
tiP 2250 Measurement
and Control Processor

HP 1000
Computer F/;fi'I HEWLETT

~~ PACKARD l Programming Guide

Introduction

The HP 2250A Measurement and Control Processor is an
intelligent , high-performance analog/digital subsystem
designed to handle a wide range of industrial and laboratory
automation applications. The HP 2250A is programmed in
HP-MCU50, an easily-learned language which provides the
user with the capabilities to customize memory allocations,
write custom data-reduction routines, implement multiple
decision-making control and supeNisory tasks, and respond
to real-world schedules and . events . FORTRAN and
ASSEMBLER subroutines can be written on an HP 1000
computer and down-loaded to the HP 2250A for execution ,
thus minimizing I/O overhead and dependence on the host
computer.

The HP 2250A uses the Hewlett-Packard Interface Bus (HP
IB) to communicate. with its host controller, which can be any
of the HP 1000 Computers and the 9800- Series Desktop
Computers . A built-in "Watchdog" timer can be used to
monitor communications with the host and produce an

,----..lnterrupt if no bus communication occurs within a specified
eriod of time. The standard HP-IB cables can be replaced

with up to 1000 metres of fibre-optic cable by using the HP
37203A HP-IB Extender, if the length of the bus or an
electrically noisy environment is a problem.

Application Note 401-24

"

\ . . ,

' .; ,

I
, i

"

·f.
;

.~

1
i ,
j

J
, .~

Figure 1 shows a typical configuration for an HP 2250A. The
system is composed of a "controller section" and a
"Measurement and Control Unit" , or "MCU". The controller
section coordinates the processing activites of the HP 2250A,
and the MCU handles the interfacing to the real world . Each
Measurement and Control Unit can contain up to eight
function cards. Up to 8 MCUs can be connected to a single
controller section, and so each HP2250A can support up to
64 function cards.

The analog subsystem of the HP2250A can supply 14-bit
analog samples to the host computer at continuous rates up
to 50,000 samples per second. Conversion and linearization
algorithms for thermocouple measurements are provided in
firmware . The HP2250A can monitor up to 240 analog
channels per Measurement and Control Unit (MCU), and this
can be extended to 1920 channels by using the maximum of
7 HP2251 A Extenders. Table 1 describes the analog family
of function cards.

The digital subsystem in the HP2250A can interface to all
commonly found sensing and actuating devices, using signal
cond itioning modules to convert the external signals to
internal logic levels, Typical applications include controlling
actuators , stepper motors , and motor contactors, and
measuring periods and frequencies of waveforms. Table 2
describes the family of digital function cards.

HP 2250NHP 1000

HOST
COMPUTER

DEFINITIONS:

r----------------------------,
I r-------- ------..., r-------- ----, I
I I I I

}
TRANSDUCERS

I---H-o METERS I I
I I
I I
I I
I I }

THERMOCOUPLES
~----+-r-O TRANSDUCERS

'---_
HP-IB

I I I
I I }

SWITCHES
H-t--o ARMATURES

I I r--- ----..., l :
I I I II I } LIGHTS
I I I USER MCl-50 II I I-t-..,-() RELAYS
I I MEMORY FIRMWARE I I I II : (RAM) (ROM)!: L ___ ~£U..2~CTIO~ __ ..J I

I : L _____ RRA~K _____ JI t :
I L __ ~ONTROll~ SECTION __ .-J FUNCTION

L ___________ _ HP ~250A ____ ~ARDS ___ J

HP-IB: Hewlett-Packard Interface Bus - Communications Between the 2250A and the host computer.

CPU: Central Processing Unit - Coordinates all 2250A activities

MCI: Measurement and Control Interface - Communications and interrupts from function cards.

RRACK: Memory Card - Contains MCl-50 Firmware and User Memory.

BIF: Backplane Interface - Coordinates I/O between the MCI and the function cards in an MCU.

MCU: Measurement and Control Unit - Interface to real world signals, has slots for eight function cards and on BIF card.

SCM : Signal Conditioning Module - Converts non-digital signals to digital form .

Figure 1. Block Diagram of HP 2250A Architecture

24-2

(

(

HP 2250A/HP 1000
~----------------------------~--

Table 1. ANALOG Function Cards

Samples
Per Second

Function No. Of On-
Card Chan. Range(s) Gain Channel Scan Purpose Of Card

Analog/Digital 16 ±1.25V - 1 50,000 50,000 Convert analog input signal to digital
Converter (min) 2 representation.
(25501 A) ±10.0V 4 \ ' ~ ..

(max) 8 Resolution = 14 bits (.006%)

I High-Level 32 ±1 .25V 1 50,000 50,000 Extend the 25501 A ADC by 32 input
Solid-state (min) channels. I Multiplexor ±10.0V
(25502A) (max) Prerequisite - 25501 A

Low-Level 32 !:12.5 mV 1, 50,000 20,000 Extend 25501 A ADC by 32 input chan-
Solid-state (min) 10, nels and provide gain.
Multiplexor ±100V 100
(25503A) (max) Prerequisite - 25501 A

Relay 16 ±12.5 mV 0.1, 10,000 1,000 Extend the 25501 A ADC by 16 input I
Multiplexor (min) 1, channels, provide gain and electrical
(25504A) ±100V 10, isolation.

(max) 100
Prerequisite - 25501A

Digital/Analog 4 ±10.24V 1 N/A 30,000 Provide analog voltage and current
Converter (bipolar) output.
(25510A) 0, +10.24V

(unipolar) Resolution =5 mV
0,20.5 rnA

(at 20V)

24-3

HP 2250NHP 1000

Table 2. DIGITAL Function Card Summary

Function No. Of
Card Channels Purpose Of Card

Digital Input 32 Provide digital inputs for monitoring AC or DC signals (0-120
(25511A) 1 VDC, 0-230 VAC) through required signal conditioning mod-

ules (SCMs). Inputs can be monitored individually or col-
- lectively and can generate interrupts upon transitions.

Maximum Read frequency = 24 KHz.

Counter Input 4 Provide independently-programmable counters which totalize,
(25512A) count up or down, and measure periods, time intervals, and

frequencies. Interrupts can be generated upon overflow or
completion of counting .

Maximum measurable frequency = 500 KHz.

Digital Output 32 Provides solid-state switching of AC and DC loads of up to
(25513A) 60V (peak) at 300 mA and zero-voltage switching up to 120

VAC at 800 mA through required signal conditioning modules.
<.

Outputs can be programmed individually or as 2 16-bit fields.

Maximum output rate = 40 KHz.

Relay Output 16 Provides switching of high-current loads (up to 2A at 30 VDC
(25514A) or 3A at 125 VAC). Signal Conditioning Modules suppress

transients to protect the relays and prevent noise. The 16
channels can be programmed individually or collectively.

Maximum operating speed = 30 Hz.

Pulse Generator 4 Provides digital pulses of programmable frequency, width,
(25515A) and acceleration for controlling stepper motors. Limit switch

inputs on this card can be programmed to abort pulse trains.

Maximum pulse rate = 20 KHz.

Multifunction 16 input, Provides independently-programmable digital inputs and out·
(25516A) 16 output puts, counting and interrupt capabilities. SCMs provide a

wide range of interfacing for monitoring and controlling trans-
ducers, instruments, and switches.

Addressing Switch Settings on the HP 2250 Hardware

There are two types of HP-IB addressing used with the HP
2250A : primary addressing and secondary addressing.
Secondary addressing is discussed in the upcoming
"PROGRAMMING" section .

