an HP-IB/HP 1000 in an effective, procedural manner. At the same time, it introduces some special capabilities of the controller and the devices which can help optimize the solution to your problem.

The basic methods have been outlined in a checklist fashion. The checklist is ideal in such a compartmentalized environment. Chapter 1 outlines the basic steps for setting up an HP-IB system from an application standpoint. In this chapter, the basic HP-IB checklist is introduced in preparation for the remaining chapters. Once the checklist has been completely defined, an abbreviated version will be seen over and over again in the remaining chapters.

Besides the HP-IB checklist, application programs and utilities have been written to clarify concepts introduced, provide programming hints, or minimize the task of reproducing identical software again and again. These progams and subroutines are available from the contributed library,¹ documented fully in this application note, or are HP products.

The procedures, application programs, and utilities encompass the whole RTE operating system and its accessories. Some of the procedures, for example, use Batch Spool Monitor commands and transfer files from the RTE File Manager program. On the other hand, all of the configuration procedures may be conducted within the user program each time it is executed. Only the user can decide which methods are optimal in his application situation. In any case, system integrity must be maintained by setting up user conventions.

Finally, the bus is a dynamically changing world. New devices and instruments are produced by HP and other companies each day. This application note should provide convicing evidence that setting a specific procedure — and sticking to it — is your assurance of success with HP-IB. It is also evidence that when you purchase an HP-IB instrument, you are investing in and receiving much more than just IEEE-488 compatability.

HP 1000 Software Compartmentalization

'See the "HP 1000 Communicator" for more information about obtaining these programs.

Getting Started

Chapter 1

Adopting a Procedure

We are constantly looking for new ways to quickly assemble and program HP-IB instrumentation. Usually, the most simple approach to making a new instrument functional on the HP-IB is the most effective one. The trick is to adopt a detailed procedure and make a checklist which can be used for most devices, then follow it carefully.' The procedures to be used for different instruments are basically the same, and only the application-specific areas change. We have found that the outline in figure 1-1 works very well.

Each chapter in this application note will cover the points listed in the outline. In many cases a chapter will also elaborate upon HP-IB instrument strengths which can be enhanced by the HP 1000 in application-specific areas.

The remainder of this chapter expands on the outline and discusses generalities among HP-IB instruments. Some special points concerning HP 1000 software are also mentioned. Figure 1-2 contains a short glossary of terms, abbreviations, and mnemonics, used in the following chapters.

This series of application notes assumes the user is operating outside the session monitor environment. All references to logical unit numbers refer to system logical unit numbers. In a session environment, the File Manager commands shown here would require that a user have a capability level as high as 60. More information concerning session monitor use is shown at the end of this chapter.

Device Introduction

Gather the equipment. The instruments should be turned off; however, it isn't necessary to turn off the HP 1000.

Typically, the equipment in figure 1-3 comprises an HP-IB System.

Addressing

Every HP-IB instrument, peripheral, or device to be used on the interface bus must have an identifying address, which you assign. The address in an HP-IB system is just like the phone number in the telephone system; it is a unique means of access by which a message can be sent to or from a specific device.

¹The HP-IB User Manual, part no. 59310-90064, is referenced in this application note several times and should be used to successfully control instruments with the HP 1000.

Most HP-IB devices have small address switches on the rear panel (figure 1-4). Each binary switch is simply set to the appropriate position, 1 or 0. The combination of binary address switches corresponds to a unique decimal number (1-31) which represents the device's address. If the device address was preset at the factory, it can be left as is; however, it may be overridden simply by setting the rear panel or internal switches to a different address.

It is considerably easier to set the instrument address switches before connecting the cables to the equipment. *Make sure that no two instruments on the same bus have the same address settings*. It's a good idea to use an address assignment table like the one introduced in Appendix B of the HP-IB Users Manual.¹ The Appendix also contains information concerning the HP 1000 bus interface card switches.

NOTE

The computer I/O bus interface card is assigned a device address of zero in the software driver. As a result, this address should not be used by other instruments.

Next, physically interconnect the cables.

Appendix E in the "HP-IB Users Manual" (concerning logical unit numbers and subchannels) should be understood before continuing in this chapter.¹

In this text, we will discuss the instrument address in base eight (octal). This address (set into the instrument switches) satisfies the need for two addresses (the talk and the listen instrument address).

Some controllers handle device addresses differently from others. The 9830A desktop computer, for example, forces the user to differentiate between talking to a device or listening to the device by sending a corresponding talk address or listen address each time a request is made.

More sophisticated controllers like the HP 1000 perform TALK/LISTEN addressing automatically by interpreting "READ" and "WRITE" statements (in FORTRAN, for example).

Figure 1-5 demonstrates the correspondence between the switch setting of the HP-IB device and the octal address associated with the table of HP 1000 logical unit numbers. Simply set the switches on the instrument's rear panel, figure the octal value, and enter the LU command for the device assignment. (A "B" after the device address indicates the value entered is in octal.)

A. Device Introduction

- What is it?
- What does it do?
- Is it programmable?
- Does it return measurements?

B. Addressing

- Does it have a single address (both TALK and LISTEN)?
- Does it have multiple addresses?

C. System Preparations

- 1. Logical Unit Assignment
- 2. Buffering (Use or don't use?)
- 3. Time-out (Is time out a legal condition or an illegal condition?)
- 4. Device configuration (Should it be adjusted to something other than the default value, i.e., should DMA be allocated for the device? Should SRQ interrupts have a high priority? Does the device require special end of record processing?)
- 5. Remote (Is it necessary for programming?)

D. Programming

- 1. What communication mode does the device assume?
 - a. Does it return measurements in ASCII?
 - b. Does it return measurements in binary (in a packed type of format)?

D. Programming (Continued)

- c. Does the device lend itself to simplified programming (i.e., can it be programmed using simple FORTRAN or BASIC formatted "WRITE" or "READ" requests)?
- d. If the device returns measurements, can the computer request them in free field input (i.e., READ(5,*)A)? If not, what format should be used?
- 2. What measurement return capacity does the device allow (i.e., How many measurements can be returned in one request?)?
 - a. Does the device return an end of record (EOR)?
 - b. How many output bytes are sent from the device at one time (before an EOR terminator)?
- 3. Does the device have service request ability?
 - a. Should processing be done using parallel or serial poll?
 - b. Does it generate SRQ for error conditions only?
 - c. Is SRQ generated in measurement situations?

E. Performance

- 1. What is the maximum number of readings at one time (between EORs)?
- 2. Binary input allowed?
- 3. Best case performance (criteria is time).
- 4. Worst case performance (criteria is time) (usually optimizing for simplicity).

Figure 1-1. A Systematic Approach to Analyzing HP-IB Instruments

LU	logical unit
EQT	equipment table
ILU	mnemonic for the user input LU
ILST	mnemonic for the list LU (line printer,etc.)
IDLU	mnemonic for the device LU
IBLU	mnemonic for the bus LU
INPRM	function subprogram which obtains ILU, ILST, IDLU (see Chapter 6)
SRQ _	HP-IB service request
SRDIJOPE	bits used in the device configuration word.

Figure 1-2. Glossary

- HP 1000 and 59310B Bus I/O Interface Kit
- Bus Interface Cables 0.5, 1, 2, or 4 meters in length.
- Bus Compatible Instruments and Devices (up to 14)
 Each device must include all options and accessories necessary for HP-IB operation.

 \mathcal{D}_{i}

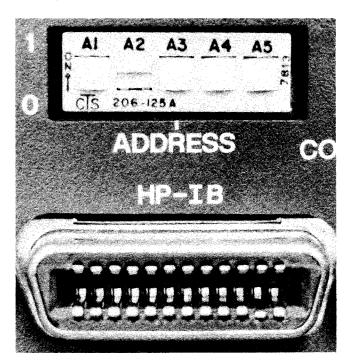


Figure 1-4. A Typical Set of Address Switches

A	Address Switch Numbers					Address Characters		Ostal	Desimal
	5	4	3	2	1	Talk	Listen	Octal Value	Decimal Value
	0	0	0	0	0	@	SP	00	00
	D	0	0	0	1	А	!	01	01
	0	0	0	1	0	В		02	02
	0	0	0	1	1	С	#	03	03
	0	0	1	0	0	D	\$	04	04
	0	0	1	0	1	E	%	05	05
.	0	0	1	1	0	F	&	06	06
	0	0	1	1	1	G	,	07	07
	0	1	0	0	0	н	(10	08
	0	1	0	0	1	1)	11	09
	D	1	0	1	0	J	*	12	10
	0	1	0	1	1	к	+	13	11
(0	1	1	0	0	L	,	14	12
	0	1	1	0	1	м	_ .	15	13
	0	1	1	1	0	N	•	16	14
	0	1	1	1	1	0	/	17	15
	1	0	0	0	0	Р	0	20	16
	1	0	0	0	1	Q	1	21	17
	1	0	0	1	0	R	2	22	18
	1	0	0	1	1	S	3	23	19
	1	0	1	0	0	т	4	24	20
	1	0	1	0	1	U	5	25	21
	1	0	1	1	0	v	6	26	22
	1	0	1	1	1	w	7	27	23
	1	1	0	0	0	x	8	30	24
	1	1	0	0	1	Y	9	31	25
	1	1	0	1	0	z	:	32	26
	1	1	0	1	1	[;	33	27
	1	1	1	0	0		<	34	28
	1	1	1	0	1]	=	35	29
	1	1	1	1	0	•	}	36	30
	1	1	1	1	1	_	?	37	31

Figure 1-5. Switch setting, device address correspondence

5

Assuming logical unit number 15 is available, equipment table 10 is the HP-IB bus in use, and the device address switches are set to 17 octal, an example logical unit assignment statement would appear as:

:SYLU,15,10,17B

Multiple Addresses

HP-IB devices that communicate with each other as well as with the computing controller may have two talk addresses or two listen addresses.

Multiple-address devices have a different set of address switches on the rear panel — sometimes just four switches. A single setting will determine two talk addresses and two listen addresses. The four switches control the A2 through A5 positions. For example, setting switches A2 through A5 as shown in Figure 1-6 will result in two listen addresses of "2" and "3" along with two corresponding talk addresses of "R" and "S". (See Figure 1-5.)

A5	A 4	A3	A2	(Notice no A1, therefore, switches
1	0.	0	1	are set to octal 22 or 23)

Figure 1-6. Example Setting with Four Address Switches

System Preparations

System preparations typically involve operations which take place only when the system is restarted. For this reason, they can sometimes be accomplished in a separate program rather than incurring this overhead each time the user program is executed. (Figure 1-7 shows how these operations may be accomplished in File Manager.)

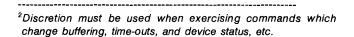
:SYLU,40,10,0	Assign general bus LU
:SYLU,41,10,17B	Assign device LU
:SYLU,42,11,0	Assign general bus LU
:SYLU,43,11,23B	Assign device LU
:CN,40,16B	Set bus into remote
:CN,42,16B	Set bus into remote
:CN,41,25B,37000B	Configure device for DMA
:CN,43,25B,17400B	operation Errors to be handled by user
:LL,43	program Set list device
:AN, 12E811	Clear device
:LL,0G	Reset list device
iLL,VV	

Figure 1-7. Typical WELCOM File Procedure

Because the proper system preparations are tantamount for successful HP-IB programming, all of Chapter 2 is concerned with this subject.

Additional Comments

Some of the HP 1000/HP-IB procedures use Batch Spool Monitor commands and the transfer file capabilities from the RTE File Manager. These File Manager commands are used to configure devices and perform general I/O functions, which typically only need to be performed once during system initialization.


All of the HP-IB configuration requests, buffering, and timeout requests may be executed dynamically, on-line, using simple system commands from a user terminal (or transfer file).² In this situation, user programs must assume that the initialization procedure was conducted smoothly without abnormal termination, and that the HP-IB hardware and software works correctly.

On the other hand, all of the configuration procedures may be conducted within the user program each time the program is executed. Message subroutines may be applied as documented in the HP-IB User's Manual.

Several facets of error-checking are available to the programmer. Depending on how the HP-IB subsystem is configured, error-checking will be performed by the operating system or the user program. When the default condition (system error-checking) is used, the user program is either terminated abnormally or it is suspended until an operator intervenes at a terminal. User program error-checking facilitates "soft errors," but again, conventions must be adopted among user programs to maintain uniformity.

Programming

Instrument programming is usually accomplished in the user BASIC, FORTRAN, or Assembly program although it may sometimes be performed using system software such as File Manager for checking out HP-IB instruments. The other 401 Series application notes describe specific HP instruments, their applications, and programming instructions in detail.

SRQ Processing

Some HP-IB instruments have the ability to spontaneously communicate back to the controller. There are some areas where this capability can be used in conjunction with the advanced SRQ handling software of the HP 1000 for measurement and error applications.¹ These are more sophisticated application situations which require some basic understanding of HP-IB device service requests (SRQ).

The structure of HP-IB is such that when an instrument spontaneously generates a service request, the controller may process it in one of two ways:

- A parallel poll may be initiated. A device-independent command is sent on the bus, and all configured instruments³ respond at once with one bit of information. From this bit the HP 1000 determines which instrument generated the SRQ. Afterwards, the HP 1000 may request more status by conducting a serial poll on that instrument only, or by interrogating the instrument using data messages.
- A serial poll may be initiated. The HP 1000 sequentially polls each known instrument⁴ and determines which one generated the SRQ. Included with this information is a complete device status byte which can help determine the status of the instrument without further interrogation.

The user decides ahead of time which devices are to be polled, and he must adhere to this polling sequence during an SRQ occurrence. If an HP-IB device is "known" to the HP 1000 controller but the cable is removed from it prior to a service request (caused by another HP-IB device), unpredictable results may occur. SRQ, once set up, is a devicedependent function. Even though an SRQ arrives from only one HP-IB device, all configured devices will be polled; and if a device is not physically present, the bus will "hang" or time-out before the serial poll sequence completes.

Similiarly, HP-IB devices should not be allowed to generate SRQs before SRQ configuration. When this happens, the message "illegal interrupt" is printed on the error log terminal. This only occurs, however, when other HP-IB instruments are already configured for SRQ processing.

Each of the instrument-specific 401 application notes will discuss the ramifications of SRQ processing (when applicable) but the above basic ideas should be understood for successful operation. SRQ priority operation in Chapter 2 should also be read for SRQ operation.

Performance

Like instrument programming, performance is heavily device-dependent. Most instrument application notes in the 401 Series contain information on device performance, usually one or more graphs depicting typical performance with an HP 1000 system under different conditions. In addition, Chapter 4 of this note describes HP-IB performance theory in the HP 1000. Chapter 5 discusses the performance application programs used to obtain the performance graphs and how a user can do his own performance measurements on-line.

Session Monitor Users

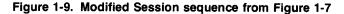
The File Manager commands described in the 401 series of application notes require capability levels shown in Figure 1-8. Three commands, "SYLU", "SYEQ" and "SYTO" each require a capability level as high as 60. A typical session user may execute these commands in one of three ways:

- 1. Obtain a user capability level of 60 from the system manager.
- 2. Configure a terminal which operates outside the session environment.
- 3. Request that the system manager create a special File Manager transfer file on LU 2 or LU 3 and route all high capability requests through this transfer file.

In case #3 above, a File manager transfer file can be created which contains only four lines.

```
:SV,1,9,IH
:1G,2G,3G,4G
:SV,9G
:
```

³A configured instrument is one which has previously been programmed to respond with a bit of status on the parallel poll command.


⁴Known instruments are ones which are specifically configured to schedule SRQ programs when the computer determines that an SRQ has been sent by that instrument. This configuration takes place before any SRQ occurrences.

COMMAND	OBSERVATION CAPABILITY	MODIFICATION CAPABILITY
:CN	NA	20
:AN	NA	20
:DU	NA	20
:TR	NA	01
:SYLU	60	60
:SYEQ	10	60

Figure 1-8. File Manager Commands and Their Capability Levels

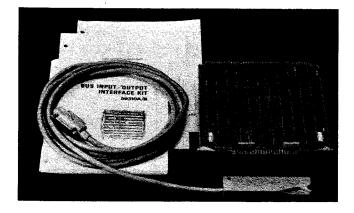
By transferring to this transfer file on LU 2 or LU 3 and supplying the correct information, high capability commands may be accomplished with a user capability as low as 1. Suppose, for instance, that the above transfer file has the namr "*:-1:-2". The procedure file previously shown in figure 1-7 could be modified as shown in Figure 1-9. Note that non-session transfer files can easily be changed using the unconditional exchange command in the RTE EDITR. System integrety is retained by using a read and write protect security code on the file.

:*:-1:-2,SYLU,40,10,0 :*:-1:-2,SYLU,41,10,17B :*:-1:-2,SYLU,42,11,0 :*:-1:-2,SYLU,42,11,0 :*:-1:-2,SYLU,43,11,23B :*:-1:-2,CN,40,16B :*:-1:-2,CN,42,16B :*:-1:-2,CN,41,25B,37000B *:-1:-2,CN,43,25B,17400B :*:-1:-2,LL,43 :*:-1:-2,AN,12E8I1	Route all high capability commandsthrough a gen- eralized transfer file on LU 2.
:*:-1:-2,AN,I2E8I1 :*:-1:-2,LL,0G	Α.

The Bus Status and Configuration Utility Program

The purpose of the utility ⁵ is to provide the user with dynamic, complete, up-to-date, and readable information about the HP-IB on his HP 1000. It provides information about each HP-IB logical unit, including configuration, status, and SRQ scheduling. Complete equipment table information, time-out values, buffering, and availability are also output.

Summary


The outline and the procedural information discussed in Chapters 1 and 2 show how a new HP 1000 instrument user can get up and running with several of HP's most popular HP-IB instruments. Each of the other 401 Series application notes contains information which is pertinent to a separate HP device.

While the examples have been developed on an HP 1000 system using the RTE-IV Operating System, they apply equally well to other operating systems including RTE-M1, RTE-M2, RTE-M3, RTE-II and RTE-III. Also, any HP 1000 which has an RTE File Manager program may use the File Manager examples for operating HP-IB instruments.

The equipment used in the AN 401-1 Series consists of the 59310B Interface Kit with I/O software (which includes the general purpose HP-IB driver, DVR37 with SRQ capability).

HP-IB performance measurements were taken (except where noted) using the high-speed 350-nanosecond memory, in an F-Series HP 1000 computer. Some of the measurements perform standard FORTRAN input and output utilizing the FORTRAN Formatter.

If the reader wishes to duplicate the performance tests given, Chapters 4 and 5 will be helpful. Chapter 4 outlines the theory behind the HP-IB performance measurements and standardizes some of the definitions. Chapter 5 documents the programs, and supplies program listings needed to duplicate the measurements made in this application note. These programs may also be used to measure performance of other HP-IB devices.

⁵The BSCU is described in Chapter 3 of this application note.

Chapter 2

Because the HP-IB standard does not provide a definition for instrument operating characteristics, standard conventions should be developed and followed by HP-IB software programmers. The HP-IB system software (in the HP 1000) gives the programmer sufficient flexibility in this area.

The HP-IB software driver lets the programmer configure each HP-IB instrument so that it can operate effectively. Device specific characteristics such as end of record (EOR) processing, transfer media (DMA or Non-DMA), device status (on a serial poll), and service request handling (SRQ response) are individually configurable.

At system boot up, the driver software defaults these device characteristics to those most likely assumed by HP-IB devices, but the configuration for each device should be evaluated for proper operation. In summary, two types of configurations should take place before instrument programming is begun:

- a. The HP-IB system software must be configured for each bus device.
- b. The bus should be configured for remote operation (one of the basic HP-IB functions) so that the HP-IB instruments may be controlled by the computer.

System Considerations

At the computer operating system level, the following list of questions should be evaluated when interconnecting a new device to the bus.

- 1. Which HP-IB equipment table will be used?
- 2. What I/O characteristics were given to the bus at system generation:
 - a. Does the bus default to buffered mode or unbuffered mode?
 - b. Was DMA assigned to this bus during system generation?
 - c. What is the current time-out setting?
- 3. Which logical unit numbers are available?
- 4. Have any of the above been changed since generation of the system by on-line users? Will any of these characteristics change during HP-IB operation?

HP-IB Device Considerations

The HP-IB device manual should be referenced to answer the following:

- 1. Should DMA be allocated for the device? (performance consideration)
- Will the device pause for long periods of time during I/O communication (time out should be adjusted accordingly)? (error condition)
- Does the device send an end-of-record terminator (EOR)? Will the HP-1000 default values for end-ofrecord recognition (one value for each device) work or should the HP-IB driver software be reconfigured for a special sequence? (performance and error conditions)
- Should device errors cause RTE to abort a user program, or should the user program be allowed to take action on errors? (user program options for error checking)
- Should the occurrence of an SRQ be allowed to abort any current I/O operation on the bus? (high priority SRQ processing)

These questions will arise each time a new device is added to the bus. Attention must be given to them or HP-IB interconnections can become a tedious process.¹ Answers to some of the above questions may be obtained by using system requests like:

:SYTO	time-out		
:SYST	status		
:SYLU	LU status		
:SYEQ	EQT status		

from the RTE File Manager.²

¹The current state of the HP-IB can be obtained by executing the Bus Status and Configuration Utility Program described in Chapter 3. The program printout answers the questions in both sections above and also some others which may be asked when using the SRQ capabilities of HP-IB.

²These requests are documented in the Batch Spool Monitor Manual, part number 92060-90013.

System Preparations Using File Manager

In most cases, configuration is a one-time job and can be performed in a simple manner which need not be repeated unless the operating system is restarted. Although switching the bus to remote usually needs to be performed, device configuration is often adequately done automatically by the operating system and defaults to the settings specified at system generation. Device configuration can be set by a FORTRAN, BASIC, etc., user program, but the RTE File Manager also works nicely for configuring new instruments on HP-IB especially during device checkout. The commands needed are right at the user's fingertips; no preparation such as program writing, compilation, or relocation is necessary.

Basically, four commands are needed which are commonly used by RTE programmers (as shown in figure 2-1):

HP-IB MESSAGES	FILE MANAGER COMMANDS
ABRT(<iblu>,1)</iblu>	:CN, < IBLU>, 0, 0
ABRT(<iblu>,2)</iblu>	:CN, < IBLU>, 0, 1
ABRT(<iblu>,3)</iblu>	NA
CLEAR(<idlu>,1)</idlu>	:CN, <idlu>,0</idlu>
CLEAR(<iblu>,1)</iblu>	NA
GTL(<idlu>)</idlu>	NA
GTL(<iblu>)</iblu>	NA
LLO(<iblu>)</iblu>	NA
LOCL(<iblu>)</iblu>	:CN, <iblu>,17B</iblu>
PRINT # <idlu></idlu>	:LL, <idlu></idlu>
WRITE (<idlu>,fmt)</idlu>	:AN, <ascii command=""></ascii>
READ # <idlu></idlu>	:DU, <idlu>,namr</idlu>
READ (<idlu>,fmt)</idlu>	
<pre>PPOLL(<idlu>,1,assign)</idlu></pre>	NA (special handling by driver)
PPOLL(<iblu>,1,assign)</iblu>	NA (special handling by driver)
PPOLL(<iblu>,2[,0])</iblu>	NA (special handling by driver)
<pre>PPOLL(<iblu>,3[,0])</iblu></pre>	NA (special handling by driver)
PSTAT(<iblu>,<status>)</status></iblu>	NA (special handling by driver)
RMOTE(<idlu>)</idlu>	:CN, (IDLU), 16B
RMOTE(<iblu>)</iblu>	:CN, <iblu>,16B</iblu>
<pre>STATS(<idlu>,<status>)</status></idlu></pre>	NA (Status is not retrievable)
TRIGR (<idlu>)</idlu>	NA (special handling by driver)
TRIGR (<iblu>)</iblu>	NA (special handling by driver)
CMDR(<iblu>,<add>,<data>)</data></add></iblu>	NA(double buffer request not allowed)
CMDW(<iblu>,<add>,<data>)</data></add></iblu>	NA (double buffer request not allowed
CNFG(<idlu>,1,<word>)</word></idlu>	:CN, <idlu>, 25B, <word>B</word></idlu>
CNFG(<iblu>,1,<word>)</word></iblu>	:CN, <iblu>,25B, <word>B</word></iblu>
CNFG(< IDLU>, 2[,0])	: CN, < IDLU>, 27B, 0
CNFG(< IBLU>, 2[,0])	:CN, <iblu>,27B,0</iblu>
NA	:CN, <idlu>,11B,-1 or :CN, <idlu>,TO</idlu></idlu>
SRQ(IDLU, 16, IPROG)	NA (specially handled by driver)
SRQ(IDLU, 17)	:CN, IDLU, 21B
SKG(IDLU,1/)	:CN,IDLU,218

Table 2-1. Using File Manager commands with HP-IB

```
:CN --- Control non-disc device
:LL --- Change logical unit of list device
:AN --- Send ASCII message to list device<sup>3</sup>
:DU --- Send ASCII message from source to
destination
```

Figure 2-1. File Manager commands for HP-IB

Table 2-1 summarizes the list of commands and how each corresponds to the common set of HP-IB messages. In most configuration situations, the "CN" command can be used to perform the set up required.

Setting the Device to Remote

Almost all HP-IB devices need to be set to remote before HP-IB programming can take place. The file manager request,

:CN,IDLU,16B or :CN,IBLU,16B

will perform the operation.⁴ In most cases two conditions are required for a device to be in remote, so don't be alarmed if the remote light doesn't appear immediately after the request. First, the hardware "REN" line must be asserted. (This happens when the request is made.) Second, the device must receive its talk or listen address. Some devices must also be switched to data mode before the remote light will appear.

The bus logical unit (IBLU with device address zero) should be used to remote disable the bus.⁴

:CN, IBLU, 17B

Configuring the Device

The number of devices which may be connected on a bus is determined at system generation time.⁵ The Bus Status Utility Program¹ shows how many were allocated, how many have been used, and the number of spaces remaining. Once an LU assignment has been made and the device has been referenced in a request, one device space is said to have been allocated. (It can be determined from the utility program if an LU assignment was made, but no reference request has been attempted.)

Once a device space is allocated, five words are reserved for that device in the HP-IB driver (EQT) area in memory.

- 1. One word for device configuration.
- 2. Three words for the program name of a program to be scheduled on a service request.
- 3. One word for the device status received from the serial poll sequence.

Once a device space has been allocated, it will be deallocated only if specifically instructed to do so. The File Manager request to deallocate a device is:

:CN, IDLU, 27B

Notice that once a device space has been allocated, the LU should not be reassigned to zero or to another device until a request has been made to deallocate the device space (as above). Once the LU reassignment is made, the EQT mapping is lost and can only be retrieved by reassigning an LU to the device. The device space deallocation can then be performed, thereby deallocating the device. (Note, that the Bus Status and Configuration Utility automatically cleans up unwanted device space if this mistake is made.¹

³Note: The "AN" file manager command inserts a blank before the message. Care should be taken to see that the HP-IB device ignores blanks.

⁴Because the remote disable request is not device specific, the bus logical unit number (subchannel 0) must be used. The device logical unit number may be used with the remote enable request as a convenience to the programmer (when the bus LU is unknown). ⁵IEEE-488 indicates a maximum of 14 devices plus 1 system controller/controller.

The device configuration word, as mentioned earlier, usually defaults to a predetermined setting (17000B or 37000B) but sometimes modifications are required. For example, to allocate DMA for a device, the configuration word would be changed from 17000B to 37000B (set bit 14 on). If error checking from the user program is desired, the word would look like 17400B (set bit 9 on); for DMA and user program error checking, the word looks like 37400B, etc. The format of the configuration can be visualized by executing the Bus Status and Configuration Utility and specifying the device LU. To set the device configuration word for DMA from File Manager, use the control request:

:CN, IDLU, 25B, 37000B

Study thoroughly the section "Controller Configuration" in the HP-IB User's Manual.⁶ This section describes the format of the device configuration word, and the details for end of record processing.

SRQ Priority Processing in DVR37

Discussion of the S bit in the device configuration word is accurate on page 2-23 of the Programming and Operating Manual for DVR37 (59310-90063). However, the real implications of high priority SRQ processing are not discussed.

When multiple instruments reside on the same bus, the "current I/O request" may be any of these devices. Therefore, high priority SRQ processing affects all devices currently configured on HP-IB.

When the S bit for a device (device A) is set to zero, it indicates the following:

If an SRQ arrives while I/O processing is in effect for **this** device (device A), the SRQ will be held off until this I/O process is complete. This, however, may not always satisfy the user's needs. Therefore when the S bit is set to one (for device A), the I/O request will be aborted so that the SRQ can be evaluated. Note that where the SRQ came from (device A, B, C, etc.) is unclear at this point. Setting the S bit for the device that generated the SRQ is no assurance that the I/O request will be aborted.

To insure that a high priority SRQ receives immediate processing, the S bit must be set for every device configured on the bus. (Configuring the S bit to 1 for the device generating the SRQ can only be decided by the user.)

High priority SRQ processing can have grave effects on HP-IB I/O programs in the system. Very few HP-IB instruments are capable of recovering from an aborted I/O request, let alone the re-issuance of the request later. Use high priority SRQ processing only when the SRQ must be processed immediately, at all costs.

Clearing the Device

Some devices need to be initialized before instrument programming can take place. This can occur in one of two ways: If the instrument recognizes the selected device clear command (SDC) described in the HP-IB User's Manual, then the file manager command,

:CN,IDLU,0

may be used. However, if the device accepts commands in ASCII, but it does not recognize the SDC command, there usually is a device dependent ASCII string which may be sent to clear the device, for example (figure 2-2).

Figure 2-3 shows an exerpt from a WELCOM file to configure two HP-IB's on system boot-up.

⁶The HP-IB User Manual, part no. 59310-90064.

Standard Procedure Summary

- 1. Load and execute the Bus Status and Configuration Utility in Chapter 3, or use system requests to obtain answers to the two lists in figures 2-2 and 2-3.
- For all new instruments on HP-IB, set the EQT to the unbuffered mode (until the instrument has been checked out and is understood).
- 3. Remember that there is one time-out for each bus, not for each device. The time-out must be a compromise for all the devices on a bus and not set specifically for one device.
- Modify the WELCOM file, write a user program, or write a transfer file to perform the above; assign the proper LU's, remote enable the bus, and configure each device.

:LL,43 ------ Set HP-IB list device :AN,I2E8I1 ---- Send reset command :LL,0G ------ Reset list device to input terminal

:SYLU,40,10,0. Assign general bus LU :SYLU,41,10,17B. Assign device LU :SYLU,42,11,0. Assign general bus LU :SYLU,43,11,23B. Assign device LU :CN,40,16B Set bus into remote :CN,42,16BSet bus into remote :CN,41,25B,37000B.Configure device for DMA operation • • :CN,43,25B,17400B. Errors to be handled by user program :LL,43 . • • • :LL,0G • • •Reset list device

Figure 2-3. WELCOM file example

The Bus Status and Configuration Utility¹

Chapter 3

The interface card described in this application note is the 59310B HP-IB card, but it looks just the same as any other hardware interface to the Real Time Executive (RTE). The RTE builds a layer of software and a pair of tables around each physical I/O card (and in some cases a pair of I/O cards) in an HP 1000 system. The layer of software is called the driver, and the two tables are the device reference table (DRT) and the equipment table (EQT).

In the early days of RTE, the equipment table for each hardware interface had 15 entries; but as I/O devices progressed, extra entries (EQT extensions) were needed to support more sophisticated peripherals. In general, however, only one peripheral per I/O card was implemented.

HP-IB was one of the first concepts to allow multiple peripherals connected to one interface card. However, this complicated driver software and the EQT had to be extended significantly. Because virtually any type of peripheral may be connected, certain information must be recorded and kept for each device. Specifically, for the HP-IB in the HP 1000, 18 extra words are needed for the EQT plus 7 words for each device which will be used on a bus (see figure 3-1). A detailed version of the HP-IB EQT block diagram may be found in table 3-1 and table 3-2. These tables represent the format of the REV. 1940 EQT.

Remember that each bus has its own EQT and the formula,

#EXTNTS = 18 + 7n

where n is the number of devices to be attached, must be applied to each one. Each bus is completely independent of the other.

The device reference table is simply the table of logical unit numbers in the RTE system. The DRT and EQT work together, controlled by the operating system to provide the mapping scheme shown in figure 3-2. The map is,

LU		EQT	•	DEVICE
n	\rightarrow	1	\rightarrow	n

where n logical units are mapped through one EQT to n device addresses. The map is dynamic. Changes are easily managed from an operator terminal or user program.

:SYLU,10,11,23B
:SYLU,15,11,3B
:SYLU,20,11,13B

are examples which dynamically reassign LUs and device relationships.

Because these changes are so easily managed, it is often helpful to observe the current configuration of HP-IB at any time. The Bus Status and Configuration Utility (BSCU) supplies this information.

Some of the status information is common to all 'n' devices associated with the EQT. The statement,

:RU,BS,,11

supplies this general information for EQT 11 as shown in figure 3-3.

The select code (for EQ 11) described is the actual slot location of the 59310B card inside the computer. The bus described in figure 3-3 is currently available for use, although it could have been down, busy, or waiting for a DMA channel.

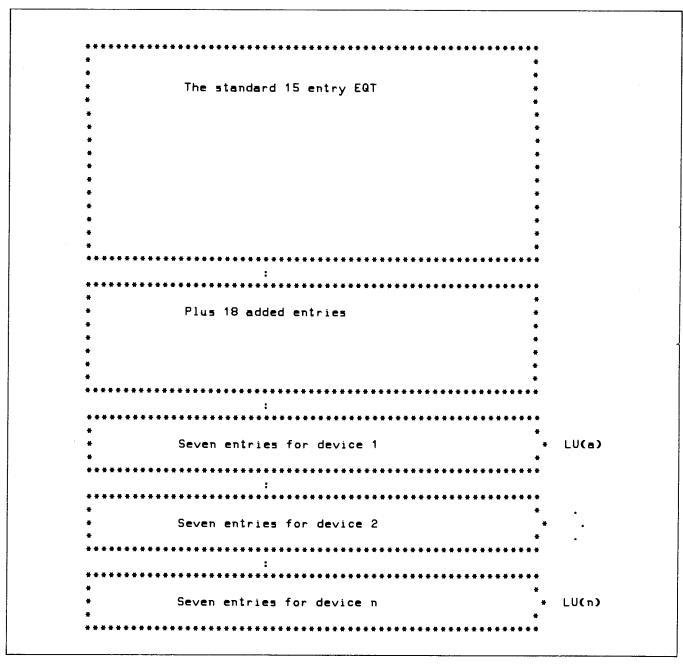
One time-out value is used for all of the HP-IB devices on the bus. This time-out is set for 10 seconds.

The BSCU distinguishes between the "bus logical unit" and "device logical units". The bus logical unit has a device address (subchannel) of 0. Device logical units have nonzero addresses less than 32. The BSCU obtains the maximum number of device logical units which may be used on the bus by examining the number of EQT extensions which were allocated at system generation. The IEEE-488 standard indicates that the maximum number of device logical units allowed is 14. However, the BSCU will indicate a larger value if more EQT extension area was allocated at system generation.

The BSCU next indicates the number of five-word blocks currently available for new device logical units.

NOTE

The BSCU assumes that if a matching LU cannot be found for a currently active five-word extension entry, the LU was inadvertantly reassigned. The BSCU will then automatically unconfigure the fiveword entry and report the cleanup to the BSCU input terminal. This procedure can be suppressed by specifying a non-zero value in parameter four of the run statement.


¹The BSCU can be obtained from the Contributed Library (part number, 22682-13397). See the Computer Systems "Communicator 1000" for an order form.

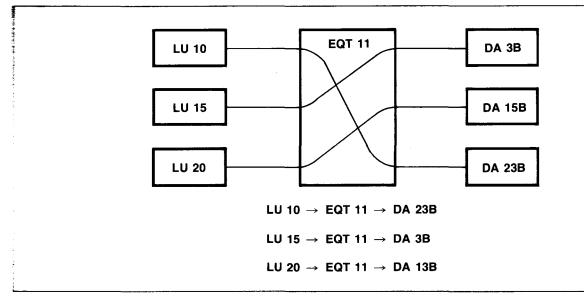
"Available logical units" indicates all of the LUs currently unassigned in the RTE system. These LUs are available for on line HP-IB assignment. "HP-IB logical units" indicate both the "bus" logical unit and "device" logical units currently assigned to EQT 11.

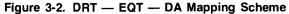
The statement,

:RU,BS,,,16

schedules the BSCU to supply user information about a particular HP-IB system logical unit. As shown in figure 3-4, it can be seen that LU 16 is a bus logical unit because it has a device address of zero.

Chapter 3


Table 3-1. HP-IB EQT Format


The Standard EQT: EQT 1 DEVICE SUSPEND LIST POINTER EQT 2 DRIVER INITIATION SECTION ADDRESS EQT 3 DRIVER COMPLETION SECTION ADDRESS EQT 4 DRIVER I/D ASSIGNMENTS EQT 5 DRIVER STATUS INFORMATION EQT 6 EQT 7 CURRENT I/D REQUEST DATA BUFFER ADDRESS/CONTROL PARM EQT 8 DATA BUFFER LNG/CONTROL PARM CONTROL BUFFER ADDRESS EQT 9 EQT10 CONTROL BUFFER LNG EQT11 DRIVER CONTROL WORD EQT12 EQT ENTRY COUNT EQT13 EQT EXTENSION ADDRESS EQT14 DEVICE TIME OUT RESET VALUE EQT15 DEVICE TIME OUT CLOCK Fixed Extensions (18 Entries) EQTX 1 CURRENT I/O CHARACTER LENGTH EQTX 2 CURRENT I/O RUNNING BUFFER ADDRESS EQTX 3 CURRENT I/O RUNNING CHAR COUNT CURRENT I/O TRANSMISSION LOG, CHARS PENDING STATUS BYTE EQTX 4 EQTX 5 SRQ SERVICE, PENDING BEQT ADDR SRG SERVICE, PENDING BEQT COUNT EQTX 6 EQTX 7 CURRENT OPERATION I/O RESUME ADDR EQTX 8 EQTX 9 DUMMY TIMEOUT = 0 EQTX10 AUTO ADDRESSING COMMAND BUFFER WORD 1 EQTX11 AUTO ADDRESSING COMMAND BUFFER WORD 2 BUS CONFIGURATION WORD (BEQT1 FOR BUS) EQTX12 EQTX13-18 BEQT2-7 FOR SUBCHANNEL 0 (BUS ITSELF) Variable length extensions (increments of 7 words) BEQT 1 Device configuration word Alarm Program (first two characters) BEQT 2 LU(a) BEQT 3 Alarm Program (second two characters) BEQT 4 Alarm Program (fifth character) BEQT 5 SRQ Status Byte (lower byte) BEQT 6 Arbitrary value to be passed to SRQ Program BEQT 7 Error status of last operation or transmission log of last operation BEQT 1 BEQT 2 BEQT 3 LU(n) BEQT 4 BEQT 5 BEQT 6 : BEQT 7 :

Contraction (1993) In the last of the last

Table 3-2. HP-IB EQT Table Details

EQT4 - Format: D BPS TUU UUU CCC CCC D = DMA ASSIGNED, 1= Yes B = Buffering On, 1 = Yes P = PWR Fail serviced by DVR, 0 = NDS = Time out serviced by DVR, 1 = Yes T = Time out occurance, 1 = Yes U = Unit or subchan, this request C = I/O Channel, this req. EQT5 - Format: A ATT TTT TSS SSS SSS A = AvailabilityT = Device Type, 37 S = Status Byte EQT6 - Format: C COZ OFF FFF 000 ORR C = REQUEST TYPE, 0/1/2/3:STANDARD/BUFFERED/SYSTEM/CLASS F = Subfunction R = I/O Request, 1/2/3:READ/WRITE/CNTRL Z = 0/1 SINGLE/DOUBLE BUFR REQUEST EQT11 - Format: S AOE BOO HLO OOC MDI S = SRQ Service in progress, 1 = Yes A = I/O Request aborted to service SRQ, 1 = Yes E = Expect/Issue EOR with I/O, 1 = Yes B = Expect/Issue EOR with last data byte, 1 = Yes H = Enable ASCII Mode I/O card logic, 1 = Yes L = Suppress line feed, only Bit 7 of BEQT1 is checked C = Enable CRLF post processing, 1 = Yes M = Data Mode, 1 = ASCII, 0 = Binary D = DMA Active on Pending Request, 1 = Yes I = I/O Direction, 1 = Input, 0 = Output EQT12 - Format: S PAB BBB BFE EEE EEE S = SRQ Pending Flag P = Alarm Prog Scheduling Active A = SRQ Interrupt Arming Flag B = # Active BEQT Entries, 0 = 31 F = First Direct I/O Request Flag E = # EQT Extension Words, 18-255 EQT13 -Format: I AAA AAA AAA AAA AAA I = Initiator/Continuator Flag A = EQT Extension Address

EQ 11 SELECT CODE 21, IS AVAILABLE FOR USE. TIME OUT WILL OCCUR AFTER 10.00 SECONDS (.1667 MINUTES). 14 DEVICE LOGICAL UNITS MAY BE USED ON THIS BUS. 14 DEVICE LOGICAL UNITS ARE YET UNKNOWN BY THE EQT. AVAILABLE LOGICAL UNITS: 17, 18, 19, 32, 33, 34, 51, 52, 53, 54, 55, 56, 63, HP-IB LOGICAL UNITS: 15,

Figure 3-3. BSCU Listing from ':RU,BS,,11'

Chapter 3

	TIME	ουτ	WILI	_ OC	CUR A	FTER	1 ().00	SE	CON	DS	(.1	667	MINU	TES).			
LU 16	TH	IS I	IS A	DEV	ICE I	NDEPE	NDEN	ЧΤ,	GEN	ERAI	_ В	US	LOG	ICA	L UNI	т	DA (00B	
		15 S				10 9 0 P									-				
		0	0	0	1 1	1 1	0	0	0	0	0	0	0	0	0				
		0			 1 	7			0			0			0				
	R=0 D=0 I=1 J=1 D=1 P=1	NO DMA REQU ISSU	IS I IS I JIRE JE AI	REST IOT AN ED RROR	ART A ALLOC EOI F I WIT 5 WIL	ABORTI ATTEMP ATED F ROM DI TH THE L ABOI REMO	T AF FOR EVIC LAS	TER THI E W	SR SD IITH YTE	Q. EVI(THI	ΕL	AST	ΒY	TE.					
					ATN _STN TALK	DATA NT AI ADDR ACTIV HI HI LO	DDRS												

Figure 3-4. "RU,BS,,16" Gives Information About System LU 16

The complete details concerning how the bus is configured may be obtained from the table which follows. The table is straightforward. Some of the information is condensed because certain configuration bits work together in defining the end of record requirements (I and J, O and P).² When a bus logical unit is found, the BSCU will supply user information about the five HP-IB management lines and the three handshake lines.