There are several switches on the hardware of the HP2250A
which need to be set before it can be used. These include the
HP-IB address and select-code switches, the battery-backup/
power restart selector, and the Backplane Interface (BIF)
selector. In addition, if there are any analog output cards,

(

The host computer uses primary addresses to distinguish
between seperate devices connected to the same HP-IB
interface card. The primary address, also called the "device
address", is set on the HP 2250A's HP-IB card, and is related
through the tables in the host computer's operating system to
a logical unit number (an LU). All programmatic access to the
HP 2250A is conducted through this LU. The switches which
determine the HP-IB device address for the HP 2250A are
shown in Figure 2.

then some application-dependent settings will be required.
Consult the "HP2250A Installation and Start-up Manual" for
specific instructions on setting these switches. The sample
application program in the "PROGRAMMING" section uses t _
the HP2250A with the switches in the positions shown in "'
Figure 2.

24-4

po ,

I

...

r-.....

HP 2250N HP 1000

HP 2250A
Controller

Card
Switches to set on the card

HP-IB

Hewlett-Packard
Interface Bus

12009-60001

Controller
Slot 5

MCI

Measurement
and Control

Interface

12071-60001

Controller
Slot 4

CPU

Central
Processing

Unit

12001-60001

Controller
Slot 3

RRACK

Firmware for
MCU50 plus
User Memory

12070-60001

Controller
Slot 2

BIF

Backplane
Interface

25544-60001

MCU Slot 0

Switch U1

_1010110001

123 456 7 8

value = 130 octal

Select Code for
2250A Backplane

Switch U1

10 0 0 1 1 0 0 11

12345678

value = 31 octal

Select code for
2250A Backplane

Switch U1

10 1 0 0 0 0 0 11

1 234 5 678

'Battery-Backup &
Boot Address

BATT NORM

r-' n
! I

'Battery-Backup Switch

BIF number
(Rotary dial)

'Denotes a setting which is application-dependent
Key: 1 = Open, 0 = Closed

Switch U16

100000001

12345678

value = 1 octal

'HP-IB Device Address

I~%~%~%~I
3C L-L64K

Jumpers

Figure 2. Sample Switch Settings for HP 2250A BIF and Controller Cards

24-5

HP 2250NHP 1000

Each function card is referenced in MCl commands by a
unique " slot number". Slot numbers are related to the
physical position of the function card in the Measurement and
Control Unit (MCU), and to the setting of a rotary switch on
the "Sackplane Interface" card , as shown in Figure 3. Each
MCU uses a " Sackplane Interface (SIF)" to communicate
with the controller section ot'the HP2250A. Each SIF card

I SLOT 8
I 7
I 6
I 5

CONTROLLER I 4
SECTION ! 3

a-rl
I 2
I SLOT 1

BIF 0 ..
.......

V' / "-- -

has a unique " SIF number" which is used to determine the
slot number of each card connected to it. and this SIF number ;
is set by a rotary switch on the card. The 6 1F cards should be
numbered sequentially from 0 (the SIF in the HP2250A) to up
to 7 (depending on how many HP2251 A Extenders are
included in the system).

I SLOT 16 I ! SLOT 24
I 15 I ! 23

14 I ,
22

13 I) ~1
12 I 1 20
11 I) 19

- ,-
10 I ! 18

SLOT 9 I I SLOT 17 .
BIF 1 BIF 2 ... I >---.---

,/ '-- -v ,/

v

HP 2250A HP 2251A HP 2251A

(MAXIMUM OF 7 HP 2251 As , 64 FUNCTION CARDS)

N b are determined for the Function Cards
Figure 3. How the Slot um ers

24-6

.,

System Preparations

LU Assignments

All programmatic access to the HP2250A is conducted via a
logical unit number (LU) which is assigned by the user to the
HP2250A when it is first hooked up to th~ host computer
system. The LU is related back to the unique device address
which is set on the HP2250A's HP-IB interface card. (See
Figure 2.) How this relation is accomplished depends upon
which computer is being used.

RTE-IVB: A logical unit can be assigned to the HP2250A with
the following FMGR command (FMGR is the name of the
operator interface for all HP1000 Computers):

: 5 YL U , 11 ,25, 1

This will assign LU 11 to equipment table number (EOT) 25,
--.., subchannel 1. Each bus on the M-,E-,and F-Series

computers has a unique equipment table number which is
assigned to the bus when the operating system is generated.
Each device on the bus has its own subchannel of the bus
EOT, and this subchannel number corresponds exactly to the
HP-IB device address, described above.

RTE-L: A logical unit number can be assigned to the
HP2250A with the following FMGR commands:

: LA, 11 ,25
: eN, 11 , AD, 1

This will assign the HP2250A to device table 25 and logical
unit 11, assuming that the device address of the HP2250A is
set to 1,

HP-IB Configuration

User error-processing

The user has several choices to make when configuring an
HP-IB device, such as an HP2250A. The first choice to make
is whether to process HP-IB errors within the application
program or to let the RTE operating system suspend the
program whenever an HP-IB error occurs. Such errors
include device time-outs and illegal bus control signals.
RTE-L and RTE-IVB handle user error-processing in the

,...-<;ame manner. If programmatic error-checking is desired, the
,ystem function IBERR should be used within the application
program after every I/O operation with the HP2250A to
determine whether or not the transaction completed
sucessfully . An example of the use of IBERR in
programmatic error-checking is shown in the sample
program in the "PROGRAMMING" section.

24-7

HP 2250NHP 1000

DMA

The second decision involves the use of Direct Memory
Access on the host computer side.

RTE-IVB: The HP1000 M-, E-, and F-Series offer the user a
choice of whether or not to use DMA with HP-IB devices.
DMA provides much higher transfer rates than "programmed
I/O" (non-DMA), but it requires a longer set-up time as well.
Generally, if the transfers exceed 50 characters in length,
then the use of DMA will be advantageous. The HP1000
M-,E-, and F-Series computers offer two DMA channels, so
the anticipated overhead for using DMA should include
waiting for a DMA channel if more than two devices (disks,
magnetic tape drives, other HP2250As, etc.) ever need DMA
simultaneously.

RTE-L: DMA is always allocated for all I/O transfers with the
HP1000 L-Series, so no user configuration is required for
DMA usage.

EOI

The End-or-Identify control line (EOI) is used in HP-IB
transactions to signal the end of a transmission, There is no
standard sequence of signals and/or ASCII characters to
denote the end of the message for all HP-IB devices. Some
use control characters such as carriage return and linefeed,
some merely stop after a certain number of characters goes
by, and some depend upon the EOI signal for ending
indications. On input, the HP2250A requires the host
computer to assert the EOlline (set it true) with the last data
byte that the host sends or with a control character (carriage
return or line feed) after the last byte is sent. On output, the
HP2250A will assert the EOI line with the last byte sent.

RTE-IVB: The EOI conditions mentioned above are
programmable and are specified in the configuration word as
shown in Figure 3 at the end of this section. The default
settings of these conditions are appropriate for the
HP 2250A.

RTE-L: The EOI conditions are not programmable on the
L-Series, The EOI requirements for the HP2250A and the
L-Series are compatible, so no user adjustment is necessary.

SRQ Priorities

One final question must be answered in order to complete the
HP-IB configuration, and it involves how the host computer
will respond to receiving ,an SRO (service request) from a
device on the bus, The HP1000 always initiates a serial poll
when it notices that the SRO signal line has been asserted by
a device on the bus.