²See the HP-IB Users Manual (59310-90064) for device configuration information.

Figure 3-5 shows the BSCU output when a device logical unit is specified in the RUN statement,

:RU,BS,,,9

Each device logical unit may be configured separately. If left unmodified, this configuration defaults to that defined for the bus logical unit. More information is supplied for a device logical unit. The status byte obtained at any time during a serial poll is device dependent. The device will be polled only if SRQ program scheduling was set up previously for the device. The current value for device status is shown. These examples show only some of the information which the BSCU is capable of supplying. The BSCU outputs only the information applicable to the situation. The outline in figure 3-6 gives a complete description of BSCU characteristics.

The FORTRAN program describes in an easy to read format, the current configuration and status of HP-IB in RTE-M, RTE II, RTE III, and RTE IV when using driver DVR37 (REV. 1926) with SRQ program scheduling.

LU	9						C	DEVI	CE	ADD	RES	S	D	ECI	MAL)				DA 0011
			15 S	14 R	13 D	12 I	11 J	10 0	9 P	8 E	7 X	6 X	5 X	4 X	З Х	2 X	1 X	0 X		
			0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1		
			0			1			7			0			0			1		
		S=0 R=0 D=0 I=1 J=1 D=1 F=0	I/O NO DMA REQ ISS HP-	I/O IS UIR UE	RE: NO E A AN	STAI T AI N EI EOI	RT _LO DI WI	ATTE CATE FROM TH 1	EMP1 ED F 1 DE THE	T AF TOR EVIC	TER THI E P T E	SR SE IITH BYTE	Q. EVI I TH	CE. IE l	_AS1	гв	YTE			

Figure 3-5. "RU,BS,,,,9" Will Give Device LU Information

```
A. HP-IB equipment table information.
    1. Time-out value in milliseconds and seconds
    2. Availability
       a. available
       b. down
       c. busy
       d. waiting for a DMA channel
    3. DMA and output buffering
    4. Maximum number of devices which may be used on the bus
    5. Maximum number of devices which may yet be assigned
    6. Available logical units in the system
    7. The logical units which are assigned to the particular bus
B. The HP-IB bus logical unit (when one is assigned)
    1. Bus configuration
    2. I/O card status information
       a. REN
       b. ATN
       c. LSTN
       d. TALK
       e. CNTLR
       f. DAV
       g. NRFD
       H. NDAC
C.
   The HP-IB device logical unit (when one or more are assigned)
     1. Time-out (if only the device logical unit is requested)
     2. Device configuration (see program output)
     3. Device status
     4. SRQ program scheduling (when applicable)
          a. the current program state
             al. dormant
             a2. scheduled
             a3. I/O suspend
             a4. general wait
             a5. memory suspend
             a6. disc suspend
             a7. operator suspend
```

Figure 3-6. Outline of the BSC Utility

The information shown may be obtained in several different ways, in whole or in part depending in the format of the 'RUN' statement for the program. Current statistics may be obtained for:

a. All HP-IB logical units and EQTS.

b. One HP-IB EQT.

c. One HP-IB EQT and all associated logical units.

d. One HP-IB EQT and one associated logical unit.

e. One logical unit.

The 'RUN' statement can be entered from file manager as shown:

:RU,BS,ILST,EQT,LU

Figure 3-7 gives some examples of how the program might be executed.

The program requires ten pages of memory and the following modules shown in figure 3-8.

The BSCU obtains information from the EQT by making control requests (CALL EXEC(3,...) to DVR37 or references the actual addresses in memory to obtain the information directly from the EQT. Typically, control requests are made when DVR37 must determine the status of the bus or configure the solution to the request as a real-time operation.³

All corresponding LUs in the DRT are checked against the variable length EQT extension area for valid device address identification. When a configured device address is found in the EQT with no corresponding LU in the DRT, the five device words are cleared out so that a legal LU may later use the space.

Each time an LU subchannel entry from the DRT matches a device address from an entry in the EQT, the five-word entry is evaluated in the EQT and output: first, the configuration for the device, then the status word as last received from the device, and then SRQ program scheduling.

When an HP-IB device logical unit is set up for SRQ program scheduling, the BSCU obtains the name of the program from the EQT and then searches the ID segment list⁴ for the program to be scheduled and its current status. This information, or a message stating that the program cannot be found is then output.

RU,BS	GIVES ALL HP-IB INFORMATION
RU,BS,,11	GIVES INFO FOR HP-IB EQT 11
RU,BS,,11,-1	GIVES INFO FOR EQT11 AND ALL ASSOC. LUS
RU,BS,,11,19	GIVES INFO FOR EQT11 AND LU19
RU, BS, , , 19	GIVES INFO FOR LU19
RU, BS, , , -18	GIVES INFO FOR SESSION LU18
RU,BS,,11,-18	GIVES INFO FOR EQT 11 AND SESSION LU 18
RU,BS,,,,1	NON-ZERO PARAMETER 4 SUPPRESSES AUTO LU CLEANUP.
1	

³The BSCU avoids making control requests to the driver when the EQT or the LU is down (which would cause the utility to suspend). Instead, it prints out a message stating that the information is not obtainable when the EQT is in the down state.

⁴For this reason, the BSCU must be declared a type 3 program.

The information shown may be obtained in several different ways, in whole or in part depending in the format of the 'RUN' statement for the program. Current statistics may be obtained for:

a. All HP-IB logical units and EQTS.

b. One HP-IB EQT.

c. One HP-IB EQT and all associated logical units.

d. One HP-IB EQT and one associated logical unit.

e. One logical unit.

The 'RUN' statement can be entered from file manager as shown:

:RU,BS,ILST,EQT,LU

Figure 3-7 gives some examples of how the program might be executed.

The program requires ten pages of memory and the following modules shown in figure 3-8.

The BSCU obtains information from the EQT by making control requests (CALL EXEC(3,...) to DVR37 or references the actual addresses in memory to obtain the information directly from the EQT. Typically, control requests are made when DVR37 must determine the status of the bus or configure the solution to the request as a real-time operation.³

All corresponding LUs in the DRT are checked against the variable length EQT extension area for valid device address identification. When a configured device address is found in the EQT with no corresponding LU in the DRT, the five device words are cleared out so that a legal LU may later use the space.

Each time an LU subchannel entry from the DRT matches a device address from an entry in the EQT, the five-word entry is evaluated in the EQT and output: first, the configuration for the device, then the status word as last received from the device, and then SRQ program scheduling.

When an HP-IB device logical unit is set up for SRQ program scheduling, the BSCU obtains the name of the program from the EQT and then searches the ID segment list⁴ for the program to be scheduled and its current status. This information, or a message stating that the program cannot be found is then output.

RU,BS	GIVES ALL HP-IB INFORMATION
RU, BS, ,11	GIVES INFO FOR HP-IB EQT 11
RU, BS, ,11, -	I GIVES INFO FOR EQT11 AND ALL ASSOC. LUS
RU, BS, ,11,1	9 GIVES INFO FOR EQT11 AND LU19
RU, BS, , , 19	GIVES INFO FOR LU19
RU, BS, , , -18	GIVES INFO FOR SESSION LU18
RU,BS,,11,-	18 GIVES INFO FOR EQT 11 AND SESSION LU 18
RU, BS,,,,1	NON-ZERO PARAMETER 4 SUPPRESSES AUTO LU CLEANUP.

⁴For this reason, the BSCU must be declared a type 3 program.

³The BSCU avoids making control requests to the driver when the EQT or the LU is down (which would cause the utility to suspend). Instead, it prints out a message stating that the information is not obtainable when the EQT is in the down state.

Chapter 3

BS GTLU OUTPT DFIG BFIG WEHT HDVR	45530 47274 47275 50203	06-13-79 (GWG> GET TRUE LU 04-27-78 (GWG> DUTPUT AND CLEAR BUFFER 05-23-78 (GWG> WRITE DEVICE CONF. 10-02-78 (GWG> BUS BS. AND STATUS 07-11-78 (GWG> PAGE EJECT?
BAUGE	50000 50400	774400 04000 40044
PAUSE		771122 24998-16001
IGET	50463 50471	
		92067-16268 REV.1903 790223
LOGLU		92067-16268 REV.1903 790228 781106 24998-16001
RMPAR		
LUTRU FMTID	51176 51307	24998-16002 REV.1903 781107
FMT.E		24998-16002 REV.1901 781107
PNAME		771121 24998-16001
REIO		
ERRO		
.ITOI		
IFBRK		92067-16268 REV.1913 790124
PAU.E		
ERO.E		750701 24998-16001
\$ALRN		
CNUMD		92067-16268 REV.1903 770621
FTIME		
DTACH		92067-16268 REV.1903 781202
MESSS	53751 54304	92067-16261 REV.1903 790420
VSCBA	54305 54352	
\$CVT3	54353 54440	92067-16268 REV.1903 770621
IDGET	54441 54523	92067-16268 REV.1903 790314
FRMTR	54524 60150	24998-16002 REV.1901 781107
CAPCK	60151 60502	92067-16268 REV.1903 790201
\$SMVE		92067-16268 REV.1903 790202
\$ESTB	60572 60606	92067-16268 REV.1903 790202
10 PAG	ES RELOCATED	10 PAGES REQ'D NO PAGES EMA NO PAGES MSEG
/LOADR		Y AT 10:04 AM THU., 14 JUNE, 1979

Figure 3-8. Modules Needed for the BSCU

HP-IB Performance Measurements

Chapter 4

This chapter will introduce several equations that may be applied to describe some facets of HP-IB performance. These equations relate HP-IB performance with the HP 1000 using an RTE IV operating system only. This is meant to be an aid in understanding HP-IB, more than a method to analytically describe HP-IB performance. However limited, the model can be used to approximate simple HP-IB performance problems, analytically. The equations become too cumbersome for more complex problems.

These equations describe HP-IB performance and system utilization when I/O is via the interrupt system only.¹ I/O requests, when DMA is active, require an evaluation at another level which is not covered in this section. When DMA requests must be evaluated, the programs in Chapter 5 can be used to do the HP-IB measurements experimentally. For most cases, this gives satisfactory results.

Describing I/O Performance Characteristics

In instrumentation applications, we often wish to determine the rate (RT) at which measurements can be taken from a device or devices in a system. To do this, one must understand the operations involved in obtaining the measurements. In the simplest case, the procedure may involve one I/O request. In FORTRAN or a similiar language, this is one "WRITE" or "READ" statement to or from the HP-IB instrument. When one or more I/O requests are used for the operation, the combination is called a "task-in-process."

From a computer user standpoint, it is important to know the rate (RT) during a task-in-process and to understand how much (as an average) the computer is utilized (%UTL) during the task (task-in-process will be abbreviated task). These phenomena can be described by the variables shown in figure 4-1.

For example, the value for RT can be used to determine the number of measurements a digital voltmeter can obtain per second. The variable %UTL can give us a feel for the number of digital voltmeters that can be connected to the HP-IB interface and run before the central processing unit becomes saturated.

VARIABLE	DESCRIPTION
RT	The rate at which measurements can be taken.
XUTL	The average CPU utilization during a particular I/O operation or task.
TT	Time required for an I/O request.
TF	Time the CPU is free during TT.
тв	Time required by the HP-IB device during TT.
TC	Time used by the CPU for the I/O request during TT.
TCT	Time used for moving data by the CPU during TC.
TCFM	Time used for formatting data by the CPU during TC.
TCI	Time required by the CPU to initiate an I/O request.
тсіо	Time required by the CPU to continue an I/O request.
TCI01	Discrete time to describe TCIO with dispatching.
TC102	Discrete time to describe TCIO without dispatching.
TIDL	Time required by the CPU while in the idle loop.
TDISP	Time required by the CPU while in the dispatch- ing loop.
ТР	Time used by the CPU for moving data into memory.
TP2	Time used by the CPU for moving data and switching memory maps.
ТРЗ	Time used by the CPU for moving data without leaving the HP-IB driver.
TFPi	Discrete quantums of time which compose TF.
TS	The approximate setup time required for the I/O request assuming the I/O curve is perfectly linear.
TBn	Time required per byte by the HP-IB instrument.
UT	The average system utilization during an I/O request.
TDVM	Time required for the HP-IB device to obtain a measurement and make it ready for the return trip to the controller.

Figure 4-1. HP-IB Performance Variables

¹See Application Note AN201-4, "Performance Evaluation of HP-IB Using RTE Operating Systems." Also see the HP-IB User's Manual, especially Chapter 4 (DMA usage) and Chapter 3.

The request to be measured can be broken down into two general catagories. These are the times used by the CPU and by the HP-IB device. Generally, the time required to complete an I/O request can be described by the time the computer is busy plus the time the computer is free (figure 4-2):

TT = TC + TF

In the HP 1000, an I/O request may take several different forms, from the simplest "CALL EXEC" request for ASCII input:

CALL EXEC (1, IDLU, IBF, INUM)

to the most sophisticated, free field, formatted input (which converts ASCII to binary):

READ (IDLU, *)A, B, C(10)

In each case, TT takes on a different meaning (depending on the user's requirements), but it always represents the total time required to complete an I/O task.

NOTE

In a real-time computer like the HP 1000, a system clock is available which allows the time to be recorded before the I/O task is begun and again after the task has completed. Subtraction of these two times allows TT to be determined.

Practically speaking, the total time required during an I/O task may involve more than just returning measurements from an HP-IB device. Most HP-IB devices return data in ASCII format which must be converted to binary either to reduce the memory space required to store the data, or to perform computations on the data, or both. Because this formatting requires 100% of the CPU's computing ability, the time used by the computer during the task (TC) may be described as,

TC = TCT + TCFM

where TCT represents the summation of the individual TCT times in the picture (see figure 4-3). The individual TCT times represent the time required for I/O transfers by the CPU, and TCFM represents the time required for formatting the data.

where, TC = The time used by the CPU during TT. TT = The time required to transfer the measurement data. TF = The time the CPU is free during TT. It is also the time required by the HP-IB instrument during TT. IME TT IME TT

TT = TC + TF

Figure 4-2. Detailed List of Performance Variables

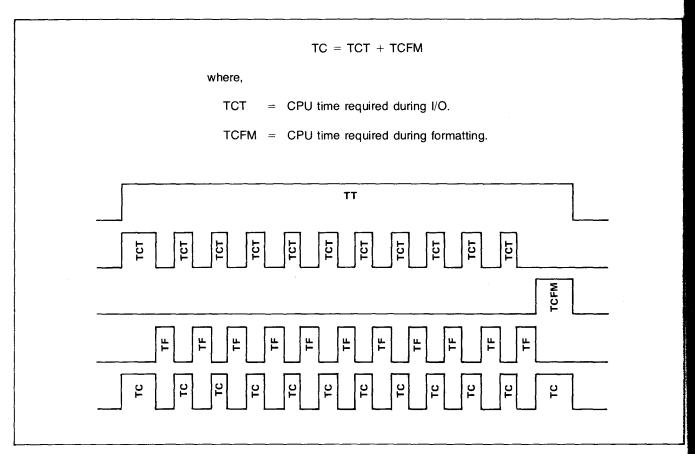


Figure 4-3. Breakdown of TC

When the input data from the HP-IB device will simply be displayed, no formatting is required and TCFM = 0. Therefore, TC (the CPU time used for the I/O request) is equal to TCT.

TC = TCT

when TCFM=0.

I/O Operations (TCIO)

The RTE operating system remains active during an I/O request. For this discussion, assume that TCFM = 0. Exploring TCT shows that,

$$TCT = TCI + TCIO$$

where,

 $TCIO = \sum_{\substack{i = 1, n \\ j = 1 \text{ or } 2}} TCIO_{j;}$

$$= \mathsf{TCIO}_{11} + \mathsf{TCIO}_{22} + \mathsf{TCIO}_{13} + \ldots + \mathsf{TCIO}_{2i}$$

The value TCI (figure 4-4) represents the time required to initiate an I/O request and to set up all of the required pointers, flags, etc. $TCIO_{ji}$ is the time required by the CPU to continue an I/O request after each interrupt until all the data has been transferred. TCIO is simply the sum of these discrete quantums of time (see figure 4-4).

After each interrupt the RTE operating system may be in one of two states (TCIO₁ or TCIO₂). Figure 4-4 shows that the quantum TCIO₁ or TCIO₂ may occur during the continuation of I/O. Which state depends on whether other programs can be dispatched² during the computer's free time (TF).

²A program must be in the scheduled state (state 1) before it can be dispatched. Many programs may be in the scheduled list (state 1), but only one program can be dispatched at a time.

Chapter 4

Figure 4-4. Visual Description of TCIO₁ and TCIO₂

27

The term TP enters the equations for $TCIO_1$ and $TCIO_2$ as shown in the flowchart in figure 4-5.

$$TCIO_{1i} = TP + TIDL$$

 $TCIO_{2i} = 3 * TP + TDISP$

In RTE-IV the HP-IB driver is mapped into the user's partition. When the operating system is idle $(TCIO_1)$, the user's map will remain active during the I/O request. After each interrupt a given amount of time (TP) will be required to move the data in or out of memory.