HP 2250NHP 1000

RTE-IVB: The user has the choice of letting an ongoing I/O
transaction complete before having the computer initiate the
serial poll , or aborting the I/O and starting the serial poll
immediately. If the I/O requests are to be aborted in response
to an SRO, the user also has the choice of having the host try
to restart the aborted I/O or to abandon it; once the SRO from
the other device has been serviced. Normally, the host will
wait for the transaction to complete, because most HP-IB
devices (including the HP2250) cannot programmatically re
cover from an abnormal termination such as this. The sample
program in this note does not let SROs from other devices
abort I/O transactions between the host computer and the
HP 2250A.

RTE-L: The L-Series always waits for any I/O transactions to
complete before serviCing an SRO, so no user configuration
is required.

Configuration word

All of the above decisions concerning the HP-IB configuration
are made known to the host computer via a "configuration
word" which is stored in the operating system table area of
the host computer. The format of this word is shown in
Figure 4.

RTE-IVB: There are two ways to specify this configuration
word : programmatically, using the HP-IB system subroutine
CNFG, or from FMGR, using a CN command . Examples of
each are shown below. In the sample program included in the
"PROGRAMMING" section of this note, the programmatic
method is used at the beginning of the program.

bit 15 14 13 12 1 1
name S R D I J

value 0 0 0 1 1

octal 0

10
0

1

7

Programmatically:

CALL CNFG (11, 1, 174008)

where:

11 = LU of the HP 2250A
1 = Configure the device
174008 = Configuration word

From FMGR:

:CN, 11,258,174008

where:

CN = Control request
11 = LU of the HP 2250A
258 = Configure device
1 74008 = Configuration word

RTE-L: Only the E-bit of the configuration word shown above
is significant in RTE-L. The other bits are masked off and
ignored, since their speCifications are not user-modifiable.
This means that the same programmatic call used in RTE
IVB can be used with RTE-L, but only the E-Bit will be
affected. No FMGR command for device configuration is
available for the L-Series. Thus, to set up the configuration
word described above on the L-Series, use the following
FORTRAN program statement:

CALL CNFG (11, 1, 4008)

where 11 = LU of the HP2250A
1 = Configure the device
4008 = Configuration word

9 8 7 6 5 4 3 2 1 0
P E X X X X X X X X

1 1 0 0 0 0 0 0 0 0 J
4 o o

S 0
R 0

Don't abort I/O operations with this device to process an SRO
Do not attempt to restart aborted I/O transactions

D
I
J
a
p

E

0 Do not use DMA
Require an EOI from the device at end of transmission
Expect EOI to occur with the last byte of the transfer
Issue an EOI to the device at end of transmission
Issue the EOI with the last byte of the transfer
Don't abort programs because of HP-IB errors

Figure 4. Sample HP-IB configuration word for the HP 1000 to be used with the HP 2250A

24-8

(

For more information on configuring HP-IB devices for
HP1000 systems, refer to Application Note 401-1 (5953-
2800) for the M-,E-,and F-Series, and to Application Note
401-1 L (5953-2830) for the L-Series.

Buffering

The next decision involves the buffering of the device. Buffer
ing applies only to transfers from the host computer to an
HP-IB device. Normally, the bus operates in the " unbuffered"
mode. This means that the host application program will wait
for each I/O transfer that it initiates to complete before it will
continue its execution. With buffering, the host program does
not wait for an I/O transfer to complete before executing its
next statement. The data to be sent to the device is instead
directed to a buffer in memory and then transferred to the
device as fast as the device can accept it. This technique is
used primarily to speed the execution of a host program
which, by no fault of its own, must send requests to a slow
device. The HP2250A, by the way, is by no means a slow
device.

Buffering allows I/O requests to stack up in the buffer if the
host program sends requests faster than the device can
execute them. If the bus hangs up during an va transaction
with the host, the remainder of the requests in the buffer will
not be executed. In addition, buffering prevents the user
program from implementing programmatic error checking.

Therefore, buffering with the HP2250A is not recommended.

To specify unbuffered operation, use the following FMGR
commands:

RTE-IVB: The FMGR command :

:SYEG, 25, UN

if the HP2250A is connected to the bus with equipment table
number 25.

RTE-L: The FMGR command :

: BL, 25, UN

if the HP2250A is connected to the bus with device table
number 25.

One final point to remember is that with the M-, E-, and
F-Series, the entire bus is either buffered or unbuffered. With

~the L-series, buffering is done on a per-device basis.

24-9

HP 2250NHP 1000

Time-out

The "time-out" value associated with a particular HP-IB
device is the amount of time that the computer will wait for a
response from the device after the computer initiates an I/O
operation with it. The value is specified in tens of
milliseconds.

If the HP-IB device does not respond within the specified
time, one of two things happens. If user error-processing is
not enabled in the HP-IB device configuration, the RTE
operating system will suspend the program which encounters
the time-out and make the device unavailable until the
operator corrects the problem. If user error-processing is
enabled, RTE will not suspend the user's program, but when
the program calls the IBERR subroutine, which is provided
with the HP1 000 HP-IB Library, it will return an error code of 1
to indicate that a time-out has occurred. The user program
can then take appropriate action.

The HP2250A is capable of transferring large amounts of
data quite quickly and so a relatively short time-out value is
usually appropriate.

When downloading main tasks which take data, the main
task error code should be read from the main result buffer
along with any data it has accumulated after the task has
compiled and executed . The time-out value must then
include the time that the HP2250A needs to compile and
execute the task. For resident tasks, the task error code
should be read from the main result buffer directly after the
task has been downloaded and compiled. In this case, the
time-out value needs to account only for the compilation time.
For most tasks, the compilation time is less than 2 seconds.
Execution time is totally application - dependent.

For most applications with the HP2250A, a time-out value of
5 seconds is quite sufficient. To specify a time-out value for
an HP2250A, use the following FMGR command:

RTE-IVB: The FMGR command :

:SYTO, 25, 500

will set the time-out value of the bus assigned to Equipment
Table (EQT) 25 to 5 seconds.

RTE-L: The FMGR command:

:TO, 11, 500

will set the time-out value of LU11 to 5 seconds.

HP ?250NHP 1000
----------------'----------~----.~

Note that with RTE-IV8, the time-out value applies to the bus
as a whole, while with RTE-L, the time-out value applies only
to the individual device. This implies that with RTE-IVB
systems, the time-out value should be chosen to suit the
slowest device on the bus.

Also note that a time-out value of zero means that the host
computer will wait forever for the device to respond. This is
useful if the device could possibly require more than 327.67
seconds (the maximum time-out value) to respond to the host
computer. However, the zero time-out value also eliminates
the ability of a program to determine whether or not a device
is properly connected and functioning on the .Q),ls. If the host
computer is configured to wait for I/O transactions with this
device to complete before servicing SROs from other
devices, and this device has a zero time-out value, then an
I/O operation with this device which fails to complete will
effectively hold off the servicing of SROs indefinitely.

It is recommended that the host computer program use
secondary addressing to. determine through system status
when to initiate a read operation from the HP2250's main
result buffer, instead of letting the read operation "hang" on
the HP2250A's LU with a zero time-out.

Programming

Meuso
The HP2250A is programmed in MCU50, a measurement
and control language composed of over 100 commands and
modifiers. MCU50 provides extensive control of function
cards, performs arithmetic and logical operations on data,
and allows run-time errors to be handled programmatically.

Many of the MCU50 commands which control function cards
can operate on more than one channel at once. The format of
the DO (digital output) command, for example, is shown
below.