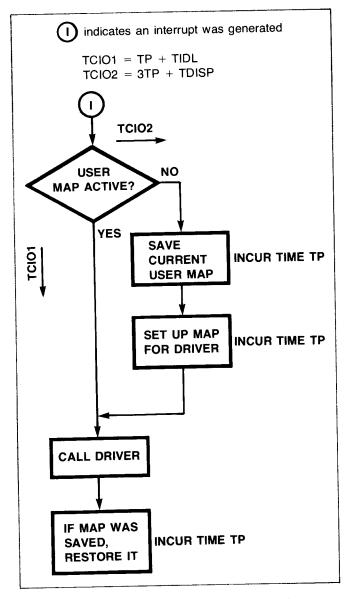


Figure 4-5. Flowchart of Map Switching Time

When other programs are active in the system, TP2 will be incurred which is longer than TP because user maps must be switched and saved.

Notice that the variables $TCIO_1$ or $TCIO_2$ also contain the factors TIDL or TDISP respectively (figure 4-4). They are constants and for most situations,

 $\text{TIDL} \approx \text{TDISP}$

Processing Very Fast Input

In some cases the maximum transfer rate is faster for the HP-IB instrument than it is for the HP 1000 which reduces the equations to,

$$TT = TCT$$

= TCI + TCIO
= TCI + n * TP3

where TP3 is a quantum of time required to process incoming or outgoing data within the HP-IB driver (in this mode the driver operates with the interrupt system turned off). The value "n" is the number of words transmitted. Basically, the HP-IB driver initiates an I/O transfer and then just a short time later (several microseconds) checks to see if the operation has already completed. If it has, it loops around and starts the next one.

NOTE

Unless it is acceptable to dedicate the entire system usage (100 percent utilization) to the operation, this method is not suggested.³ It may be disabled by allocating DMA to the device.

CPU Free Time (TF)

One quantity of interest for the HP 1000 system user is TF (the time left for another program to execute during a previously started I/O request) Note that,

$$TF = \sum_{i=1,n} TFP_i =$$

$$TFP_1 + TFP_2 + TFP_3 + \dots + TFP_i$$

is HP-IB instrument dependent and will vary from device to device and task to task as shown in figure 4-6.

³Some HP instruments such as the 3437A Digital Voltmeter, the 2240A Measurement and Control Processor, and the 5345A Counter are capable of operating in this mode. DMA is suggested for these devices.

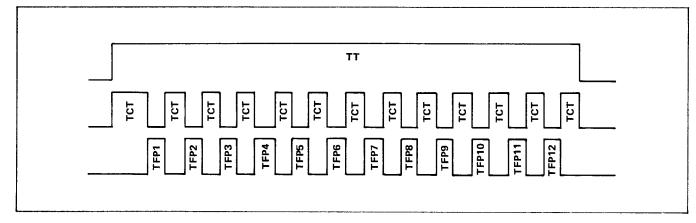


Figure 4-6. Timing Diagram of TF

NOTE

The quantity TF may be determined emperically using software. Dispatching a lower priority program during the I/O request idle time provides this information. Similiarly TT may be determined.

This value (TF) supplies some information about how the HP 1000 is utilized (as a percentage) during the I/O task (figure 4-7).

Note that as,

 $TF \rightarrow 0$
UT $\rightarrow 100\%$

and,

TCIO \rightarrow n \star TP3

$$UT = 100 - \frac{TF}{TT} \star 100$$

(in percent)

Linear Approximations

A graphical representation can be used to help visualize the above concepts when applied to a real situation.

An output from the computer to the HP-IB device under a given set of conditions, for example, may be graphed as the number of bytes output vs time. An approximately linear curve will result.

An approximated version of the curve will have a positive y-intercept and a positive slope (as shown in figure 4-8).

 $TT = TS + n \star TB_i$

Note that this is anologous to:

$$TT = TC + TF$$

$$= (TCT + TCFM) + TF$$

$$= TCI + \sum_{\substack{i=1,n \\ j=1 \text{ or } 2}} TCIO_{ji} + \sum_{\substack{i=1,n \\ i=1,n}} TFP_i$$

Under most conditions:

TS
$$\approx$$
 TCI
TCIO_{1i} \approx TCIO_{2i}
TFP₁ \approx TFP₂ \approx TFP₃.... \approx TFP_n
TB_i \approx TCIO_{ji} + TFP_i
TB₁ \approx TB₂ \approx TB_n

The quantity TS (the y-intercept) is a generalized approximation of the time required to get an I/O request initiated before any bytes are transmitted or received over the bus. Once this setup time has finished, n bytes will be transferred at time TB_n per byte.⁴

⁴This is only a linear approximation to the curve which represents actual transfer times observed via HP-IB in the test system. The emperical curve is not linear especially in the lower region (when less than two bytes have been transferred). This equation was used in AN 401-4. More information can be obtained there.

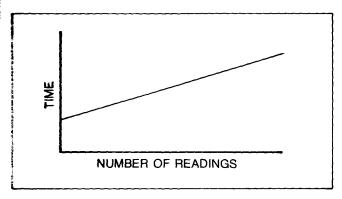


Figure 4-8. Example Linear Performance Graph

Obtaining Measurement Rate RT and %UTL

So far. only single I/O requests have been discussed. These I/O request equations can now be used to construct a conceptual model of HP-IB system performance for a task. The final objective is to calculate the rate (RT) at which measurements can be obtained from an instrument and the average system utilization during the task (%UTL).

While constructing these models it is helpful to draw a picture showing the physical timing of the I/O requests, and their relative "time lengths" to one another. In some cases these times overlap (see the following example), causing the total time TT to be shorter than one would initially suspect. The time axis can be broken up into separate blocks, each one specifying the controller or one or more instruments on the bus.

Most simple HP-IB devices go through the same basic steps to obtain a measurement. Figure 4-9 shows a breakdown of the times required to program, trigger, and read a measurement from an HP-IB voltmeter.⁵

Naturally, the sequence won't always occur in this order, but the conceptual model will obtain a ball park figure, depending on the assumptions made concerning how the measurements are taken. A description of the performance variables involved are shown in figure 4-10.

The quantities which determine UT and TT for each of the three operations during the task are shown in figures 4-7 and 4-11. The quantity "n" is the number of bytes transmitted or received.

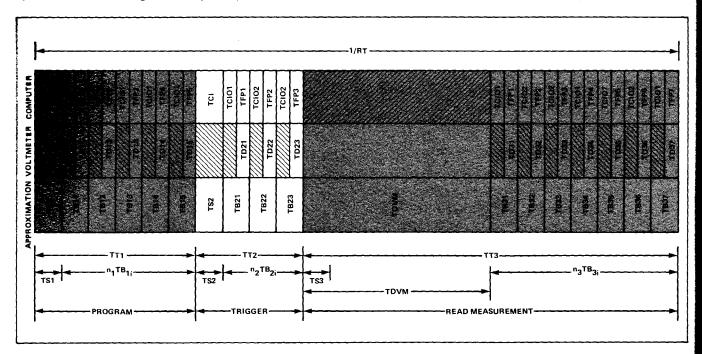


Figure 4-9. "Time Axis" of HP-IB Performance

⁵The model developed here is the same as that in AN 401-4 but the actual times will be replaced with the performance variables developed thus far in this chapter.

1. TIME 'TT1'

The computer talks while the instrument listens. Programming information is then sent to the device.

2. TIME 'TT2'

The computer talks while the instrument listens. The device is activated to take the measurement.

3. TIME 'TT3'

The computer listens while the instrument talks. The instrument returns the measurement to the computer.

Figure 4-10. Typical Measurement Sequence

- TT = The total time required for the I/O operation.
- TS = The approximated setup time required for the operation, assuming the I/O curve is perfectly linear.
- TB_i = The time per byte required by the HP-IB instrument.
- TCI = The CPU time required to initiate an I/O operation.
- TCIO = The CPU time required to continue an I/O operation.
- TF = The free time available to another program during a previously started I/O request.

Figure 4-11. Quantities Which Determine UT and TT

Figure 4-9 shows that the voltmeter requires a quantum of time for each byte transferred.

This can be represented as,

 $TD = TD1 + TD2 + \dots TDn$

In the general sense, as,

 $\begin{array}{l} TD \rightarrow 0 \\ UT \rightarrow 100\% \end{array}$

From this discussion it can be seen that performance can be approximated analytically if certain conditions can be reasonably estimated (figure 4-12).

- TS = Is a psuedo setup time derived as a y-intercept from an approximately linear curve.
- TBn = The transfer time per byte for the HP-IB device (used when TDn > TP3). Note, in most cases the assumption TD1 = TD2 = ... = TDn is used.
- TDVM = The time required for the HP-IB device to obtain a measurement and make it ready for the return trip to the controller.

 $TCIO_{ji} \ll TFP_i$ or TD_i IE. $TCIO_{ji}$ is negligible.

Figure 4-12. Analytical Performance Criteria

The controller can only perform one operation at a time (it cannot process incoming data at the exact same moment that the data is arriving from the HP-IB device, for example).

TS is approximated using worst case figures. This can be done by experimentally finding the maximum rate performance curve for the HP 1000. By extrapolating a line back to the y-intercept (zero bytes transmitted) a worst case figure for TS can be found.

The transfer time per byte (TD_i) for the HP-IB instrument and the measurement time required by the instrument (TDVM) are device dependent. Once determined (from the HP-IB device manual or data sheet) they are fixed quantities. TD_i maximum, for the HP 1000, is given in AN 201-4. If TD_i for the HP 1000 is greater than TD_i for the device, the HP 1000 value should be used. Remember that using TD_i for the HP 1000 assumes that TFP_i is zero (during the actual byte transfer) and the HP 1000 is being utilized 100%.

TT, TB_i, and TDVM determine the system utilization (%UTL) during the task (as shown in figure 4-13).

TT is determined by using TS, TB , TDVM, and n. See figure 4-14.

This chapter has summarized a complete set of equations which approximate HP-IB performance characteristics. Although the equations can be cumbersome, the characteristics are definable and preliminary estimates can be made. See Chapter 5 for a description of how to do performance measurements using HP 1000 software and specific HP-IB devices.

TF1 = (n1) * TB11 TF2 = (n2) * TB21 TF3 = (n3) * TB31 + TDVM - TS3 TF = TF1 + TF2 + TF3%UTL = 100 - $\frac{TF}{TT} * 100$

	TT1 = TS1 + (n1) * TB11
TT2	= TS2 + (n2) * TB21
ттз	= TDVM + (n3) * TB31
TT	= TT1 + TT2 + TT3
RT	= 1/TT

HP-IB Performance Programs

Chapter 5

This chapter will show how the theoretical equations discussed in Chapter 4 may be applied to determine HP-IB performance in an HP 1000 system. These performance equations have been duplicated in figure 5-1.

Several simple programs will be introduced which were used to graph the performance of HP-IB devices in earlier chapters. The programs can be used to obtain measurements via the interrupt system, or using DMA. The performance results of these programs are a function of:

- The type of CPU and memory being used.
- The number of EQTs in the system.
- The number of programs in the time list.
- The priority and type of program interacting with the HP-IB device.
- Whether output buffering has been implemented.
- Whether DMA is used.
- The capability and speed of the HP-IB device.
- Whether the measurements are saved in memory or output to another peripheral.

Program Descriptions

A series of four programs can be used to characterize HP-IB performance:

MEMAA FIGUR PERF *PERF

Two assembly subroutines are used by FIGUR and PERF:

CMPUT TIMEX

The subroutine CMPUT computes the difference between two octal double words, and subroutine TIMEX computes the total elapsed time. The tests may be run on any RTE system --- RTE-II, RTE-III, or RTE-M. Any CPU may be used --- the HP 1000 M-series, E-series, or F-series. At least four words of system common must be allocated at generation time for the measurements.

TT = TC + TF(a) TT = TS + nTB(b) $\% UTL = \left[1 - \frac{TF}{TT} \right] * 100$ TT = Time required to transfer the measurement data. TF = Time the CPU is free during TT. TC = Time used by the CPU during TT. TS = Approximated setup time required to start the I/O operation. n = Number of bytes transmitted or received. TB = Time per byte during the transfer. RT = Rate at which measurements can be taken. %UTL = Average CPU utilization during a particular task.

The four programs enable the user to solve the equations in figure 5-1 for an HP-IB "task in process."¹. The task will vary from device to device but basically revolves around those statements necessary to perform a repetitive measurement operation of some kind, or a repetitive programming operation.

To backtrack a bit, the meaning of "HP-IB system response time" has to do with the time required for the CPU to output, input, and/or perform a series of operations on the HP-IB. In the simplest case, this would be the total time from start to finish to perform a particular task. However, RTE-M, RTE II, and RTE IV, are somewhat more sophisticated because they are designed for multiprogramming (i.e., they are capable of performing other tasks before the particular task in process is finished).

For the eight given conditions listed on the previous page, and as long as system utilization (%UTL described in Chapter 4) is less than 100%, the total time required to perform a given task will always remain the same. If the CPU is not being utilized 100% by the task in process, it spends its extra time doing other constructive work (if there is constructive work to be done). The percentage amount of time (%UTL) which is being used by the task in process is denoted as system utilization. Note that if the system is being utilized 100%, the time required for the task in process will vary each time the task is run (assuming that all of the tasks in the system have equal priorities).

The multiprogramming capability of RTE can be used to determine system utilization by executing a lower-priority program during the time which the task program (performance test) is suspended. The lower-priority program counts at a known rate from which TF (the CPU free time, equation a in figure 5-1) can be found.

In a real-time operating system like RTE, the real-time clock causes the proper system tables to be updated every ten milliseconds. This process incurs a basic "operating system overhead" which can be described as a percentage (of time) and normalized out of the CPU's available time to do user oriented tasks. This percentage of time can only be regained by turning off the interrupt system or using privledged I/O.

Obtaining Operating System Overhead

Before HP-IB performance measurements can be started, the operating system overhead must be determined by using the two programs shown in figures 5-2, 5-3, and 5-4. Operating system overhead usually falls between 1% and 10%.

NOTE

When running the overhead programs, the system should be quiescent. That is, no programs should be in the time list unless this is the condition which generally prevails. No other programs should be scheduled or actually running.

The interrupt system is turned completely off for five minutes during the overhead procedure.

The program MEMAA shown in figure 5-2 is executed in a special mode to perform two functions. The first function is to determine the number of counts per second it can obtain with the operating system turned on. The second function is to determine the number of counts per second it can obtain with interrupt system off.

Once these values are recorded, MEMAA schedules program FIGUR (figure 5-3) which computes the ratio of the values and thus determines the operating system overhead. The number of counts/sec MEMAA obtains without the operating system, together with the operating system overhead value, are then saved in a file labeled "HPIB" on system disc LU 2. Later, the performance measurement programs will access the file to determine normalized performance times and operating system utilization. (See the "Procedure" section at the end of this chapter for complete system requirements and procedures for relocating and executing programs MEMAA and FIGUR.)

Once the operating system overhead programs have been run successfully, the actual HP-IB measurements can be conducted using the FORTRAN program shown in Figures 5-5 and 5-6.

In its simplest form, the "task in process" is one executable FOR-TRAN statement; however, it may be multiple statements or involve transferring control to another program as long as control is transferred back before the task completes.

0001 0002	ASMB,I	L NAM	MEMAA,1,3276	01-04-77 (GWG) HP-IB COUNTER
0003		EXT	EXEC, \$LIBR, \$	
0004		ENT	MEMA	,
0005		COM	UTIL2(1),UTI	L1(1)
0006	A	EQU	0	
0007	B	EQU	1	
0008 000 9	SCHED		10	
0009	NPRV1 NPRV2			
0011		NOP		
0012	PRV2	NOP		
0013	INAM	ASC	3,FIGUR	
0014	ICOD	DEC	6	
0015	NAM	DEC	0	
0016	*****			*******
0017	ONF	JSB	EXEC	
0018 0019		DEF	TERM	
0020		DEF DEF	SCHED Inam	
0020		DEF	NPRV1	
0022		DEF	NPRV2	
0023		DEF	PRV1	
0024		DEF	PRV2	
0025	*****			********
0026	TERM	JSB		TERMINATE PROGRAM
027		DEF	WAT2	
0028 0029		DEF DEF	I COD NAM	
0030		DEF	NAM	
0031	WAT2	JMP	*	
032	*****		***********	*******
0033	PRAM	BSS	5	
0034	MEMA	NOP		
0035		JSB	RMPAR	
0036 0037		DEF	RT1	
0037	RT1	DEF LDA	PRAM PRAM+1	
0039	KEI	SZA,		
0040		JSB	LOP1	
0041		JSB		DETERMINE COUNTS IN OP-SYSTEM
042		JSB	LOP1	
043		STA	NPRV1	
044		STB	NPRV2	
)045		JSB	WAIT	
		JSB	WAIT	
0046		JSB	WAIT WAIT	
)046)047				
0046 0047 0048		JSB		
0046 0047 0048 0049		JSB	WAIT	
0046 0047 0048 0049 0050 0051				

Figure 5-2. MEMAA, the HP-IB Performance Counter

35

Chapter 5

	0053	*****	****	**********	*****
	0054	PRV	NOP		DETERMINE COUNTS OUTSIDE OF OP-SYSTEM
	0055		JSB	\$LIBR	
	0056		NOP	*2·2 · ·	
	0057		JSB	LOOP	
	0058		JSB	LOP1	
	0059		STA	PRV1	
	0060		STB	PRV2	
r •	0061		JSB	\$LIBX	
	0062 0063		DEF	PRV	
	0064	. TUE	NEVT		T UPDATES TWO LOCATIONS IN
	0065	+ COMM		SECTION 303	OFDATES TWO EUCHTIONS IN
	0066	*			
		*****	*****	**********	******
	0067	D.0	NOP		
	0068	LOP1	NOP		
	0069		LDA	D.0	
	0070		OTA	1	
	0071		STA	UTIL2	
	0072		STA	UTIL1	
	0073	REPT	ISZ	UTIL1	
	0074		RSS		
	0075		ISZ	UTIL2	
	0076		LDB	UTIL2	
	0077		OTB	1	
	0078		LIA	1	
i	0079		SSA	•	
	0080		JMP	CNT	
	0081		JMP	REPT	
	0082	CNT			
		UNI		UTIL2	YES, DUTPUT COMMON
	0083		LDB	UTIL1	READY TO DUTPUT THE NEXT COMMON LOCATION.
	0084		JMP	LOP1,I	FINISHED!
	0085	SEVNS		77777	
	0086	LOOP	NOP		
	0087		LIA	1	
	0088		AND	SEVNS	CLEAR BIT 15
	0089		OTA	1	
	0090	RTN	CLE		
	0091		JSB	WAIT	
	0092		CME		
	0093		JSB	WAIT	
	0094		LIA	1	GET BIT 15 OF THE SWR.
	0095		SSA,F	RSS	IS IT SET?
	0096		JMP	RTN	
	0097		JSB	WAIT	
	0098		JMP	LOOP,I	YES, WAIT FOR INSTRUCTIONS.
	0099	CNTR	NOP		123, WHIT FOR INSTRUCTIONS.
	0100	CNT1	NOP	20707	
	0101	LARG	DCT	32767	
	0102	WAIT	NOP		
	0103	WATE	ISZ	CNTR	
	0104		JMP	WATE	
	0105		CLB		
	0106		STB	CNTR	
	0107		STB	CNT1	
	0108		JMP	WAIT,I	
	0109		END	MEMA	