DO (slot, starting channel, no. channels to output to) data
items

To send a digital "1" to channels 2, 3, 4, and 5 of the digital
output card in slot number 3, the following MCU50 command
could be used:

DO (3, 2, 4) 1,1,1,1

24-10

Tasks

MCU50 commands are grouped into "tasks", much as the
statements of other languages are grouped into programs.
There are two types of tasks: main and resident. There can
be many resident tasks loaded in the HP2250A's memory
concurrently, but only one main task can exist at one time.
Main tasks are used mostly to perform short operations which
need to be done only once, such as configuring the HP2250A
memory or starting resident tasks. Main tasks need to be
downloaded to the HP2250A and compiled for every
execution. Resident tasks are used to perform operations
which need to be executed repeatedly, such as taking
periodic measurements. Resident tasks need to be
downloaded and compiled only once.

Main tasks are removed from memory when they complete;
resident tasks remain in memory until they are removed by
an NTASKS or a RESET command, and so can be executed
as often as desired without the need for re-Ioading them into
the HP2250A. Resident tasks have a task number and a~
priority ranging from 1 to 32767. The default priority for c.
resident task is 99. A main task automatically has a priority of
o (the highest possible) and has a task number of zero.

There are no restrictions on the types of commands that can
be used to compose a task, but there must be a " !" terminator
after the last command in the task. For example, the task in
Figure 5 would take a single reading from the first channel of
the digital input card in slot 5, send a logical" 1" to the first
four channels of the digital output card in slot 3, and then
terminate.

DI (5, 1)
DO (3, 1, 4) 1, 1 , 1 , 1

Figure 5. A sample task for the HP 2250A

All tasks are sent to the HP 2250A by the host computer as
ASCII strings. The HP 2250A will not compile any of a task
until it has received all of the commands plus the terminator,
and it will not schedule the task for execution until all of the
commands have been compiled. The following FORTRAN
IVX statements would send the task in Figure 5 to the HP
2250A, assuming that it is assigned to LU 11 . The blanks in
the FORMAT statement are ignored by the HP2250A and are .""-
only for cosmetic purposes.

(

•
!.

r
1

WR I TE (1 1, 1) Q
FORMAT (" DI(5, 1)"

+ II DO (3, 1) 4) 1) 1 , 1 , 111
+" ")

....---, HP 2250A/HP 1000
--

The value returned by the DI command above will be put into
a place in the HP 2250A's memory called the "main result
buffer". This buffer is the default destination for any data
obtained by the HP 2250A in response to any input
commands contained in a main task. Resident tasks which
take data must specify destinations (variables or buffers) for
this data with the "IN" command, and they cannot use the
main result buffer to store data. The first word of the main
result buffer always contains an integer error code for the
main task (zero for no error), and the remainder of the buffer
can be devoted to returned data.

Task Error Codes

There are two types of error codes for main and resident
tasks : compiler errors and run-time errors. If the HP 2250A
notices a syntax error, an undefined reference, an illegal
parameter, or other problem during the compilation of a main
or resident task, then a one-word error code is put into the
main result buffer, and the would-be task is removed from

------.. memory. The compiler error code can also be obtained from
the second word of the eight main task status words, which
are available from secondary address 2. Main task status is
used because all tasks are considered to be main tasks by
the HP 2250A until they are compiled . Run-time errors
indicate problems with the actual execution of MCl
commands, such as division by zero, memory overflow, and
function card malfunction . Secondary addressing is
discussed later in this section. For a complete list of the
possible error codes, see Appendix A of the HP 2250A User's
Manual.

Resident tasks

The compiler error code for a resident task should be read
from the main result buffer (through the lU of the HP 2250A
without secondary addressing) directly after the resident task
has been downloaded. If the code is zero, no compilation
errors were found.

Main tasks

If a main task encounters a compiler error, then the error
code will be available to the host computer immediately from
the main result buffer. If the main task does not encounter a
compiler error, then a zero is written into the first word of the
main result buffer, and the task is scheduled for execution.
Any data routed to the main result buffer by the main task will

""-")e stored after this first word .

Should the main task encounter a run-time error, then this
error code will be stored into the first word of the main result
buffer, and the task will halt. The host computer program
should monitor the main task status through secondary

address 2 in order to determine when the task has
completed. After the task finishes, the host program should
read the main result buffer, which will contain a zero followed
by any returned data, or just a run-time error code. Run-time
errors cause any returned data in the main result buffer to be
lost.

If the main task does not take long to execute, then the host
program can read the main result buffer directly after the
main task is downloaded to determine if the task 'was
successful. If the main task will take longer to execute than
the time-out value for the HP2250A will allow, then the host
program should read the main task status through secondary
address 2 after downloading the main task, and should keep
reading the status until it indicates that the task has
completed. The main result buffer can then be obtained.

Examples of using main and resident tasks are included in
the &DEMO program at the end of this section.

Scheduling tasks

. The HP2250A will not consider a task for execution until it
has been scheduled. Main tasks are automatically scheduled
as soon as they are received and compiled. Resident tasks
can be scheduled by either the START or the GOSUB
MCU50 commands, or by a function card interrupt.

24-11

Only one task can execute on the HP2250A at any given
time, and it will monopolize the HP2250A's attention until it
either reaches a PAUSE command or the end of the task.
The PAUSE command simply suspends execution of the
current task and allows the next scheduled task to execute. If
there are no other tasks waiting which have the same or
higher priority as this task, then the PAUSE has no effect.
When the task which PAUSEd is scheduled again, it will
resume execution at the the command following the PAUSE.
The PTIMER command performs the same operation as the
PAUSE, except that a time interval is specified with the
PTIMER such that the task will continue to pause until this
time interval has elapsed . The PAUSE and PTIMER
commands are most often used to implement a form of
"time-sharing" between several tasks which must execute
periodically but don't require large amounts of time.

The HP2250A keeps track of which task should execute by
maintaining a "schedule list". Whenever a task is scheduled ,
its task number and priority are entered into this list.
Whenever the currently-executing task ends or encounters a
PAUSE command, the schedule list is consulted to determine
which of the waiting tasks should next be executed. This
decision is based upon task priorities, and in the case of
having more than one task with the same priority, the equal-

HP 2250A/HP 1000

priority tasks are executed in a round-robin fashion. For a
more in-depth discussion of the scheduling process, refer to
the HP2250A User's Manual.

Returning data

The HP2250A returns data to the host computer in binary
format. This is quite convienient fo~ HP1000 computers,
since they represent integer data internally in this same
format. This saves the computer the time and trouble of
converting data returned from the HP2250A.

To find out what the result of the 01 operation was for the task
in Figure 5, the following FORTRAN IVX statements could be
used:

INTEGER ERROR, DATUM
READ (11) ERROR, DATUM

The above READ statement in FORTRAN IVX defaults to
binary format, because no FORMAT statement is specified.
This is appropriate for the INTEGER data to be returned by
the HP2250A. The main task error code for the task in Figure
5 will be read into the variable ERROR, and the digital value
will go into DATUM.

How to stop tasks

There are several different ways to halt executing tasks, and
they differ in flexibility, severity, and in the conditions which
require their use.

FTN4X,L
PROGRAM

C
HALTR (3, 88)

If tasks are to be stopped as a normal routine, and not as an
error condition, then the MCUSO STOP command, included
within a task, is appropriate. The MCU50 RESET command
can also be used, but it returns the HP2250A to a power-on
state, which may be overkill in most cases.

If "Task 1" is, for example, executing an infinite loop and
must be stopped by the operator, then sending another task,
"Task 2", to stop it may not be effective. This is due to the
scheduling rules of the HP2250A, which require Task 1
(which is the one we want to stop) to either complete nomially
(which is what we don't want to wait for) or to PAUSE before
Task 2 (which contains the STOP command) can execute.
Remember, only one task can execute at any given time on
the HP2250A. If Task 1 doesn't complete normally or
PAUSE, then it cannot be stopped by another task. To stop
Task 1, the host computer can send a "Device Clear" to the
HP2250A. This is an HP-IB signal which will immediately halt
an executing task and also remove any tasks from the
schedule list.

The HP-IB Device Clear does not remove any tasks from
memory or affect any variables or buffers, and so it is ideal for ---- 11
a "soft reset" during initial experimentation with the It
HP2250A. The FORTRAN program &HAL TR shown below is
a utility which performs a Device Clear.

An alternate (but inelegant) approach to stopping a task is to
push the little white button marked "RESET" on the
HP2250A's CPU card. This always works.

To implement a system with multiple tasks on the HP2250A,
it is recommended that the PAUSE or PTIMER commands be
used liberally in all tasks which must cooperate with one
another.

C Progrem to 5tOP ell te5k5 on the HP2250 by executing e DEVICE CLEAR.
C It e150 remove5 pending SRQ5 from the HP2250.
C

C

C

INTEGER HP2250, LOG
DATA LOG/1/, HP2250/111

CALL CLEAR (HP22S0, 1)

WRITE (LOG, 1)
FORMAT (2/, .. HALTR ,T15, .. All guiet on the e5tern front. .. , 2/) 1

c

L-________ E __ ND __ ~I~ c

24-12

...

... .

-----.

Configuring the HP 2250A Memory

The DIMENSION command allows the user to specify the
number of one-word integer variables and the number and
size of integer buffers that will be defined for the system.
Every variable and every buffer in' memory is accessible by
every task in the HP2250A. This feature re§lIy simplifies the
construction of small, cooperating tasks to handle
measurement and control problems.

Because all of memory can be accessed by every task, the
user will need to establish some safeguards to prevent tasks
from interfering with one another's operations, especially if
the programming is to be done by more than one person.
One solution to the cooperation problem is shown in Figure 6.
It is a "Memory Table", and it contains spaces for variable
numbers, buffer numbers and sizes, task numbers, SRQ
numbers, and comments for a simple measurement and
control system.

Variables are much easier to keep track of if they are grouped
into "families" that are functionally related. There is another
benefit to grouping variables by function : variables can be
accessed through secondaries only in groups in sequential
order. For example, two I/O requests would be necessary to
write to variables 2, 3, 5, and 6, but only one request is
necessary to write to variables 2, 3, 4, and 5.

The HP2250A stores data from most MCU50 operations in a
one-word INTEGER format. The "01" command, for
example, stores an integer "1" or "0" into memory for every
channel scanned. However, several MCU50 operations use
the same REAL format as the Single-precision real numbers
on HP 1000 systems. The "AIR" command (real-format
analog input) returns two words of data for every channel
scanned. These two words can be read directly into a single
real variable on an HP 1000. Downloaded subroutines can
also use real variables as 'well as integers. This is
demonstrated in the &DEMO program at the end of this
section .

24-13

HP 2250NHP 1000

Routing data

There are two MCU50 commands which route data to and
from the function cards. The "IN" command changes the
destination of input data from the main result buffer (default)
to a buffer or to specified variable(s). If there is more than one
data value to be returned, and variables are the desired
destination, the data is stored in sequential variables, starting
with the specified number.

IN (V2 >
DI(5,1,3>

would input three binary values (1 or 0) from the first three
channels of a digital input card in slot number 5 into variables
V2, V3, and V4. Likewise, the "OUT" command is used to
send values out to the function cards. The following two
statements would send the values of variables 2, 3, and 4 to
the second, third, and fourth channels of a digital output card
in slot 7.

OUT (V2 >
DO (7, 2, 3 > !

A pointer is associated with every buffer, and it determines
which of the buffer elements will be accessed. It normally
points to the last word read into the buffer by the IN command
or to the last word written out of the buffer by the OUT
command. It is recommended to execute an IN or OUT
command just before every related set of function card I/O
operations to make sure that the source or destination really
is what it's supposed to be.

Buffers are normally filled and accessed serially as a unit.
Elements of buffers can be accessed randomly as well as
serially by moving the buffer pOinter around with the REWIND
(which resets the pOinter to zero) and SKIP (which moves
the pointer backward or forward a number of items)
commands. A "buffer index" is used to specify the position of
the desired element, relative to the buffer pointer as a
reference. The important thing to remember is to always
know where the buffer painter is before attempting to use
indexing. For example, B1 (3) does not necessarily refer to
the third element of buffer 1. It refers to the third element after
the buffer pOinter, which mayor may not be at zero.

Table 3 shows a comparison between using buffers and
using sequential variables for the storage of related data.

HP 2250A/HP 1000
--~----------~

Task
No.

Variable
No.

t

:L
y

4-

12

Buffer
No.

L

;;"

3

}

Memory Table Date: ;1../11/8 (

Title: bSfv10 s'fstr:;m fo>, 1A1lfo/- .;z't

Purpose

Purpose

L Q/2P Co~tc-v"

S c-.:d d, fov C<A-.~ nt- .

[
c-..V'e-V~

~~ ~t rl. flA.'~O UJ¥ e... VfL.a..ot(~
tV'- E~k-I!.AA-h.~ (t~). ~tnrds.)

Ccrv.t~ rtv.. rt.A.A'\. - i " WI L- ~"...- u>q{e

Size Purpose
(words)

£'" COi'tt~ ~ ~ fItLyJV1oc..c~/~
y~~,~ ~ be... a-ve-v~ed

.9t2CZ w~t6 ~fr:..~ 7tu.. C(..A./~T d... VJ!.~d..l~S.
/-U Y~t~ ~hv v d ~ S:~ !-l? -t£J:.. h. () sf' Co ~J1 J~

;L E~ya..:r~ fv-v 'l!ZEF 'I U2lY1rna..nd
}

Disk File
namr

.5ETUP

Used In
Task No.

)..

~

d-

&..

~

Used In
Task No.

::>-

~

SRQ Numbers Purpose

/

L-______ ~ ___________ T_e4 _____ h_L?_h_t ___ rt. __ .gX ____ a. _ __ ~ ____ -_-t __ 1 rYl_. _~ ___ -C-vv ___ o __ v __ l1_t:{ __ > _t2 __ C_C-_~ ___ .t?4 ____ ___.JT (

Figure 6. A Memory Table for the HP 2250A for the DEMO System described in AN 401·24

24·14

r · ... ,

Table 3. Differences Between using Buffers and using
Sequential Variables for storing Related Data

Buffers

Centralized storage which
provides easy access for
the data as a unit.

Built-in pOinters keep track
I of storing history data.

I Ten words of system over
head are needed for every
buffer.

Data can be protected from
erasure by the RELEASE
command .

Sequential Variables

Centralized storage which I
provides easy access to
individual etements.

Task must supply the vari
I able number explicitly.

I
! No extra system overhead
I is required.

I Data Is always vuloocable
! to being overwritten.

Tasks can be imJefinitely Variables can always be .
I

suspended if they try to I overwritten by any task.
access a released buffer.

Secondary Addressing

Secondary addressing is used to transfer data to and from
variables and buffers (even while a task is running) , to
determine task and system status, and to download user
written subroutines. Secondary addresses are device
dependent extensions to the primary address, and are
specified by appending the number of the desired secondary
to the lU of the HP 2250A.