Figure 5-2. MEMAA, the HP-IB Performance Counter (Continued)


```
FTN4,L
0001
            PROGRAM FIGUR(3),03-28-78 (GWG) SAVES INFO IN HPIB
0002
0003
      С
0004
      С
         FIGUR CALLS 'CMPUT' TO COMPUTE THE DIFFERENCE
0005
      С
         BETWEEN TWO OCTAL DOUBLE WORDS AND DIVIDES THE
0006
      С
         THE RESULT BY 300 SEC (5 MINUTES).
0007
      С
         IT THEN PUTS THE RESULT INTO A FILE: HPIB:RT:-2:3:1
0008
      С
0009
      С
0010
      С
            DOUBLE PRECISION UTIL, PCNT
0011
             DIMENSION IBUF(60), IPRAM(5), NAM(3)
0012
0013
             DIMENSION IDCB(144), IHI(2), ILO(2), IFHI(2), IFLO(2), UTL(2)
            EQUIVALENCE (IREG, REG, IA), (IREG(2), IB)
0014
0015
            DIMENSION IREG(2), IXH(2), IXL(2)
0016
             INTEGER CREAT, CLOSE, WRITF
0017
            DATA NAM/2HHP,2HIB,2H
0018
             CALL RMPAR(IPRAM)
0019
             IFHI(1)=IPRAM(3)
0020
             IFLO(1)=IPRAM(4)
             IFHI(2)=IPRAM(1)
0021
0022
             IFLO(2)=IPRAM(2)
0023
             ILU=1
0024
         CREATE A FILE FOR THE OUTPUT DATA
      С
             IF (CREAT (IDCB, IERR, NAM, 1, 3, 2HRT, -2).LT.0) GD TO 800
0025
0026
             WRITE(ILU, 1900)
0027
     1900
            FORMAT(/" FIGUR: DATA FILE 'NAMR' IS
                                                          HPIB:RT:-2:3:1")
0028 C READ IN DATA
     C FIRST READ 'MEMAA' COUNTS OUTSIDE DF OPERATING SYSTEM
0029
0030
            DO 685 I=1,2
0031
             IHI(I)=0
0032
             I \sqcup \Box (I) = 0
      C CALL CMPUT TO ACTUALLY COMPUTE THE DIFFERENCE
0033
             CALL CMPUT(IHI(I), ILO(I), IFHI(I), IFLO(I), IXH(I), IXL(I))
0034
0035
             UTL(I)=IXH(I)*32768.+IXL(I)
0036
             UTL(I)=UTL(I)/300.
0037
      685
             CONTINUE
            PCNT=(UTL(1)-UTL(2))/UTL(1)
0038
0039
             CALL CODE
            WRITE(IBUF,601)UTL(1),PCNT
0040
0041
            FORMAT(D15.12,", "D15.12", ")
      601
0042
      C WRITE THE RECORD
             IF(WRITF(IDCB, IERR, IBUF, 17).LT.0)GD TO 800
0043
0044
      C WRITE AN EOF
            IF(WRITF(IDCB, IERR, IBUF, -1).LT.0)GD TO 800
0045
      81
0046
      C CLOSE THE FILE
0047
      85
             IF(CLOSE(IDCB, IERR).LT.0)G0 T0 800
0048
             GD TO 84
0049
      800
             WRITE(ILU,908) IERR
             FORMAT(" FMP ERROR "I6" ON FILE 'HPIB' -- FIGUR ABORTED.")
0050
      908
0051
             GO TO 900
0052
      84
             WRITE(ILU, 189)
0053
      189
             FORMAT(/"FIGUR: TASK COMPLETED.")
0054
      900
             END
```

Figure 5-3. FIGUR, Computes and Saves System Overhead

0001 ASMB,L 0002 NAM CMPUT,8 11-29-76 (GWG) COMPUTE DOUBLE OCTAL 0003 EXT .ENTR,EXEC 0004 ENT CMPUT 0005 * THIS IS A GENERAL PURPOSE ROUTINE WHICH PICKS UP 0006 * TWO OCTAL DOUBLE WORDS, 0007 8000 * COMPUTES THE DIFFERENCE BETWEEN THEM AND 0009 * RETURNS THE RESULT IN TWO DIFFERENT PLACES. * CALL SEQUENCE IS AS FOLLOWS: 0010 0011 CALL CMPUT(IPRM1, IPRM2, IPRM3, IPRM4, IPRM5, IPRM6) 0012 IPRM1 = HIGH BITS INITIAL UTIL 0013 IPRM2 = LOW BITS INITIAL UTIL IPRM3 = HIGH BITS FINAL 0014 UTIL 0015 IPRM4 = LOW BITS FINAL UTIL 0016 IPRM5 = HIGH BITS OF RESULT 0017 IPRM6 = LOW BITS OF RESULT 0018 0019 NOTE THE FORMAT OF THE HI AND LO RESULT BITS: * 0020 THE LOW BITS ARE FIFTEEN SIGNIFICANT (THE SIGN * 0021 * BIT IS ALWAYS ZERO. THE HIGH BITS ARE A CONTINUATION 0022 * OF THE LOW BITS (THE LOW REGISTER SIGN BIT HAS BEEN 0023 SHIFTED INTO THE HI REGISTER LSB). * 0024 THIS WAY THE CALLING PROGRAM CAN PICK UP THE TWO * 0025 REGISTERS (FROM COMMON OR THE CALL PARAMETERS) * 0026 AND COMPUT THE COMPLETE NUMBER AS FOLLOWS: * 0027 X = IPRM5 * 32767.+ IPRM6 * 0028 0029 **************** 0030 0031 . 0032 EQU 0 Α 0033 В EQU 1 0034 LIST ОСТ 1 0035 FRMT ASC 4,(2(16)) 0036 PASS DEC 14 0037 WRTF DEC 2 0038 DQLT OCT 2 0039 2 LNTH DEC 0040 ARGS BSS 6 0041 CMPUT NOP 0042 JSB .ENTR 0043 GET DEF ARGS ARGS,I 0044 LDB * B HAS HI INITIAL BITS 0045 LDA * A HAS LO INITIAL BITS ARGS+1,I CMB 0046 * ONE'S COMPLEMENT ON HI INIT. BITS 0047 CLE CMA, INA 0048 * TWO'S COMP. ON LOW INIT. BITS 0049 * CARRY INTO B? SEZ 0050 INB * YES, INCREMENT B 0051 CLE . 0052 + ADD TO A THE LO FINAL BITS ADA ARGS+3,I 0053 SEZ + CARRY OUT OF A? 0054 INB + YES! 0055 ADB ARGS+2,I + ADD TO B THE HI FINAL BITS

Figure 5-4. CMPUT, Subroutine used by FIGUR and PERF

0056 * HIGHER WORD IN B AND LOWER WORD IN A 0057 ¥ SSA 0058 SIGN BIT SET? 0059 JMP +YES! INC +NO! JUST SHIFT B. 0060 ELB 0061 JMP GΟ 0062 INC SHIFT AND ELB INCREMENT B. 0063 INB 0064 ELA,CLE,ERA CLEAR SET SIGN IN A! 0065 GO STB ARGS+4,I 0066 STA ARGS+5,I 0067 RTN JMP CMPUT,I ***TERMINATE SUBROUTINE** 0068 CMPUT END

0001	FTN4,L
0002	PROGRAM PERF(3),01-11-79 (GWG) MEASURE TASK PERFORMANCE,UTIL
0003	
0004	C RU, PERF, INPUT, IDLU, ILN, ITER, IUTF
0005	C
0006	C INPUT= INPUT LOGICAL UNIT
0007	C IDLU = DEVICE LOGICAL UNIT
8000	C ILN = NUMBER OF MEASUREMENTS TO BE TAKEN
0009	C ITER = # DF ITERATIONS (DETERMINES ACCURACY)
0010	C IUTF = UTILIZATION FLAG 1 MEANS NO UTILIZATION
0011	C
0012	COMMON IUT2,IUT1
0013	
0014	
0015	DIMENSION IDFT(5), IREG(2), ISEC(5), IBFR(60), MEMA(3), IUTL(2)
0016	-
0017	INTEGER IBUF(100), ISTAT(2)
0018	REAL OUTBUF(100)
0019	-
0020	INTEGER OPEN, CLOSE, READF
0021	
0022	
0023	
0025	
0026	
0027	
0028	WRITE(ILU,1011)
0029	
0030	GO TO 900
0031	1010 IF(ITER.EQ.0)ITER=100
0032	C OPEN HPIB FILE AND GET OVERHEAD DATA
0033	IF(OPEN(IDCB,IERR,NAM2).LT.0) GO TO 800
0034	
0035	CALL CODE

Figure 5-5. PERF, A User Program for HP-IB Performance Measurements

0036 READ(IBFR, *)COUT, OHED 0037 IF(CLOSE(IDCB, IERR).LT.0) GD TD 800 0038 C INITIALIZE LOOP COUNT 0039 IUT2=0 0040 IUT1=0 0041 C SCHEDULE MEMA 0042 IF(IUTF.EQ.0)CALL EXEC(10, MEMA) 0043 C 0044 C = = = 0045 C ENTER USER STATEMENTS OUT OF TEST HERE. 0046 С WRITE(IDLU,1111) 0047 0048 1111 FORMAT("D.00001SR3T1F2") 0049 WRITE(IDLU, 1110)ILN 0050 1110 FORMAT("N"I3"S") 0051 С 0052 С 0053 C = = = -----0054 C GET INITIAL UTILIZATION 0055 ISTR2=IUT2 0056 ISTR1 = IUT1 C GET THE START TIME 0057 0058 CALL EXEC(11, ISTRT) 0059 DO 100 J=1, ITER 0060 С 0061 C = = = = 0062 C ENTER USER STATEMENTS FOR TEST HERE. 0063 C DO 100 IJ=1,ILN READ(IDLU, +)A 0064 С 0065 REG= EXEC(1, IDLU+100B, IBUF, ILN) 0066 IF(CNVRT(IBUF, IB, OUTBUF).LT.0) GO TO 800 0067 C USER STATEMENTS FOR TEST END HERE. 0068 C-----------------0069 С 0070 100 CONTINUE 0071 С 0072 GET FINISH COUNT С 0073 С 0074 IFIN2=IUT2 IFIN1=IUT1 0075 0076 С 0077 C GET FINISH TIME 0078 С 0079 CALL EXEC(11, IENDT) 0080 C TURN OF MEMA 0081 IF(IUTF.EQ.0)CALL EXEC(6, MEMA, 0) С 0082 0083 COMPUTE THE DOUBLE WORD COUNT С 0084 С 0085 CALL CMPUT(ISTR2, ISTR1, IFIN2, IFIN1, IUTL(1), IUTL(2)) 0086 С 0087 С COMPUTE THE ELAPSED TIME 0088 С 0089 CALL TIMEX(ISTRT, IENDT, IDFT) 0090 SEC=IDFT(3)+60.+IDFT(2)+IDFT(1)+1.E-02

Figure 5-5. PERF, A User Program for HP-IB Performance Measurements (Continued)

0091 0092 0093 0094 0095 0096 0097 0098	C DET	ERMINE TOTAL COUNTS FROM MEMAA UTL=IUTL(1)+32768.+IUTL(2) TNORM=(SEC-SEC+OHED)/ITER TFREE=1./COUT+UTL/ITER TPER=TNORM-TFREE
0098		UTIL=(TNORM-TFREE)/TNORM*100. IF(IUTF.EQ.0) WRITE(ILU,300)TNORM,UTIL
	300	
0101		4" X")
0102		IFCIUTF.NE.0)WRITECILU,301)TNORM
0103	301	FORMAT("PERF: TASK TIME = "F7.5" SEC.")
0104		GO TO 900
0105	800	WRITE(ILU,200)IERR
0106	200	FORMAT(" PERF: FMP ERROR ", IG," ON FILE 'HPIB'.")
0107	900	END

з.

Figure 5-5. PERF, A User Program for HP-IB Performance Measurements (Continued)

0001	ASMB,L
0002	NAM TIMEX,7 COMPUTE ELAPSED TIME-LARRY SMITH 770223-G.GROS
0003	EXT .ENTR
0004	ENT TIMEX
0005+	
0006+	
0007*	
0008+	
0009+	
0010*	
0011+	
0012*	
0013+	
0014+	
0015+	
0016+	
0017*	
0018+	
0019*	
0020*	
0021*	
0022*	WHERE: ISTRT - 5 ELEMENT ARRAY FOR INITIAL TIME VALUES
0023+	IENDT - 5 ELEMENT ARRAY FOR TINAL TIME VALUES
0024*	IDIFT - 5 ELEMENT ARRAY FOR COMPUTED ELAPSED TIME
0025*	EACH 5 ELEMENT ARRAY IS PARTITIONED AS FOLLOWS:
0026*	
0027+	ELEMENT CONTENTS
0028+	
0029*	1 NUMBER OF TENS OF MILLISECOND PERIODS
0030*	
0031+	3 NUMBER OF MINUTES
0032*	
0033*	

Figure 5-6. TIMEX, Compute Time Difference

	0034*				
	0035*				
	0036	ISTRT	NOP		
	0037	IENDT	NOP		
	0038	IDIFT	NOP		
	0039	TIMEX	NOP		TIMEX ENTRY POINT
	0040		JSB	.ENTR	
	0041		DEF	ISTRT	
	0042				
	0043* 0044	• • • • •	co	MPUTE 10'S OI	F MILLI-SECONDS ELAPSED TIME
			100	0.0.407	ARMENTE THE DELATING DISCOVER
	0045		JSB	COMPT	COMPUTE THE RELATIVE DIFFERENCE.
	0046		SSA,		ADJUSTMENT NEEDED?
	0047		JMP	SECS	NO.
	0048		ADA	=D100	ADJUST.
	0049		JSB	ADJ	PUT ADJUSTMENT IN IENDT ARRAY.
	0050				
	0051*	• • • • •	CU	MPUTE SECOND	S ELAPSED TIME
	0052	CECC	ICD	TNO	DUMB ADDAY ADDRESS BRINTERS
	0053 0054	SECS	JSB	INC	BUMP ARRAY ADDRESS POINTERS.
			JSB	COMPT	COMPUTE THE RELATIVE DIFFERENCE.
	0055		SSA,		ADJUSTMENT NEEDED?
	0056		JMP	MINS	NO.
	0057			= D6 0	ADJUST.
	0058		JSB	ADJ	PUT ADJUSTMENT IN IENDT ARRAY.
	0059		0.01		
	0060*	• • • • •		MPULE MINULES	S ELAPSED TIME
	0061	MINC		110	DUMP ADDAY ADDOGOG DOLLITEDO
	0062	MINS	JSB	INC	BUMP ARRAY ADDRESS POINTERS.
	0063		JSB	COMPT	COMPUTE THE RELATIVE DIFFERENCE.
	0064		SSA,		ADJUSTMENT NEEDED?
	0065		JMP	HOURS	NO.
	0066		ADA	=D60	
	0067		JSB	ADJ	PUT ADJUSTMENT IN IENDT ARRAY.
	0068		0.01		
	0069*	• • • • •		TPUTE HOURS E	ELAPSED TIME
	0070			TNO	DUMP ADDAY ADDRESS DELATERS
	0071 0072	HOURS	JSB	INC	BUMP ARRAY ADDRESS POINTERS.
	0072			COMPT	COMPUTE THE RELATIVE DIFFERENCE.
	0073		SSA,		ADJUSTMENT NEEDED?
			JMP	TIMEX,I	ND. RETURN TO CALLER.
	0075		ADA	=D24	ADJUST.
	0076 0077		JSB	ADJ	PUT ADJUSTMENT IN IENDT ARRAY. RETURN TO CALLER
			JMP	TIMEX,I	RETURN TO CALLER
	0078 0079*			LITY ROUTINE	-
	0079*	ADJ		ILIIT RUUIINE	15
	0080	HDJ	NOP	IDIFT,I	BUT AD INCTED TUNIME BACK IN DUFFER
	0082		STA LDA	IENDT	PUT ADJUSTED TUNIME BACK IN BUFFER
	0083		INA	IERDI	
	0083		STA	в	
	0085				ADJUSTED ADDRESS. ADJUST THE TIME.
	0086		LDA ADA	A,I =D-1	HUJUSI INE HIME.
	0086		STA	=D-1 B,I	PUT BACK IN IENDT BUFFER.
	0087		JMP	ADJ,I	
	0089	COMPT		nDJ, I	RETURN.
	0090		LDA	IENDT, I	GET ENDING TIME VALUE.
<u> </u>					VET ENDING THE VELOC.

Figure 5-6. TIMEX, Compute Time Difference (Continued)

```
0091
                   ISTRT, I
                                 GET STARTING TIME VALUE.
              LDB
0092
              CMB, INB
                                 COMPUTE RELATIVE DIFFERENCE.
0093
              ADA
                   в
0094
                                 PUT BACK IN DIFFERENCE ARRAY.
              STA
                    IDIFT, I
0095
              JMP
                    COMPT,I
                                 RETURN.
       INC
0096
              NOP
                                 MOVE START TIME ARRAY ADDRESS POINTER
0097
              ISZ
                    ISTRT
0098
              ISZ
                    IENDT
                                 MOVE ENDING TIME ARRAY ADDRESS POINTER
0099
              ISZ
                    IDIFT
                                 MOVE DIFF. TIME ARRAY ADDRESS POINTER
              JMP
0100
                    INC, I
                                 RETURN.
0101
0102*
              . CONSTANT AND TEMPORARY STORAGE AREA ...
        . . . . .
0103
              EQU
                    ٥
0104
       Α
0105
              EQU
       B
                    1
0106
0107*
                  LITERALS ...
       . . . . . . . . .
0108
              END
```

Figure 5-6. TIMEX, Compute Time Difference (Continued)

Program PERF

Program PERF performs four operations.

- 1. It opens the file "HPIB" on LU 2 and obtains the system overhead values.
- 2. It obtains the initial and final times, and computes the difference using subroutine TIMEX shown in figure 5-6.
- 3. It obtains the initial and final counts, and computes the difference.
- 4. It calls the subroutine CMPUT to do some required computations so the results may be printed.

The user inserts FORTRAN statements into PERF to comprise the task in process to be measured.

In some situations, one user task may take much less than 10 milliseconds (the best time resolution available from the realtime system clock). For this reason, PERF gives the user an option of repeating the single task many times (then dividing the total time by the number of times the task was repeated) so that good resolution may be obtained. Figure 5-7 demonstrates this idea. In the run statement,

:RU,PERF,A,B,C,D,E

parameter A indicates where the measurement results are to be printed. (This is the LU of the computer output device.)

The parameter B is the HP-IB device LU.

The value C, in most cases, represents the number of measurements to be taken from the HP-IB device during the task. This parameter is user-definable.

Parameter D defines the number of times the task will be repeated to give good resolution. If this value is not supplied, it defaults to 100.

Parameter E is a flag which denotes whether system utilization during the task is to be measured. System utilization is recorded by scheduling MEMAA at a lower priority to count while the task in process is suspended (waiting for the HP-IB device). The number of counts per second which MEMAA is capable of performing is saved in file "HPIB". Therefore, the total time program MEMAA counts, during the task, can be computed to determine the CPU free time (TF, in figure 5-1) during the task.

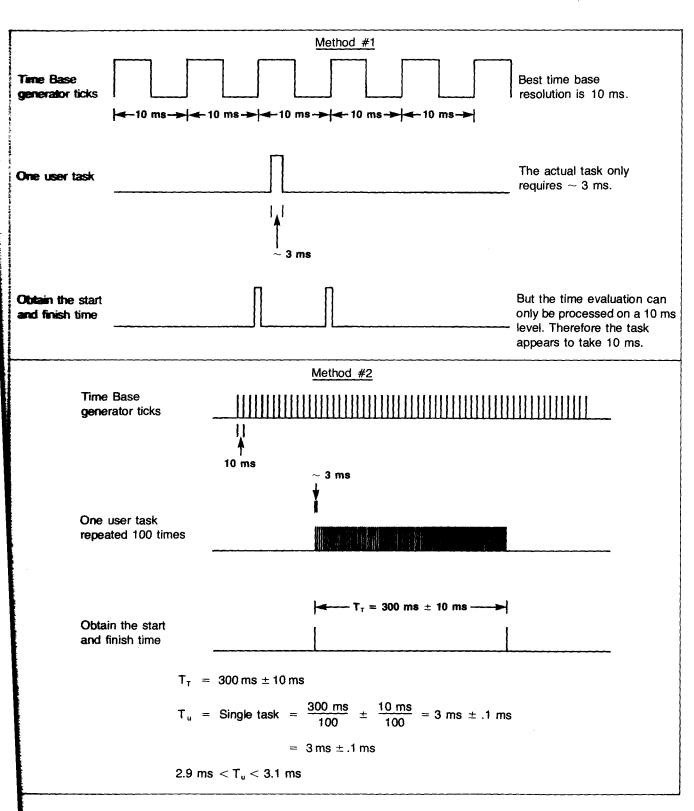


Figure 5-7. Visual Description Time Tick Phenomena

Note that different total times will appear when parameter E is toggled, because TIDL (time spent by RTE in the idle loop) is incurred instead of TDISP (time spent by RTE dispatching other programs), as shown in Chapter 4.