Thirteen secondary addresses have been defined for the HP
2250A, and each has a special function. These are shown in
Table 4. For example, system status is read from the HP
2250A by reading eight integer words from secondary 1. The
following FORTRAN IVX statements would obtain the eight
status words (assuming that the HP 2250A is assigned to
lU 11):

INTEGER STATUS(8)
READ e 11: 1) STATUS

When using secondary addressing, it is important to read
exactly the number of words that the HP 2250A expects you

.......... to read. The system status is always returned as an eight
word block ; reading only seven words will not complete the
I/O transfer. SRQ assertions by a task using the "SRQ"
command will be held off .until the host computer either

.... finishes the I/O transfer or until it initiates another transfer
with the HP 2250A. This delay in sending SRQ messages is
discussed more fully under" SRQ interrupts".

HP 2250NHP 1000

Table 4. Secondary Address Functions

Secondary
Address Purpose

1 Read system status (8 words)
I 2 Read main task status (8 words)

3 Read resident task status (8 words)
4 Read interrupt status (16 words)

\ '.,
5 Write data into buffer
6 Read data from buffer
7 Write data into variable(s)
8 Read data from variable(s)

9 Download subroutines

11 Read released buffer from Port A

I
12 Read released buffer from Port B
13 Read released buffer from Port C
14 Read released buffer from Port D

For an exact description of the layout of system, task, and
interrupt status , see the HP 2250A's User's Manual,
Appendix A.

Ports

The RELEASE command makes buffers available to the host
computer at a "port". A port is a very special data path to the
host computer. When a buffer is released to a port, any MCl
task that attempts to alter the data in this buffer by executing
a "DIMENSION", "IN", "OUT", or "CBUF" command to this
buffer is suspended until a host program reads the buffer
through the port. This protects important data from aCCidental
erasure. It is important to note that no other task can execute
while a task is suspended in this condition. Thus, trying to
alter the data in a RELEASEd buffer in this manner effectively
brings the HP 2250A to a grinding halt, and things remain
stopped until the host reads the RELEASEd buffer from the
port.

The host computer obtains a released buffer by first reading
system status from secondary one to find out how many
words are waiting at the port . The host then reads that
number of words through one of four secondary addresses.
This frees up the buffer so that it can again be filled up. There
are four ports on the HP 2250A, labeled A, B, C, and D, and
they are read by the host computer through secondaries 11,
12, 13, and 14 respectively. Any buffer (except the main
result buffer) can be released to any port and more than one
buffer can be released to a single port at any 'given time.

24-15

HP 2250AlHP 1000

Function Card Interrupts

The Digital Input, Multifunction, Pulse Output, and Counter
cards can be configured to generate an interrupt to the
HP2250A. By using a combination of the INTERRUPT,
SENSE, and SOVERRIDE MCU50 commands, interrupts
can be produced:

1. when a digital point that is connected to a Digital Input or
Multifunction card goes high, goes low, or upon either
transition,

2. when a Multifunction card completes a counting
operation,

3. when the Counter card completes a count of external
events or detects an overflow or underflow,

4. and when the Pulse Output card completes a pulse train
or detects a limit condition.

These are referred to as "function card interrupts". The user
has a choice of either sending an SRQ message when the
HP 2250 receives a function card interrupt (this is the default
condition) , or scheduling a task to handle the interrupt without
the host computer's intervention. The ITASK command is
used to link a function card interrupt to a resident task such
that when the interrupt occurs, the task is scheduled. A task
which has been scheduled by an interrupt is subject to the
same rules of priority scheduling as any other task, so that it
will run when the currently-executing task completes or
PAUSEs and its turn arrives.

Function card interrupts are used to attract the attention of
the HP 2250A to external events while another task is being
executed, whereas "programmed interrupts" (executing the
"SRQ" MCU50 command) are used within a task to attract
the attention of the host computer to the HP 2250A.

SRO Interrupts

As intelligent as the HP2250A is, it is still a controlled device.
As such, all communications with it must be initiated by the
controller (the host computer), with one exception. When the
HP 2250A must inform the controller that it needs attention, it
can generate a "service request (SRQ)". By executing the
MCU50 "SRQ(n)" command, the HP 2250A sets the HP-IB
SRQ control line true, which causes an interrupt in the host.
The "n" in the SRQ command is a number from 1 to 127
which the user can specify in order to give the host more
information about the reason for the SRQ interrupt. This "n"
will be placed in the HP 2250A's interrupt status, which the
host can read through secondary address 4. An example of
this process is shown in the &DEMO program at the end of
this section.

The host computer then conducts a "serial poll" of all of the
devices on the bus to determine which of the devices on the
bus needs attention. This is done automatically without the
need for user programming. Once the culprit has been iden
tified, a user-written service program can be scheduled on
the host to handle the situation. The service program should
first read the interrupt status of the HP 2250A through sec
ondary address 4 to find out the cause of the SRQ interrupt.
To find out more of the intricacies of SRQ processing, refer to
the HP-IB User's Manual. This SRQ-scheduling method of
communication between the HP 2250A and the host is a
powerful tool for establishing and maintaining cooperation
between the two boxes.

But there is a complication with the use of SRQs. The HP
2250A uses direct memory access (DMA) for all input and
output operations with its host computer, irrespective of
whether or not the host computer also uses DMA, and it
achieves a blazing-fast (i.e. up to 500 KBytes/second) trans
fer rate as a result. However, the SRQ message will not be
sent by the HP 2250A while an I/O transfer with the host
computer is in progress. This is a hardware restriction with

24-16

the HP-IB interface for the HP 2250A. Instead, SRQ will be '--" f"
asserted (another way of saying "send an SRQ message") 'I
when the I/O transfer completes or when another transfer is
started.

The specific conditions that cause a delay in asserting SRQ
are listed below. Each of these conditions is an example of a
I/O transfer in progress.

1. Before the user has read results after a main task com
pletes (if the task returns data as well as a main task
error code)

2. While waiting for an EOI signal on an input to the
HP 2250A

3. While waiting for a "!" terminator

4. In the condition that the user doesn't transfer all of the
data required when using secondaries

5. During any long data transfer with a slow-moving host
computer

The morals of this story are:

1.

2.

ALWAYS check system status (via secondary 1) after an
I/O transaction with the HP 2250A completes, if there is
any doubt of the success of the transfer ~ t(
ALWAYS read the main task error code and all data in
the main task buffer after a main task completes on the
HP 2250A.

3. ALWAYS transfer the number of data items that the HP
2250A expects you to transfer.

This will ensure that desired SRQ interrupts on the host will
occur in the shortest possible time after the SRQ command
has been executed on the HP' 2250A. This is also an
incentive to build safeguards into your programs which can
protect against other problems as well as speeding the SRQ
assertion. Checking status is always a good idea.

Downloaded Subroutines

For those cases when reducing the involvement and the I/O
overhead of the host computer is desired, or when the integer
arithmetic capabilities of the HP 2250A are not sufficient,
FORTRAN subroutines can be written on the host computer,
processed by the LlNKR program, and downloaded into the
HP2250A via secondary 9. LlNKR is an HP-supplied program
in the "HP2250A Automation Library" which converts
relocatable object code (as produced by the FORTRAN
compiler, for example) to binary code which the HP2250A
can execute . These subroutines are then "called" within an
MCl)50 task just as they would be on the host computer:

CALL DGREE (V1, V2)

The sample program &DEMO in this section shows how to
use a downloaded subroutine to convert thermocouple
readings from the integer units of tenths of a degree Celsius
(as they are returned by the ETEMP command) to single
precision real numbers in units of degrees Fahrenheit.