For example, suppose the rate at which four ASCII characters can be sent to a particular HP-IB instrument needs to be measured. The FORTRAN statement which will do the job is:

```
WRITE(IDLU,10)
10 FORMAT("F1R1")
```

In this case, the above two statements should be added to program PERF between lines 63 and 70. When it is run, PERF will open the "HPIB" file in line 33 and obtain the system overhead data.

Next, program PERF initializes two memory locations, in system common (lines 39 and 40), in which program MEMAA saves its count values. Note that each MEMAA count represents the amount of time another program in the HP 1000 could be using for constructive work. This is a measurement of how much the system is utilized. Program MEMAA is scheduled, but it will not actually run until I/O begins with the HP-IB device.

Next, PERF obtains the current count values in system common and saves them in locations "IUT2" and "IUT1" (lines 55 and 56). It also obtains the current time and saves the value in "ISTRT" (line 58).

Line 63 contains the maximum loop value given in the run parameters. This value controls the resolution of the measurements as described earlier. User task statements begin in line 64.

Once the task is finished, program PERF again obtains the time and saves this value in "IENDT". The current MEMAA count is obtained from system common and the MEMAA counter is turned off.

The total number of MEMAA counts is obtained by subtracting "ISTR1" and "ISTR2" from "IFIN1" and "IFIN2". The subroutine CMPUT is used for this computation.

The value TT (figure 5-1) is equivalent to the "normalized" total test time. This value is obtained by taking the total time required for the test (including the processing time for system clock ticks) and normalizing out the system clock ticks. In other words, multiply the total time by the overhead factor (obtained from file "HPIB") and subtract this value from the total time.

If SEC represents the total time and OHED (from file "HPIB") is the overhead factor,

TNORM = SEC - (SEC*OHED)

See line 90 in figure 5-5.

The value TF (equation a in figure 5-1) is obtained by multiplying the number of counts MEMAA can perform per second (from file "HPIB") times the number of counts MEMAA was able to achieve during the task in process. (See line 91 in figure 5-5.) The value TC in figure 5-1 may then be computed.

The value "%UTL" (figure 5-1, equation c) is computed as the ratio of computer free time to the total normalized time for the task in process.

A file manger transfer file such as the one in figure 5-8 may be used to determine equation b in figure 5-1. The program PERF is continually rescheduled using incremental run parameters until enough values have been obtained to determine a line. The slope n and slope intercept TS may then be found.

System Overhead Procedure

Before the HP-IB performance measurements can begin, the operating system overhead must be determined. (Overhead usually ranges from 1 to 10%.)

NOTE

When running the overhead programs, the system should be quiescent, i.e., no programs should be in the time list unless this is the condition which generally prevails. No other programs should be scheduled or actually running.

The interrupt system is turned completely off for five minutes during the overhead procedure.

Two programs (MEMAA and FIGUR) are used to determine the operating system overhead. See "Program Loading Procedures" later in this section to load the programs into a particular RTE system.

```
0001
      :SV,4,,IH
0002
      :CA,4,9
0003
      :CN,4G,TD
0004
      :LL,4G
      :DP, ENTER MESSAGE WITH ANNOTATE MESSAGE
0005
0006
      :PAUSE
0007
      :CA,1,10
8000
      : IF, 1G, GE, 100, 2
0009
      :AN,1G,READINGS _
0010
      : IF , , EQ , , 1
      :AN,1G, READINGS
0011
      :RU,PERF,4G,18,1G,1000,0
0012
0013
      :AN,
0014
      :CA,1,1G,+,10
0015
      :IF,1G,LE,100,-8
0016
      :AN,
0017
      :CN,4G,TO
0018
      :CN,4G,TD
0019
      ::
```


The program MEMAA runs in a special mode to obtain the system overhead. Otherwise, it runs in the normal mode. MEMAA is responsible for actually doing the measurement, and scheduling FIGUR to calculate the results. FIGUR creates a file "HPIB" and outputs the data to the file. This file contains:

- a. counts/sec (for MEMAA outside the operating system).
- b. percent/100 (system overhead).

The file "HPIB" is used later during the actual HP-IB performance measurements.

NOTE

Program FIGUR will attempt to create a file "HPIB". If this file already exists, FIGUR will abort and the measurement will be lost. Therefore, purge all old "HPIB" files before beginning the operating system overhead procedure.

A stopwatch (or a clock with a second hand) is needed for this procedure. One free block on LU 2 is also required.

Figure 5-9 contains the details for executing the programs used for measuring the system overhead.

- *DN,WHZAT (to determine that nothing but WHZAT is operating in the system) or *ST (in RTE-M)
- 2. Make sure that both MEMAA and FIGUR have ID segments in the RTE system, and that one free block of File Manager file space is available on system disc LU 2.
- 3. * DN, MEMAA, , 1 (At this point, the extend register on the front panel will begin blinking)
- 4. Set bit 15 (and quickly release) to start the first measurement. The output on the switch register will be an incremental octal count. The interrupt light on the front panel will be on.

After setting bit 15 to start the measurement, wait 5 minutes and set bit 15 again (quickly release). The extend register will again begin blinking. The interrupt light will now be off.

5. Reset the stopwatch and again, set bit 15 (quickly release) and wait 5 minutes. When the time period is finished, set bit 15 again. Program MEMAA will now schedule FIGUR and pass it the results.

Figure 5-9. Overhead Procedure

Program Loading Procedures

General

The system must be generated with at least four words of system common (foreground common in RTE-II, RTE-III, or RTE-IV).

RTE-M

MEMAA and PERF are relocated on-line (accessing system common) into a partition, as specified by the snapshot. Similiarly FIGUR is relocated, but it need not access common. MEMAA should have a priority of 32767. PERF and FIGUR should each have a priority of 99.

For example, a LOADR file might look like:

*LO,RTMLD *RU,RTMLD,AN,SF,IL,1,3

The answer file might be,

```
TR, SNAP
OUTPUT ON MEMAA
MAP MODULES ON 1
REL %MEMAA
SEARCH %MSYLB
SEARCH %RLIB1
SEARCH %RLIB2
END
```

RTE-II

MEMAA must be loaded during generation as a memoryresident program accessing foreground common (priority = 32767).

FIGUR may be loaded on-line (background or foreground, no common needed).

PERF may be loaded on-line as background disc-resident, accessing foreground common (priority = 99). For example,

```
:RU,LOADR
/LOADR: DP,RC
/LOADR: RE,%PERF
:
:
/LOADR: EN
```

RTE-III and RTE-IV

MEMAA may be loaded either during generation as a memory-resident program accessing system common, or it may be loaded on-line as a foreground disc-resident program accessing foreground common (the common access will default to those above). It should have a priority of 99.

FIGUR may be loaded on-line (background or foreground, no common needed).

PERF is loaded on-line as a background disc-resident program, accessing reverse common (see RTE-II), having a priority of 99.

Assigning HP-IB Logical Unit Numbers

Chapter 6

The logical unit (LU), — Equipment Table (EQT),— device address (DA) — mapping scheme is a generalized method within the RTE system for maintaining maximum flexibility between the computer and its external peripherals.¹ Although several RTE manuals discuss this concept, the assignment procedures sometimes appear cryptic to the new user.

In most situations an interactive user program performs input, output, and — in this series of application notes — it also interacts with an HP-IB instrument. In the Real Time Executive, numeric values called logical unit numbers are assigned to external peripherals to make referencing them an easier task. A line printer may be assigned LU "6" or a digital voltmeter LU "27," for example.

The number assigned to the peripheral is arbitrary, but the user must know it to reference the terminal, line printer, or HP-IB instrument. Therefore, for this series of application notes, the input terminal will be denoted "ILU," the list device "ILST," and the instrument "IDLU."

The purpose of this chapter is to broaden the reader's knowledge of logical units and to address some details of LU mapping. A series of user subroutines will show a method for identifying ILU, ILST, and IDLU for the user's program.

All of the programs and subroutines shown may be obtained in one package from the contributed library (part number 22683-13346).

Figure 6-1 shows a typical user program having references to two function subprograms "INPRM" and "GTDLU". The purpose of these routines is to obtain ILU, ILST, and IDLU for the user program. They can make standard procedures — such as obtaining LUs for the user's input terminal, the standard output peripheral (for listings,etc.), and the HP-IB instrument LU — appear much simpler to the novice.

The subroutine INPRM (figure 6-2) tries to find ILST, and IDLU in the user run statement,

:RU,TDLU,6,20

for example. If these parameters are not supplied, the user just types,

:RU,TDLU

then the subroutine GTDLU (figure 6-3) must be called.

The subprogram "GTDLU" assumes that the user is armed only with the HP-IB model number of the instrument, and that he knows whether multiple instruments having the same model number are connected to the HP 1000.

Subroutine INPRM

The function subprogram "INPRM" can be defined as any user-written subroutine which is capable of obtaining the LU for the user's input terminal (ILU, a numeric value), the LU number where computer output will appear (ILST, a numeric value), and the LU number of the HP-IB instrument (IDLU, a numeric value), and putting each of them in the user program area.

In an HP 1000 environment, the on-line user (at an input terminal) can supply these values in the RUN statement for his program. For example,

:RU,PROGA,ILST,IDLU or

:RU,C3582,6,20

	0001 FTN	4,L
	0002	PROGRAM TDLU
	0003	INTEGER INPRM,GTDLU
	0004	COMMON ILU,ILST,IDLU
	0005	COMMON /IEROR/YES,NO
	0006	IF(INPRM(ID).EQ.YES) GO TO 20
	0007	WRITE(ILU,10)
ł	0008	10 FORMAT(/"ENTER 'MODEL NUMBER, INSTRUMENT NUMBER' : _")
	0009	READ(ILU,)RMOD,IN
	0010	IF(GTDLUCRMOD, IN, IDLU).EQ.NO)STOP
	0011	20 WRITE(ILU,30)ÍDLÚ
	0012	30 FORMAT("IDLU= "I3)
	0013	STOP
	0014	END

Figure 6-1. User Program Using INPRM and GTDLU

¹Appendix E of the HP-IB Users Guide (part number 59310-90064) discusses the LU concept and how it is used.

will allow the user program to obtain the value "6" for the list peripheral (ILST) and the value "20" for the HP-IB device (IDLU). Note that the user input terminal LU can be obtained automatically in RTE.² (It need not be specified in the RUN statement.) The user simply includes the function call to LOGLU in his FORTRAN program:

ILU=LOGLU(ID)

The variable ID is a dummy parameter required for a function call.

The function INPRM, shown in figure 6-2, is used in almost every program in this series of application notes. Inside INPRM it was assumed that ILST and IDLU were supplied in the RUN statement. If ILST is not specified, it defaults to ILU.²

On return to the main program, INPRM returns either "YES" or "NO." The value "NO" is returned when IDLU was found to be zero (i.e., the device LU was not supplied in the RUN statement).

0001	FTN4,L		
0002		INTEGER FUNCTION INPRM(ID), 11-29-78 (GWG) F	RUN PRM FOR HP-IB
0003		INTEGER ISTRNG(40), OSTRNG(10), STRT	
0004		COMMON ILU, ILST, IDLU	
0005	С	,	
0006		PRM' GETS:	
0007	Č III		
0008	-	. THE INPUT LOGICAL UNIT CINTERACTIVE TERMIN	
0000		. THE LIST LOGICAL UNIT FROM PARAMETER ONE (
0010		SETS THE LIST LU EQUAL TO THE INPUT LU IF	
	C		
	C	LIST LU IS 0).	
		. THE DEVICE LOGICAL UNIT(INPRM CHECKS TO SE	
	C	IF IDLU IS NON-ZERO. IF NOT INPRM IS SET	I U
	С	(2HND().	
0015	С		
0016		INPRM=2HNO	
0017		ILU=LOGLU(ID)	
0018		CALL GETST(ISTRNG,-80,RTNCLN)	Documented in the RTE IV
			Programmer's Manual, 92067-90001.
0019	С		Ū.
0020		STRT=1	
0021		DD 600 I=1,2	
0022		IF(NAMR(DSTRNG, ISTRNG, RTNCLN, STRT))700,100	Documented in the Session Monitor
			Reference Manual, 09570-93022.
0023	1 0 0	ITYP=IAND(OSTRNG(4),3B)	
0024		IF(I,EQ,1)GO TO 200	
0025		IF(ITYP.NE.1) RETURN	
0026		IDLU=DSTRNG	
0020		GD TD 600	
0028	200	ILST=DSTRNG	
0028	200	IF(ITYP.EQ.0) ILST=ILU	
0029	600	CONTINUE	
0031	/00	IF(IDLU.GT.0)INPRM=2HYE	
0032		RETURN	
0033		END	

Figure 6-2. One Example INPRM

²See the RTE IV programming manual (92067-90001), function subprogram "LOGLU," for obtaining the user input terminal, ILU, automatically.

```
0001
      FTN4,L
0002
      С
0003
      С
0004
             INTEGER FUNCTION GTDLU(MODN, INN, IDLU), 02-15-79 (GWG) GET DEVICE LU
0005
     C GTDLU RETURNS IDLU
0006
      С
                    OR NO ON AN FMP ERROR
0007
      С
                    OR NO WHEN NO LU IS AVAILABLE
0008
      С
0009
      C HOW TO USE IT (WITH INPRM) AT THE BEGINNING OF YOUR PROGRAM:
0010
      С
      C FTN4,L
0011
0012
                     PROGRAM X(3), ------
      С
0013
     С
                     INTEGER INPRM, GTDLU
0014
      С
                     COMMON ILU, ILST, IDLU
0015
      С
                     COMMON /IEROR/YES,ND
0016
      С
                     IF(INPRM(ID).EQ.YES) GO TO 20
0017
      С
                     WRITE(ILU,10)
                  20 FORMAT(/"ENTER 'MODEL NUMBER, INSTRUMENT NUMBER' : _")
0018
     С
0019 C
                     READ(ILU,)RMOD, IN
0020
     С
                     IF(GTDLU(RMOD, IN, IDLU).EQ.NO)STOP
0021
      С
                            :
0022
     С
                            :
0023
      С
                     END
0024
      С
                     END$
0025
      С
0026
             INTEGER
                             EQT, AD, NO, YES, IREG(2), IBFR(80),
0027
                              EQTBL(64), EQN, IDMY(3)
            Ł
0028
                              AVAIL, AVEQT, ASNLU, GIBLU, GDATA, RCORD, GTADD
            Ł
0029
            REAL
                             MODN
0030
            EQUIVALENCE
                              (IREG, REG, IA), (IREG(2), IB)
0031
            COMMON
                              ILU, ILST, IDL
                              /IEROR/YES,NO
0032
            COMMON
0033
            COMMON
                              /IEQS/EQTBL,EQN
      C IF THE DEVICE EQT AND ADDRESS IS NEEDED BY THE MAIN...
0034
0035
            COMMON
                             /INSTR/IDMY,EQT,AD
0036
            GTDLU=NO
0037
             IF(INN.EQ.0)INN=1
0038
      C GET A TABLE OF ALL HP-IB EQTS IN THE SYSTEM
0039
            IF(AVEQT(EQTBL,EQN).EQ.YES)GO TO 200
0040
            RETURN
      C GET DATA FROM FILE IF THERE
0041
        200 IF(GDATA(MODN, INN, EQT, AD). EQ. YES)GD TO 99
0042
0043
     C DATA NOT IN FILE. TRACK DOWN THE INSTRUMENT ADDRESS
0044
            IF(GTADD(EQT, AD).EQ.YES) GD TO 97
0045
     C DATA NOT AVAILABLE FROM THE BUS. ASK FOR IT.
0046
          5 WRITE(ILU, 10)MODN, INN
6047
         10 FORMAT(/"
                                      DATA WAS NOT FOUND FOR HP "F5.0,
                     " NUMBER "I2"."
0048
           8
                     "PLEASE ENTER (OR 'NO'):"
0049
           4//,
           &//,"
0050
                    'MODEL, INSTRUMENT, EQT, DEVICE ADDRESS'"/,
0051
           &/**
                        ")
0052
            REG= EXEC(1, ILU+400B, IBFR, 50)
0053
            IF(IBFR.EQ.NO) GO TO 108
0054
            IBFR(IB+1)=2H,
0055
            L = IB + 1
```

Figure 6-3. Determine Device LU If Possible

0056		CALL CNVRT(IBFR,L,MODN,INN,EQT,AD)
0057		DD 400 I=1,EQN-1
0058		IF(EQT.EQ.EQTBL(I))GD TO 98
0059		400 CONTINUE
0060		WRITE(ILU, 170)
0061		170 FORMAT(/"GTDLU: YOUR EQT NUMBER IS INVALID."/)
0062		RETURN
0063	С	CONVERT THE INFO TO ASCII
0064		97 L=0
0065		CALL CNVRT(IBFR,L,MODN,INN,EQT,AD)
0066	С	RECORD THE INFORMATION IN THE 'HPIBD' FILE
0067		98 IF(RCORD(IBFR,L).EQ.NO)GO TO 108
0068	С	SEE IF THE LU ALREADY EXISTS
0069		99 IF(GIBLU(IDLU,EQT,AD).EQ.YES) GD TD 110
0070	С	GET AN LU ASSIGNED TO ZERO
0071		IF(AVAIL(IDLU).EQ.YES)GO TO 100
0072		RETURN
0073	С	ASSIGN IT TO THE SPECIFIED DEVICE
0074		100 IF(ASNLU(IDLU,EQT,AD).EQ.YES)GO TO 110
0075		RETURN
0076		108 WRITE(ILU,109)
0077		109 FORMAT("GTDLU: HP-IB DATA WAS NOT FOUND.",
0078		& " NO FILE UPDATE WAS PERFORMED."/)
0079		RETURN
0080		110 GTDLU=YES
0081		RETURN
0082		END

Figure 6-3. Determine Device LU If Possible (Continued)

Subprogram GTDLU

One major problem for the novice is that ILU, ILST, and IDLU must be identified. At worst, ILST and IDLU must be assigned dynamically, on-line.³

HP-IB device addresses can also be a problem. The address switches must be physically located. Sometimes they are readily available on the rear panel of the instrument. However, some address switches reside inside the instrument and it must be dismantled for address adjustments. When no documentation is available, these instruments must be dismantled for correct address verification.

Reading direct binary values from address switches and mentally converting this number to octal or decimal, is a tedious task. Many instruments don't organize these switches in a readable binary format.

The function "GTDLU" can be defined as any user written function subprogram which can automatically determine IDLU for a "new HP-IB instrument"⁴ from its model number (on the front panel) and its instrument number.⁵

The information needed to determine IDLU can be obtained from one of two places:

- 1. A disc file containing information about instrument model numbers, device numbers, their corresponding EQTS and device addresses.
- 2. By actually interrogating the HP-IB instrument on the bus for its listen address.

The function GTDLU makes references to several other functions during it's process of finding the instrument, IDLU, as shown in figure 6-4.

³The term "assigned" means that a correspondence must be mapped from the HP 1000 LU through the EQT to an HP-IB device address.

⁴The term "new HP-IB instrument" means that only one HP-IB instrument may be connected and programatically added at a time (i.e., only one HP-IB device address can be identified by interrogation at a time).

⁵The instrument number need only be specified if more than one instrument with the same model number resides in the system.