Sample Program

The sample program shown in this section is intended to
demonstrate the following processes:

1. How to send MCl)50 tasks 'from disk files storage on the
HP 1000 to the HP 2250A

2. Main and resident tasks

3. SRQ-scheduling on the host computer

4. Secondary addressing to read status and MCl)50
variables

5. User error processing, both on the host and on the
HP 2250A

,--.. 6. Thermocouple measurement technique

7. Ports

8. Bus triggers

24-17

HP 2250NHP 1000

9. Downloaded subroutines

10. Using real numbers with the HP 2250A

This demonstration requires the following items:

1. HP 2250A with :

2,

• Analog/Digital Converter (25501 A), MCU slot 1
• Low-Level MUX Card (25503A), MCU slot 2
• Thermocouple Reference Connector (.T.8C)

(25594A), connected to channels 1-16 of the Low
Level MUX.

HP 1000 M-,E-,F-, .or L-Series with:

• HP-IB interface
• "FTN4X" FORTRAN compiler to compile &DEMO

and &DGREE
• "DEMO" FORTRAN application program (shown in

Figures 7 and 8),
• '&DGREE" FORTRAN application subroutine

(shown in Figure 9).
• "SETUP" , "TEMPS" MCl)50 tasks in disk files

(shown in Figures 10, 11 and 12).
• " LlNKR" program (HP-supplied through the

"Automation Library", part no. 25581A)
• "*DGREE" command file for the LlNKR program to

convert the %DGREE relocatable code (as
produced by running the FTN4X compiler on the
&DGREE subroutine) into downloadable file
.DGREE for the HP 2250A. (Shown in Figure 13).

3. E-type thermocouple, connected to channel 1 of the
TRC

To get started , first make sure that all of the hardware
connections and switch settings are correct. Refer to Figure 2
if you need to.

Then, produce the necessary absolute files for the host
computer. From FMGR, execute the following commands:

:RU,FTN4X,&DEMO,1,
:RU,LOADR"XDEMD
:RU,FTN4X,&DGREE,1,
:RU,LINKR,*DGREE,.DGREE

This will compile and load the DEMO program and also
convert the &DGREE subroutine source into downloadable
form in the file ".DGREE". Make sure that the SETUP and
TEMPS MCl)50 source files are on the system, and then run
the DEMO program.

HP 2250A/HP 1000

NO

NO

Initialize program
variables

Get the HP 2250's LU
from the terminal

Configure the Hp· IB

Reset the 2250

Download the
DGREE file

Read system status

Download the main
task SETUP

Read the main task
error code

SETUP will run as soon
as it finishes compiling

This code will be available
after SETUP completes
execution.

Figure 7. Flowchart for DEMO Program (Sheet 1 of 3)

24-18

'-/

(fJ
\J

.• 1

[)

~

(")

~' L_

NO

~
Download the resident

task TEMPS

Aead the main task
error code

Set up SAO-scheduling
for this program

Start the TEMPS
task

Send a bus trigger
to tell the TEMPS

Suspend execution
until an SAO arrives

from the 2250

This code will be available
after TEMPS compiles.

All tasks are considered
main tasks until they are
compiled

TEMPS is a resident task,
so it must be started.

When the 2250 finishes
taking data or when it
detects a run-time error,
it will assert SAO.

Figure 7. Flowchart for DEMO Program (Sheet 2 of 3)

" . ~ ...

I

NO

Write an error message
to the terminal, saying
"SRQ number is not

2250 asserts SRO

The TEMPS tasks will store
any run-time errors into V13.
This error code is also avaIl
able from system status.

HP 225QNHP 1000

Upon receipt of the SRO
from the 2250 resume
execution where we
left off.

The first word of interrupt
status will contain the
SRO number sent by the 2250.

Read the 2250's
system status to
determine how
much data is

available at the
port

Figure 7. Flowchart for DEMO Program (Sheet 3 of 3)

24-19

HP 2250AlHP 1000

C
C
C
C
C
C

C

Set up the HP2250 by ~ending three di~k file~ to it. The fir~t contain~
a FORTRAN ~ubroutine which ha~ been proce~~ed by the LINKR program.
Subroutine~ mu~t alway~ be downloaded before ta~k~. The ~econd contain~
a main ta~k with initialization command~, and the third contain~ the
re~ident ta~k ~ which takes the thermocouple reading~.

DO 250 WH I CH .. - 1, 3

DO 201 K .. 1, 3
201

C
FILNAM (K) = NAMES (K, WHICH)

C
C

Let the folk~ at home in on which file i~ being downloaded.

WRITE (LOG, 202) FILNAM
202 FORMAT (2/,"Now downloading the file ",3A2,".",2/)

C
C Open the di~k file.
C

C
C
C

C

C

CALL OPEN (DCB, ERROR, FILNAM, OPTION, CODE, DISK)
IF (WHICH .EQ. 1.AND. ERROR .NE. 7) THEN

WRITE (LOG, 203) FILNAM, ERROR
STOP 0001

ELSE IF (WHICH .NE. 1 .AND. ERROR .LT. 0) THEN
WRITE (LOG, 203) FILNAM, ERROR
STOP 0001

END IF
203 FORMAT ("The disk file ",3A2," cannot be opened.",/,

+"The ERROR code" ",I6,T70," I quit.",5/)

Read the di~k file and send it to the 2250.

210 CALL READF (DCB, ERROR, LINE, BEFORE, LENGTH)
IF (LENGTH .EG. -1) GO TO 220

IF (ERROR .NE. 0) THEN

END IF

WRITE (LOG, 212) FILNAM, ERROR
STOP

212 FORMAT ("The di~k file ",3A2," encounter~ read error ",16,
+/,t70,"I quit.",5/)

C Send down the task or ~ubroutine record~.
C Trim the trailing blanks from ta~k~ to ~peed up the downloading.
C

IF (WHICH .EQ. 1) THEN

ELSE

END IF

WRITE (HP2250 : 9) (LINE(K),K"1, LENGTH)

CALL BLANK (LINE, LENGTH, AFTER)
IF (AFTER .EQ. 0) GO TO 210
WRITE (LOG, 204) (LINE(K),K"1,AFTER)
WRITE (HP2250, 204) (LINE(K),K"1, AFTER)

204 FORMAT (80A2)
C

CALL BSERR (HP2250, LOG, SRGPRG)
GO TO 210

Figure 8. Sample Program DEMO (Sheet 2 of 6)

24-21

\

HP 2250A/HP 1000

C
220

C
CALL CLOSE (DCB, ERROR)

C
C
C
C

C

C

C

C

If the file wa5 a task, read the task error code next. Downloading
5ubroutines doesn't return an error code in the main result buffer, but
any error5 with the downloading are logged in 5ystem status word 2.