FUNCTION OR SUBROUTINE	DESCRIPTION
GTDLU(MODN,INN,IDLU)	The model number, "MODN" and instrument number "INN" are passed to GTDLU. The instrument number "IDLU" is returned to the caller.
GDATA(MNUM,NUM,EQT,AD)	Obtains Instrument data from a memory table created by function FLASS. The values MNUM, NUM, EQT, and AD are passed to GDATA. When MNUM and NUM are passed as zero parameters, but EQT and AD non-zero, then MNUM and NUM are returned to the caller. When EQT and AD are passed as zero parameters, but MNUM and NUM are non-zero, then EQT and AD are returned to the caller.
GTADD(EQT,IAD)	Interrogates the bus for the HP-IB instrument listen address. EQT and IAD are passed from GTADD back to its caller.
RCORD(IBFR,L)	Records new instrument data in file "HPIBD:GG:26". (The file "namr" may be changed by modifying block data common.) IBFR and L are passed to RCORD.
AVAIL(LUN)	Determines the first available LU in the system. AVAIL passes LUN back to its caller.
ASNLU(LU,EQT,AD)	Uses the operator routine MESSS to assign an HP-IB LU. LU, EQT and AD are passed to ASNLU.
AVEQT(EQTBL,TBLN)	Obtains a complete list of the HP-IB EQTs in the system and saves them in a memory table EQTBL. EQTBL and TBLN are passed from AVEQT back to its caller.
GIBL U(LUX,EQT,IAD)	Determines whether an HP-IB instrument has an assigned LU. EQT and IAD are passed to GIBLU. LUX is passed from GIBLU back to its caller.
FLASS(MNUM,NUM,EQT,AD,ISTRT)	Interrogates file "HPIBD:GG:26", creates a memory LU table, and supplies binary data to other functions. ISTRT is passed to FLASS and determines whether the data table should be redone or the next record should be read from the data table. MNUM, NUM, EQT, and AD are returned from FLASS to its caller.
CNVRT(IBFR,L,MODN,IN,EQT,AD)	Uses the FORTRAN formatter for ASCII to Binary conversion and vice- versa. IBFR and L are supplied to the subroutine and MODN, IN, EQT, and AD are returned to its caller. Alternately, MODN, IN, EQT and AD can be supplied then IBFR and L returned.
ERROR(NAM,IERR)	Prints FMP errors. NAM and IERR are supplied to the function.

Figure 6-4. Subroutines Associated with GTDLU

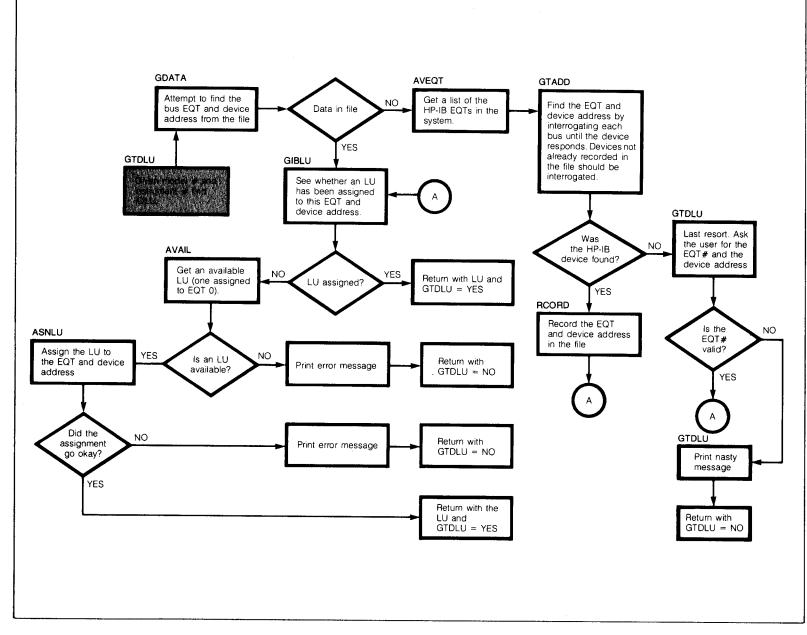


Figure 6-5. Flowchart Showing the Steps Required for HP-IB LU Determination Using GTDLU

Chapter 6

Shown in figure 6-5 is a flowchart of GTDLU depicting the sequence of operations required to find an LU given an HP-IB model and instrument number.

Generally, the flowchart shows that the LU must be determined from a disc file, or by interrogation, or as a last resort, by asking the user. The subprogram GDATA does the needed comparisons of file information with that supplied by GTDLU, but actual file access is handled by subprogram FLASS. When the HP-IB LU cannot be found from the file of current HP-IB devices, subprogram GTADD must be called to interrogate each HP-IB bus in the system. Subprogram GTADD can be a potentially sophisticated process requiring the functions described in the following sections. Some of these subroutines use the function IGET to interrogate the system area for device reference table, and EQT table information.⁶

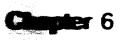

	0003 0004 0005 0006	C C C C C C	INTEGER FUNCTION GDATA(MNUM,NUM,EQT,AD),02-15-79 (GWG) FILE GDATA RETURNS YES WHEN DATA OBTAINED SUCCESSFULY FROM FILE HPIBD RETURNS NO WHEN NO DATA IS AVAILABLE DUTPUTS AN ERROR MESSAGE WHEN AN FMP ERROR DCCURS RETURNS EQTF AND ADF WHEN MNUM.NE.0 AND NUM.NE.0 RETURNS MFNUM AND NUMF WHEN MNUM.EQ.0 AND NUM.EQ.0
	0007 0008 0009 0010 0011	С	INTEGER GDATA,NUM,EQT,AD,YES,NO,FLASS, EQTF,ADF REAL MNUM,MFNUM COMMON ILU,ILST,IDLU
	0012 0013 0014 0015	С	GDATA=NO ISTRT=-1
	0016 0017 0018 0019		GET DATA FROM FILE OR TABLE 10 IF(FLASS(MFNUM,NUMF,EQTF,ADF,ISTRT).EQ.NO)RETURN ATTEMPTING TO FIND EQT AND ADRESS INFO? IF(ABS(MNUM-0).LT01
	0020 0021 0022 0023	С	 AND. NUM.EQ.0 GO TO 20 NO, ATTEMPTING TO FIND MODEL NO. AND INSTRUMENT NO. INFO. IF(ABS(MNUM-MFNUM).GT.(.01) GR. NUM .NE.NUMF)GO TO 10
	0024 0025 0026 0027 0028	C	RETURN EQT ND. AND ADDRESS INFO. EQT=EQTF AD=ADF GD TD 25 20 IF(EQT.NE.EQTF
-	0029 0030 0031 0032 0033 0034 0035	С	<pre>& .OR. AD.NE.ADF)GO TO 10 RETURN MOD NO. AND INST. NO. INFO. MNUM=MFNUM NUM=NUMF 25 GDATA=YES RETURN END</pre>

Figure 6-6. Function GDATA Obtains File Data From FLASS Table

⁶This function subprogram is documented in the DOS/RTE Relocatable Library Reference Manual (part number 24998-90001).

0001	INTEGER F	UNCTION GTADD(EQT, IAD), 02-20-79 (GWG) GET THAT ADD!
0002	INTEGER	EQT,AD,IPBUF(2),GDATA,GIBLU,
0003	&	IEQT5,GTADD,NO,YES,EQTBL(64),EQN,
0004	&	RCORD, AVAIL, ASNLU, IBFR(80)
0005	REAL	MNUM
0006	COMMON	ILU, ILST, IDLU
0007	COMMON	/IEROR/YES,NO
0008	COMMON	/INSTR/MNUM, NUM
0009	COMMON	/IEQS/EQTBL,EQN
0010	GTADD=NO	
0011	IFLG=0	
0012	IEQT5=0	
0013	DO 100 I=	1,EQN-1
0014	C GET THE BUS L	U INFO FROM THE 'HPIBD' FILE
0015	IF (GDATA)	59310.,I,IEQT,AD).EQ.YES)GD TD 20
0016	C NO BUS DATA S	O PUT IT THERE
0017	L=0	
0018	CALL CNVR	T(IBFR,L,59310.,I,EQTBL(I),0)
0019		IBFR,L).EQ.NO)RETURN
0020	IEQT=EQTB	
0021		LU IS ASSIGNED TO THE BUS
0022		LU,IEQT,0).EQ.YES)GO TO 30
0023		D TO THE BUS GET AN LU
0024		LU).EQ.ND)RETURN
0025	C ASSIGN A BUS	
0026		LU, EQTBL(I), 0).EQ.NO)RETURN
0027	30 IPBUF(1)=	
0028	DO 100 J=	
0029	IDAD=J-40	
0030		LE FOR KNOWN LU
0031	DMOD=0.	
0032	NMB=0	NOR NOR CATRICIA IDARA CO NOR OR TO AN
0033 0034		DMOD,NMB,EQTBL(I),IDAD).EQ.NO)GO TO 40
0034	GO TO 100	DUT AND FIND IT
0035	40 IPBUF(2)=	
0037		EN ADDRESS OF THE DEVICE
0038		(2,012100B+LU,0,0,IPBUF,-3)
0039	C CHECK TO SEE	IF THE DEVICE ACCEPTED THE DATA
0040		(3,600B+LU)
0041		(13,LU, IEQT5)
0042		EQT5,40B).NE.0) GO TO 100
0043		Q.1)GO TO 50
0044	IFLG=1	
0045	GTADD=YES	
0046	IAD=IDAD	
0047	EQT=EQTBL	(1)
0048	GO TO 100	
0049	50 WRITECILU	,60)IDAD,EQTBL(I)
0050	60 FORMAT(/"	GTADD: UNKNOWN HP-IB INSTRUMENT WITH ADDRESS "K2"B,",
0051		IS PRESENT ON BUS EQT "I2"."/)
0052	100 CONTINUE	
0053	RETURN	
0054	END	

Figure 6-7. Interrogate the Bus for the Device Address

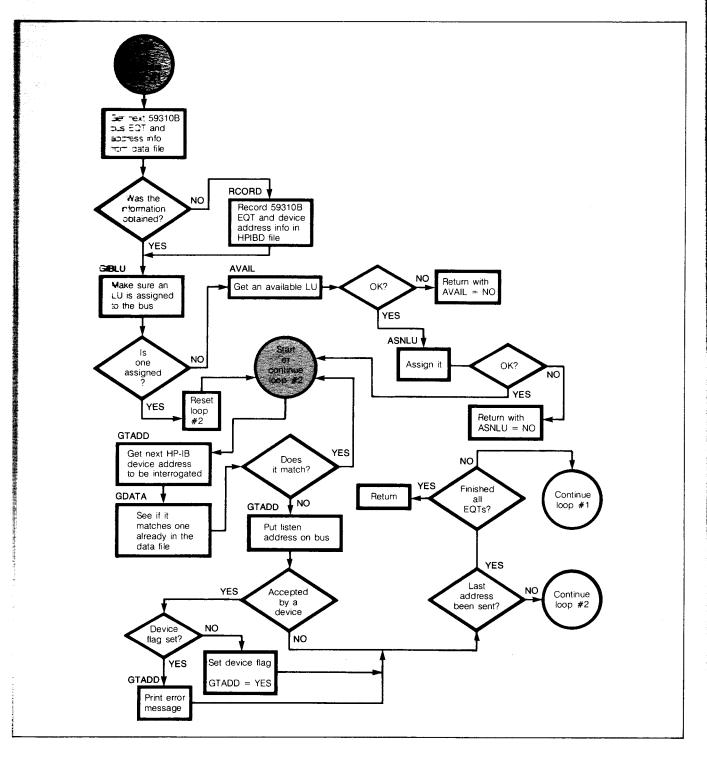


Figure 6-8. Flowchart of GTADD

Function GTADD

The purpose of this function is to interrogate the HP-IB for the device address. Several operations may be required before the bus EQTS in the system can be interrogated.

As shown in figure 6-8, the LU of each bus (with device address 0) must be used for interrogation. Because I/O requests of a generalized nature must be initiated, each bus must have a logical unit number assigned with a device address of zero. This requires one or more entries in the HPIBD:GG:26 data file. Note that the file namr may be changed by modifying the BLOCK DATA COMMON statement shown in figure 6-18. The file is created or interrogated for 59310B EQT/device address entries. Once the proper entries have been made and the zero address LU's have been assigned, device interrogation can begin.

Note that function GTADD interrogates each bus for device addresses which are not found in the HPIBD data file. The limitation of GTADD is that the HP-IB instrument whose LU is to be found has an internal address which is distinct from all others in the HPIBD file and distinct from those on the bus. The latter can be assured by disconnecting the other HP-IB devices during the device address interrogation phase.

A device is interrogated by sending untalk, unlisten, and a device listen address. The function then checks the 59310B I/O card status (lines 40 and 41) to determine whether the device accepted the data (the NDAC line was set LO). The success of this method hinges on the fact that a device will handshake data only after receiving its talk or listen address.⁷ This is the normal mode of protocol for most HP-IB instruments.

All listen addresses are sent on each bus, even though a valid listener is found. If more than one address is accepted, a message stating the predicament is printed on ILU. The function GTADD does not return "NO" in this situation however. The first valid address found is selected and used in this situation.

0001		INTEGER FUNCTION RCORD(IBFR,L),02-20-79 (GWG) ADD FILE
0002	С	RCORD RETURNS YES WHEN NEW INFO RECORDED SUCCESSFULLY IN FILE
0003	С	RETURNS NO WHEN NO UPDATE IS MADE
0004	С	ERROR MESSAGES ARE PRINTED AS FMP ERRORS
0005		INTEGER IBFX(80),RCORD,YES,NO,IDCB(144),
0006		OPEN, CLOSE, READF, WRITF, CREAT, HPIBD(3),
0007		FLASS, NAM(3), ERROR
0008		COMMON ILU,ILST,IDLU
0009		COMMON /IEROR/YES,NO
0010		COMMON /IBFIL/HPIBD,ISEC,ICR,ISZ,IDCB
0011	С	RCORD
0012		DATA NAM/2HRC,2HOR,2HD /
0013	_	RCORD=NO
0014	С	
0015		4 IF(OPEN(IDCB, IERR, HPIBD, 2, ISEC, ICR).LT.0) GO TO 500
0016		10 IF(READF(IDCB, IERR, IBFX, 80, LEN).LT.0) GD TD 1000
0017		IF(LEN.GE.O) GO TO 10
0018		IF(WRITF(IDCB, IERR, IBFR, L).LT.0) GD TD 1000
0019		30 CALL CLOSE(IDCB, IERR)
0020		ISTRT=0
0021		IF(FLASS(A,MM,NN,LL,ISTRT).EQ.ND)RETURN
0022		RCORD=YES
0023		RETURN
0024		500 IF(CREAT(IDCB, IERR, HPIBD, ISZ, 3, ISEC, ICR).LT.0)GD TO 1000
0025		CALL CLOSE(IDCB, IERR)
0026	4	GO TO 4
0027 0028	1	000 IDUM=ERROR(NAM,IERR) GD TD 30
0028		
0029		END

Figure 6-9. Record New Information in HP-IB Data File

⁷It should be noted that some devices, i.e., bus extenders, etc., do not follow this method of protocol.

Function RCORD

This function is passed an ASCII buffer and a length. The purpose of the function is to record the instrument model information in the HPIBD:GG:26 data file. Note that if the data file is non-existent, the subprogram attempts to create one given the file "NAMR" in block data common (see "IBFIL" in line 10).

Each time RCORD is called, it opens (or creates) the data file and adds one record to the end of the current list. If this is accomplished successfully, subprogram FLASS is called to reinitialize the memory file containing current instrument data.

Function AVAIL

This subroutine obtains the value of the first logical unit assigned to EQT 0 in the system. By using subroutine IGET to determine the maximum number of LUS in the system, and the starting point of the device reference table, the available LU can be found. If none are available, a message is printed on ILU and AVAIL returns "NO" to the caller.

Function ASNLU

This subroutine assigns an LU given the three required parameters, LU, EQT and AD (the device address). The subroutine CNUMD is used to convert the binary values to ASCII. The system message processor then proceses these parameters for the new LU assignment. If an error occurs in the "MESSS" processor, the error is printed, another message is printed by ASNLU, and the function returns "NO" to the caller.

0001	INTEGER FUNCTION AVAIL(LUN),02-20-79 (GWG) GET AVAILABLE LU
0002	INTEGER EQT,LUMAX,IDRT,LUN,NO,YES,AVAIL
0003	COMMON ILU,ILST,IDLU
0004	COMMON /IEŔOR/YÉS,ND
0005	AVAIL=NO
0006	LUMAX=IGET(1653B)
0007	IDRT=IGET(1652B)
8000	LUN=0
0009	DD 10 I=0,LUMAX-1
0010	EQT=IAND(IGET(IDRT+I),77B)
0011	IF(EQT.NE.0) GD TD 10
0012	
0013	AVAIL=YES
0014	RETURN
0015	10 CONTINUE
0016	WRITE(ILU,20)
0017	20 FORMAT(/"AVAIL: NO AVAILABLE LUS IN THIS SYSTEM."/)
0018	RETURN
0019	END

Figure 6-10. Finds the First Available LU in the System

0001	INTEGER FUNCTION ASNLU(LU,EQT,AD),02-20-79 (GWG) ASSIGN AN LU
0002	INTEGER LU, EQT, AD, ICM(11), YES, ND
0003	COMMON ILU,ILST,IDLU
0004	COMMON /IEROR/YES,NO
0005	ASNLU=YES
0006	ICM=2HLU
0007	CALL CNUMD(LU,ICM(2))
0008	ICM(2)=2H,
0009	CALL CNUMD(EQT,ICM(5))
0010	ICM(5)=2H,
0011	CALL CNUMD(AD,ICM(8))
0012	ICM(8)=2H,
0013	IANS=MESSS(ICM, 20) Documented in the RTE IV Programmer's
	Manual (92067-90001).
0014	IF(IANS.GE.0)GD TO 100
0015	CALL EXEC(2, ILU, ICM, IANS)
0016	WRITE(ILU,10)
0017	10 FORMAT(/"ASNLU: LU ASSIGNMENT DID NOT FUNCTION PROPERLY."/)
0018	ASNLU=ND
0019	100 RETURN
0020	END

Figure 6-11. Assigns an LU to an EQT and Address

0001	INTEGER FUNCTION AVEQT(EQTBL, TBLN), 02-20-79 (GWG) TABLE
0002	INTEGER EQTBL(1), EQN, MXEQS, IEQT, ND, YES, AVEQT, EQT, CONTA,
0003	& INITA, INITE, CONTE, TBLN
0004	COMMON ILU,ILST,IDLU
0005	COMMON /IEROR/YES,NO
0006	AVEQT=ND
0007	MXEQS=IGET(1651B)
0008	IEQT=IGET(1650B)
0009	TBLN=1
0010	C GET HP-IB DRIVER INITIATOR/CONTINUATOR ADDRESSES
0011	CALL CEQT(INITA,CONTA)
0012	DD:010 EQN=1,MXEQS
0013	EQTBL(EQN)=0
0014	EQT=(EQN-1)15+IEQT
0015	ISTAT=IGET(EQT+4)
0016	INITE=IGET(EQT+1)
0017	CONTE=IGET(EQT+2)
0018	C MAKE SURE THIS IS NOT A SPOOL EQT
0019	IF(IAND(ISTAT,37400B)/256.NE.37B
0020	& .OR. INITE.NE.INITA
0021	& .DR. CDNTE.NE.CONTA) GO TO 10
0022	EQTBL(TBLN)=EQN
0023	TBLN=TBLN+1
0024	10 CONTINUE
0025	IF(EQTBL.EQ.0) GO TO 15
0026	AVEQT=YES
0027	RETURN
0028	15 WRITE(ILU,20)
0029	20 FORMAT(/"AVEQT: NO HP-IB EQTS IN THIS SYSTEM."/)
0030	RETURN
0031	END
1	

Figure 6-12. Builds a Memory Table of HP-IB EQTs in the System

Function AVEQT

This function uses the subprogram "IGET" to track through the system EQT area. During the process, the HP-IB EQT values are saved in table EQTBL.

If no HP-IB EQTS are found AVEQT prints an error message on ILU and returns "NO" to the caller.

A special note should be made concerning the reference to CEQT from subroutine AVEQT. In some RTE environments, in particular when the Spool Monitor program is being used, a spool EQT can, at times, appear very similar to an HP-IB

EQT. One way to verify that the EQT being referenced is indeed an HP-IB EQT, is to obtain the entry point address of the HP-IB driver. Locations 2 and 3 in any EQT contain the entry point addresses of the I/O driver for that EQT. By verifying the actual driver entry points against those in the EQT the HP-IB EQT's in the system can be identified. The limitation of this method is that Table Area II (RTE IV) must be accessed to determine the system entry point addresses for the HP-IB driver. Therefore the user program must be declared Type 2 or Type 3 (i.e., it cannot be declared Type 4, a large background program). See "Program AUTLU" later in this section for more details.

0001 ASMB,L NAM HDVR,7 09-27-78 (GWG) CHECK FOR SPOOL EQT 0002 0003 THIS SUBROUTINE RETURNS THE HP-IB DRIVER ADDRESSS FOR THE 0004 INITIATOR AND THE CONTINUATOR. THE INTENDED PURPOSE IS TO 0005 CHECK THESE ADDRESSES WITH THOSE CURRENTLY BEING LOOKED AT 0006 IN THE CURRENTLY ADDRESSED EQT. A SPOOL DRIVER EQT (WHICH 0007 LOOKS LIKE AN HP-IB) CAN THEN BE DETECTED. 0008 0009 CALL CEQT(INIT, CONT) 0010 0011 ENT CEQT 0012 EXT 1.37, C.37, .ENTR 0013 ARG I NOP 0014 ARGC NOP 0015 NOP 0016 CEQT SET UP FOR RETURN PARMS. JSB .ENTR 0017 DEF ARGI 0018 GET THE HP-IB INITIATOR ADDRESS. LDA INIT 0019 0020 STA ARGI,I GET HP-IB CONTINUATOR ADDRESS. LDA CONT 0021 STA ARGC, I 0022 RETURN THEM TO THE CALLER. 0023 JMP CEQT,I DEF I.37+0 0024 INIT DEF C.37+0 0025 CONT END 0026

Figure 6-13. Check for Valid HP-IB EQT

Function GIBLU

Function FLASS

Given the EQT number and device address, this function determines whether an LU is currently mapped to these values. GIBLU returns "YES" to the caller only when an appropriate LU has been found.

Initially, this subroutine opens the HPIBD:GG:UU data file and reads the data into a table in memory. Each consecutive call obtains the next record from the table. The memory table was created to decrease access time.

	0001 INTEGER FUNCTION GIBLU(LUX,EQT,IAD),02-20-79 (GWG) ASSIGNED	
	0002 C TRACK DOWN AN ASSIGNED LU IN THE SYSTEM GIVEN EQT AND AD	
	0003 C GIBLU RETURNS NO WHEN NO LU IS FOUND	
	0004 INTEGER ND,YES,GIBLU,GTEQT,EQT,IAD	
	0005 COMMON ILÜ,ILST,IDLÜ	
	0006 COMMON /IEROR/YES,NO	
	0007 GIBLU=ND	
į	0008 IDRT=IGET(1652B)	
	0009 LUMAX=IGET(1653B)	
	0010 DD 10 I=0,LUMAX-1	
	0011 IVAL=IGET(IDRT+I)	
	0012 GTEQT=IAND(IVAL,77B)	
	0013 IF(GTEQT.NE.EQT) GD TO 10	
	0014 ISUB=IAND(IVAL,74000B)/2048	
	0015 IF(IVAL.LT.0) ISUB=ISUB+20B	
	0016 IF(ISUB.NE.IAD) GD TD 10	
	0017 GO TO 20	
	0018 10 CONTINUE	
	0019 RETURN	
1	0020 20 LUX= I+1	
	0021 GIBLU=YES	
	0022 RETURN	
	0023 END	
- 1		

Figure 6-14. Find an LU, Given an EQT and a Device Address

0001	INTEGER FUNCTION FLASS(MNUM,NUM,EQT,AD,ISTRT),02-15-79 (GWG)
0002	C FLASS RETURNS YES WHEN DATA OBTAINED SUCCESSFULY FROM FILE HPIBD
0003	C FLASS RETURNS NO WHEN NO DATA IS AVAILABLE OR FMP ERROR
0004	C FLASS OUTPUTS AN ERROR MESSAGE WHEN AN FMP ERROR OCCURS
0005	C ISTRT=-1 RESTART AT FIRST RECORD
0006	C ISTRT= 0 INITIALIZE ARRAY (OPEN FILE,ETC.)
0007	C ISTRT= 1>N RECORD NUMBER
0008	INTEGER FLASS,NUM,EQT,AD,YES,ND,FARRY,ERROR,
0009	<pre>& OPEN,CLOSE,READF,IDCB(144),HPIBD(3),</pre>
0010	IBFR(80), IARRY(6,1), NAM(3)
0011	REAL MNUM, RARRY(1)
0012	EQUIVALENCE (RARRY,IARRY(1,1))
0013	COMMON ILU,ILST,IDLU
0014	COMMON /IEROR/YES,NO
0015	COMMON /IBFIL/HPIBD,ISEC,ICR,ISZ,IDCB
0016	C MODIFY BLOCK DATA ARRAY FOR LARGER 'HPIBD' FILES
0017	COMMON /FARRY/LNTH,RARRY
0018	C FLASS
0019	DATA NAM/2HFL,2HAS,2HS /
0020	C

Figure 6-15. Read HP-IB Data File and Make Memory Table

Chapter 6

```
0021
            FLASS=NO
            IF(ABS(RARRY(1)-0.).LT..01)ISTRT=0
0022
0023
            IF(ISTRT.NE.-1)GD TO 10
      C RESTART AT FIRST RECORD
0024
0025
            ISTRT=1
             J=1
0026
            MNUM=RARRY(1)
0027
0028
            NUM=IARRY(3,1)
0029
            EQT=IARRY(4,1)
0030
            AD = IARRY(5, 1)
0031
            FLASS=YES
0032
             RETURN
0033
         10 IF(ISTRT.NE.0) GO TO 50
0034
            ISTRT=1
0035
             J=1
      C OPEN THE 'HPIBD' FILE
0036
             IF(OPEN(IDCB, IERR, HPIBD, 1, ISEC, ICR).LT.0) GO TO 500
0037
         20 IF(READF(IDCB, IERR, IBFR, 80, LEN).LT.0) GD TD 1000
0038
0039
             IF(LEN.LT.0) GD TO 30
0040
             L=LEN
            CALL CNVRT(IBFR,L,RARRY(J), IARRY(3, ISTRT), IARRY(4, ISTRT),
0041
            &IARRY(5, ISTRT))
0042
             ISTRT=ISTRT+1
0043
0044
             J=J+3
             IF(J.LE.LNTH)GD TO 20
0045
0046
            WRITE(ILU,110)
        110 FORMAT("FLASS: INDEXED BEYOND ARRAY LENGTH. SEE SOURCE.")
0047
0048
             STOP
         30 RARRY(J)=-1
0049
0050
             ISTRT=1
0051
             J=1
0052
            MNUM=RARRY(1)
0053
             NUM=IARRY(3,1)
             EQT=IARRY(4,1)
0054
0055
             ADF=IARRY(5,1)
0056
             CALL CLOSE(IDCB, IERR)
0057
            FLASS=YES
0058
             RETURN
0059
         50 ISTRT=ISTRT+1
0060
             J=J+3
0061
             IF(RARRY(J).LT.0)GD TD 60
            MNUM=RARRY(J)
0062
0063
             NUM=IARRY(3, ISTRT)
0064
             EQT=IARRY(4, ISTRT)
0065
             AD=IARRY(5, ISTRT)
0066
            FLASS=YES
0067
             RETURN
0068
         60 ISTRT=-1
0069
             RETURN
        500 IF(IERR.EQ.-6) RETURN
0070
       1000 IDUM=ERROR(NAM, IERR)
0071
0072
             RETURN
0073
             END
```

Figure 16-15. Read HP-IB Data File and Make Memory Table (Continued)

Subroutine CNVRT

Block Data Subprogram

This routine was created to funnel all calls to the FORTRAN formatter into one subroutine. The formatter may be eliminated by replacing "CNVRT" with a user version of software.

These locations were created for global access by other subroutines and the user's main program. The area contains the file "namr", HPIBD:GG:26 which may be modified by the user.

0001			SUBROUTINE CNVRT(IBFR,L,MODN, IN, EQT, AD), 02-20-79 (GWG) FORMATTE
0002	С	IF	L=0 MOVE MODN:IN:EQT:AD INTO IBFR AND RETURN NON-ZERO LENGTH
0003	С	IF	L.NE.0 MOVE IBFR INTO MODN:IN:EQT:AD AND RETURN
0004			INTEGER IBFR(1), IN, EQT, AD, L, IDMY(5)
0005			REAL MODN
0006			COMMON ILU,ILST,IDLU
0007			IF(L.NE.0) GD TO 50
8000			CALL CODE
0009			WRITE(IBFR,10)MODN,IN,EQT,AD
0010		10	FORMAT(F5.0","I3","I2","I2",")
0011	С		
0012			L=13
0013			RETURN
0014		50	CALL CODE
0015			READ(IBFR, *)MODN, IN, EQT, AD
0016		60	FORMAT(F5.0,13,12,K2)
0017			RETURN
0018			END

Figure 6-16. Do all Binary to ASCII in One Place

0001	BLOCK DATA,(2-16-79 (GWG) GLOBAL PARAMETERS
0002	INTEGER	YES, NO, EQTBL, EQN, NUM, FARRY, ARRAY, EQT, AD
0003	REAL	MNUM
0004	COMMON	/IEROR/YES,NO
0005	COMMON	/IEQS/EQTBL(64),EQN
0006	COMMON	/INSTR/MNUM, NUM, EQT, AD
0007	COMMON	/IBFIL/NAME(3), ISC, ICR, ISZ, IDCB(144)
0008	COMMON	/FARRY/LEN, ARRAY(300)
0009	DATA NO/2HNO	J/,YES/2HYE/,LEN/300/
0010	DATA NAME/2H	HP,2HIB,2HD /,ISC/2HGG/,ICR/26/,ISZ/10/
0011	END	

Figure 6-17. Global Parameters

Function ERROR

This function simply prints File Management errors on the user's terminal.

Program AUTLU

Sometimes it is not convenient to use the function GTDLU inside the user's program (one such situation arises when the user program must be of Type 4, or not enough memory is available to included GTDLU in the main program). Most programs in this series of application notes contain a reference only to INPRM.

When File Manager is available, a separate program, AUTLU, may be used in conjunction with a transfer file and the user's program to obtain IDLU automatically. Figure 6-19 shows one such transfer file described in AN 401-18.

AUTLU may be defined as a program which accepts the instrument model number and instrument number and converts this to IDLU. The parameters ILU, ILST, and IDLU are passed back to File Manager in FMGR globals 1P, 2P, and 3P respectively.⁸

The program is shown in figure 6-20.⁹ One reference is made to function MODIN (figure 6-21) which is similiar to INPRM. This function reads the model number (a real variable) and instrument number from the run parameters however. The function GTDLU is then called which obtains IDLU.

INTEGER FUNCTION ERROR(NAM,IERR),02-20-79 (GWG) WRITE FMP ERROR INTEGER NAM(3),ERROR,YES COMMON ILU,ILST,IDLU COMMON /IEROR/YES,NO ERROR=YES WRITE(ILU,10)NAM,IERR 10 FORMAT(/3A2": FMP ERROR "I3"."/) RETURN END

Figure 6-18. Print FMP Errors

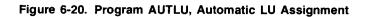

0001 :SV,1,9,IH 0002 :RU,AUTLU,,59306 0003 :RU,A306,2P,3P 0004 :SV,9G,,IH 0005 :: This transfer file determines the 59306A device LU and schedules the test program "A306."

Figure 6-19. 59306A Transfer File

⁸File Manager globals are discussed in the Batch Spool Monitor Manual (92060-90013).

⁹Programs and subroutines shown in this chapter are available from the Contributed Library (22683-13346).

	FTN4,L					
0002		PROGRAM AU	UTLUCS),02-15-79 (GWG) TES	T SUBROUTINES	
0003		INTEGER	N	ID, YES, GTDLU, EQT, AD, I	PRM(5)	
0004		REAL	٢	10D		
0005		COMMON	I	LU,ILST,IDLU		
0006		COMMON	/	IEROR/YES,NO		
0007		COMMON	/	INSTR/MOD, IN, EQT, AD		
8000		CALL DTACH	4			
0009		IFCMODINC	ILU, IL	ST,MOD,IN).EQ.NO) ST	OP	
0010		IFCIN.EQ.	0) I N=1			
0011		IF (GTDLU(MOD,IN	,IDLU).EQ.ND) STOP		
0012	100	IPRM=ILU	·			
0013		IPRM(2)=IL	LST			
0014		IPRM(3)=II	DLU			
0015		CALL PRTN	(IPRM)			
0016		END				

0001	FTN4,L
0002	
0002	INTEGER FUNCTION MODIN(ILU,ILST,RMOD,IN),11-29-78 (GWG) MODEL INTEGER ISTRNG(40),OSTRNG(10),STRT
0003	INTEGER ISTRNG(40), DSTRNG(10), STRT
0005	C 'MODIN' GETS:
	C Habin Gers:
0000	
0008	
0008	
0010	
0010	
0012	
0012	C D. THE INSTRUMENT NUMBER OF THE HP-IB DEVICE FORM PARAMETER THREE
0013	
0014	•
-	MODIN=2HNO
0016	ILU=LOGLU(ID)
0017	CALL GETST(ISTRNG, -80, RTNCLN)
0018	C CALL EXEC(2, ILU, ISTRNG, -RTNCLN)
0019	CALL CODE
0020	READ(ISTRNG, *)ILST, RMOD, IN
0021	MODIN=2HYE
0022	RETURN
0023	END

Figure 6-21. Function MODIN, Obtain Model and Instrument Number

Automatic LU Assignment When Using the Session Monitor

HP-IB logical unit numbers may also be obtained automatically in a session monitor environment. Although the task is more involved, it can be accomplished using a few programs and a File Manager transfer file. The programs needed are listed and described in figure 6-22.

Scheduling a user program with automatic parameters requires six operations.

- 1. Transfer file *AUTOP is executed by a user at a CRT terminal.
- 2. Program GTSLU determines the first available (and assignable) session LU and returns it in File Manager global 1P.
- 3. Program AUTLU, discussed previously, finds a system LU corresponding to the model number of the HP-IB instrument and returns it in global 3P. This program was discussed in the previous section.
- Transfer file *AUTOP executes the File Manager command :SL,1P,3P to set up the session LU correspondence for the user. When the process completes, a new session LU correspondence exists between the session LU and an HP-IB device.

- 5. Having determined ILST and IDLU, *AUTOP schedules the user program and it runs to completion.
- 6. *AUTOP then unassigns the session LU and the system LU and returns control to the user.

Transfer File *AUTOP

The procedure file does only simple error checking and executes the session switch command 'SL'. More sophisticated error checking is performed by GTSLU and AUTLU. Errors are output from within the programs. An example of *AUTOP is shown in figure 6-23.

Program GTSLU

Program GTSLU is defined as a user program which obtains the first available session LU from the user's session switch table. If no session LUs are available, or the user's capability is not sufficient, or no switch spaces are available, an error is returned. Figure 6-24 shows one example of how GTSLU may be written.

:TR,*AUTOP,ILST,Program Name,Instrument Model #,Instrument

This is a File Manager transfer file which combines the capabilities of two user programs, GTSLU and AUTLU. The object of the transfer file is to allow a user to schedule a program which requires ILST and IDLU for it's run parameters. ILST must be supplied to AUTOP, but instead of supplying IDLU, the user supplies the model number and instrument number of the HP-IB device. Parameter IDLU is obtained automatically.

:RU,GTSLU

This program determines the first unassigned session LU if one is available. If none are available or all switch LUs are currently allocated, an error is printed and 0 is returned in File Manager 1P. Otherwise the first available (assignable) session LU is returned in global 1P.

:RU,AUTLU,ILST,Instrument Model #, Instrument #

This program obtains a system LU pointing to the instrument whose model number and instrument number is supplied in the run statement for AUTLU. The system LU is returned in File Manager global 3P. If no system LU is available an error is printed and 0 is returned in global 3P.

Figure 6-22. User Programs Needed for a Session Environment

0002 0003	:SV,0,,IH :IF,9P,GE,50,2 :DP,SDRRY, YDU HAVEN'T A HIGH ENDUGH	CAPABILITY LEVEL.
0004 0005 0006 0007	: :RU,GTSLU :IF,1P,NE,0,1	Determine the first available session LU.
0008 0009 0010	: CA,-4:P,1P :RU,AUTLU,,2G,1 :IF,3P,NE,0,1	Obtain the first available system LU.
0013	: :SL,-4P,3P :RU,1G,-4P :SL,-4P,-	Create a correspondence between the session LU and the system LU, and schedule the user program.
0015 0016	:SYLU,3P,0 : 06-21-79 (TRK) (GWG) : THIS TRANSFER FILE WILL RUN HP-IB : PROGRAMS USING HP-IB DEVICE LUS. SI	Then clean up and exit.
0019 0020	::TR,AUTOP::UU,PROGRAM NAME,ILST,HP-I :	

Figure 6-23. Transfer File AUTOP

FTN4,L
PROGRAM GTSLU(3),06-14-79 (TRK) (GWG) GET F/A SLU
INTEGER IBUF(155), ILEN, IERR, SESLU, SYSLU, ILU, J, I
INTEGER USEAR(256), FRSTLU, IPRAM(5), CAP, SPARE, IP(5)
DATA LEN/155/
ILU=LDGLU(J)
SPARE=0
FRSTLU=0
CALL GTSCB(IBUF, LEN, IERR) Read the user's session
control block.
C SESSION NOT ACTIVE IF IERR=-1
IF(IERR.NE1) GOTO 20
WRITE(ILU,903)
903 FORMATC" SESSION IS INACTIVE.",
&" NO SESSION LU CAN BE FOUND."/)
GO TO 999
C BUFFER TOD SMALL IF IERR1
20 IF(IERR.GT1) GOTO 30
WRITE(ILU,904)
904 FORMAT(" BUFFER 'IBUF' DIMENSIONS TOO SMALL.",
&" THIS PROGRAM MUST BE MODIFIED."/)
GO TO 999
30 DO 5,I=1,256
USEAR(I)=0
5 CONTINUE
SSTLEN=IABS(IBUF(13))
DD 10 I=1,SSTLEN Check for spares in the user's session control block.

Figure 6-24. Obtaining the First Available Session LU

	0027	C MASK OFF SYSTEM LU	
	0028	SYSLU=IAND(IBUF(13+I),17	7400B)
	0029	SYSLU=SYSLU/400B	
	0030	C MASK OFF SESSION LU	
	0031	SESLU=IAND(IBUF(13+I),37	78)
	0032	USEAR(SESLU+1)=1	
	0033	C SPARE=1 MEANS A SPARE EXISTS	
	0034	IF(SYSLU.EQ1) SPARE=1	
	0035	10 CONTINUE	
	0036	IF(SPARE.EQ.1) GD TD 60	
	0037	· · · · · · · · · · · · · · · · · · ·	
	0038	907 FORMAT(" NO SPARE SESSIO	N LUS ARE",
	0039	&" AVAILABLE. OPERATOR IN	TERACTION IS REQUIRED."/)
	0040	GO TO 999	
	0041	60 DO 40 I=1,256	Index through table looking
			for available session LUs.
	0042	IF(USEAR(I).NE.0) GD TD -	40
- 1			
		FRSTLU= I	
	0044	GOTO 100	
	0044 0045	GDTO 100 40 continue	
	0044 0045 0046	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200	
	0044 0045 0046 0047	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200 70 WRITE(ILU,909)	
	0044 0045 0046 0047 0048	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200 70 WRITE(ILU,909) 909 FORMAT(" ALL SESSION LUS	
	0044 0045 0046 0047 0048 0049	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200 70 WRITE(ILU,909) 909 FORMAT(" ALL SESSION LUS &" OPERATOR INTERACTION IS	
	0044 0045 0046 0047 0048 0049 0050	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200 70 WRITE(ILU,909) 909 FORMAT(" ALL SESSION LUS &" OPERATOR INTERACTION IS STOP 4	
	0044 0045 0046 0047 0048 0049 0050 0051	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200 70 WRITE(ILU,909) 909 FORMAT(" ALL SESSION LUS &" OPERATOR INTERACTION IS STOP 4 200 IPRAM=FRSTLU	
	0044 0045 0046 0047 0048 0049 0050 0051 0052	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200 70 WRITE(ILU,909) 909 FORMAT(" ALL SESSION LUS &" OPERATOR INTERACTION IS STOP 4 200 IPRAM=FRSTLU 999 CALL PRTN(IPRAM)	
	0044 0045 0046 0047 0048 0049 0050 0051	GOTO 100 40 CONTINUE 100 IF(FRSTLU) 70,70,200 70 WRITE(ILU,909) 909 FORMAT(" ALL SESSION LUS &" OPERATOR INTERACTION IS STOP 4 200 IPRAM=FRSTLU	

Figure 6-24. Obtaining the First Available Session LU (Continued)