IF (WHICH .NE. - 1) THEN

ELSE

END IF

READ (HP22S0, IOSTAT=ERROR) MTERR

IF (MTERR . NE. 0) THEN
WRITE (LOG, 221) MTERR, FILNAM
STOP

ELSE
WRITE (LOG, 222) FILNAM

END IF

READ (HP22S0:1) SSTAT
IF (SSTAT (2) .NE. 0)

WRITE (LOG, 223)
STOP

ELSE

THEN
SSTAT (2), FILNAM

WRITE (LOG, 224) FILNAM
END IF

C
221 FORMAT (2/,"Compiler ERROR ",16," ha5 occurred for the task",

+" in ",3A2,".",T60,"1 quit.",S/)

C

222

223

224

FORMAT (3/,"The task in disk file ",3A2," compiled without"
+" error.",3/)

FORMAT (2/,"System ERROR ",16," has occurred for the ",
+"subroutine in ",3A2,".",T60,"1 quit.",S/)

FORMAT (3/,"The subroutine in disk file ",3A2," was downloaded",
+" successfully.",3/)

2S0 CONTINUE
C *** •••••••••••••• ** •••• ***********************.************************.
C Set up this program to be scheduled by the HP-IB driver upon receipt of
C an SRQ message from the HP 2250. Use IBERR again to make sure it works.
C

300 CALL SRQ (HP22S0, 16, SRQPRG)
C *******************.*.*****.**********************.********.***********
C Start the resident task, which should be number 2.
C

WRITE (HP2250, 301)
301 FORMAT (" START (2) ! ")

READ (HP22S0) ERROR
IF (ERROR .NE. O) THEN

WRITE (LOG, 302) ERROR
STOP

END IF
302 FORMAT ("Cennot stert the resident task. Error· ",I6,5X,

+"1 quit.")

Figure 8. Sample Program DEMO (Sheet 3 of 6)

24-22

(

<

I .,

j
I
i

,

HP 2250A/HP 1000

C
CALL BSERR (HP2250, LOG, SRGPRG)

C ***
C I55u~ a bU5 trigg~r to 5ignal th~ ta5k running on the HP2250 to 5tart
C taking t~mperatur~ reading5.
C

C
C
C
C
C

C

C
C
C
C
C

C

CALL TRIGR (HP2250)

Go to 51~~p h~r~. Thi5 program will b~ r~-5ch~dul~d wh~n th~ HP-IB driv~r
rec~iV~5 an SRG from the HP2250, and ~x~cution will b~gin at th~ n~xt
5tat~m~nt after th~ EXEC (6, 0, 1).

WRITE (LOG, 303)
303 FORMAT (3/,"Th~ t~mp~rature m~a5ur~m~nt5 ar~ now b~ing tak~n.",

+1,"Wait three 5~cond5, then pr~55 RETURN.",3/)

CALL EXEC (6, 0, 1)

An SRG ha5 b~~n r~ceiv~d! Oh, boy! Th~ fir5t thing to do i5 r~ad

400

th~ int~rrupt 5tatu5 of th~ HP2250 to 5~~ what'5 happ~ning. Th~ 5tatu5
i5 obtain~d by r~ading 16 word5 from 5~condary addr~55 4.

READ (HP2250 : 4) (ISTAT(K), K R 1, 16)
CALL BSERR (HP2250, LOG, SRGPRG)

k Ch~ck th~ fir5t interrupt 5tatu5 word . If it ,. SRG1, th~n th~ t~mp~ratur~
C reading5 compl~t~d normally and data 5hould be availabl~ at port A on
C th~ HP2250.
C

IF (ISTATC1> .EG. SRG1) THEN
C
C R~ad th~ 5y5t~m 5tatu5 to find out how many word5 ar~ availabl~ from
C Port A. Sy5t~m 5tatu5 i5 obtain~d by r~ading ~ight word5 from
C 5~condary 1. The fifth word r~ad contain5 th~ # of word5 at Port A.
C

READ (HP2250 : 1) SSTAT
CALL BSERR (HP2250, LOG, SRGPRG)

C
C R~ad th~ data from Port A (acc~55~d by r~ading from 5~condary 11).
C

C

C
C
C
C
C
C

IF (SSTAT(5) .LT. 1) THEN
WRITE (LOG, 401)
STOP

END IF
401 FORMAT ("No data at Port A. Som~thing'5 wrong. I quit. ",51)

READ (HP2250 : 11, IOSTAT=ERROR) (DATA(K),K • 1,SSTATCS»
CALL BSERR (HP22S0, LOG, SRGPRG)

Di5play the r~5ult5 on th~ log t~rminal and quit for good. Sinc~ th~
2250 return~d the data in "two-word p~r t~mp~ratur~ r~ading" r~al
format, only writ~ out 1/2 th~ numb~r of "int~g~r word5" which i5
indicated in th~ fifth word of 5y5t~m 5tatu5.

Figure 8. Sample Program DEMO (Sheet 4 of 6)

24-23

\ - -

HP 2250A/HP 1000

WORDS· SSTAT(5) I 2
WRITE (LOG, 402) (DATA(K), K-1, WORDS)
WRITE (LOG, 403)
STOP

402 FORMAT (2/,T23, Th~rmocoupl~ T~mp~retur~5 ,/,
+T29,"(d.~gr~~5 Fehr~nh~it)",2/, 5(5X,5(F6.2,8X),5X,/))

FORMAT (2/,T34,"End of D~mo.",51) 403
C
C
C
C
C
C

C

C

Th~ int~rrupt 5tetu5 word we5n't • SRG1, 50 50m~thing w~nt wrong.
If th~ 5tetu5 word - SRG2, th~ te5k ceught th~ ~rror end compl~t~d und~r
it5 own pow~r. R~ed th~ ~rror cod~ vie 5~condery 8 from th~ veriebl~
V13 on th~ HP2250.

ELSE IF (. ISTAT(1) .EG. SRG2) THEN

WR ITE (HP2250 : 8) (SECOND(K) , K-1 ,2)
READ (HP2250 : 8) MTERR
CALL BSERR (HP2250, LOG, SRGPRG)

WRITE (LOG, 404) CODE, FILNAM
404 FORMAT ("Th~ HP2250 he5 encount~r~d run-tim~ ~rror ",16,/,

+"Th~ te5k in fil~ ",3A2," he5 ebendon~d 5hip.",T55," I gUit.",5/)
C
C If w~ got her~, th~ int~rrupt 5tetu5 word i5 not r~cognizebl~.
C Di5pley it end guit.
C

C

C

ELSE

WRITE (LOG, 405) ISTAT(1)
405 FORMAT ("Int~rrupt 5tetu5 -", I6,/,"The HP2250 5~nt en ..

+"unrecognizebl~ SRG me55ege.",T55," I gUit.",5/)

END IF
C **
C Thet'5 ell, folk5.
C

END
c ***
C Thi5 5ubroutin~ p~rform5 the HP-IB U5~r ~rror-proc~55ing.
C

C

C

SUBROUTINE BSERR (HP2250, LOG, SRGPRG)

INTEGER
DATA

HP2250, LOG, SRGPRG(4), TIMOUT, NOBODY
TIMOUT/1/, NOBODY/41

ERROR - IBERR (HP2250)
IF (ERROR .NE. 0) THEN

IF (ERROR .EG. TIMOUT) THEN
WRITE (LOG, 101) HP2250

ELSE IF (ERROR .EG. NOBODY) THEN
WRITE (LOG, 102) (SRGPRG(K), K-2,4)

ELSE
WRITE (LOG, 103) ERROR, HP2250

END IF
STOP

END IF

Figure 8. Sample Program DEMO (Sheet 5 of 6)

24·24

HP 2250NHP 1000

C
1 01

102

103

C

FORMAT ("A time - out error hes occurred. The HP22S0 i5 not"
+"enswering.,", / ,"Check to 5ee that the HP22S0 "
+"is indeed ' turned on and connected to lU ", 16,". I quit.",S/)

FORMAT ("The SRG_-handling program ",3A2," cannot be scheduled.",
+T70,"I quit.",S/)

FORMAT ("HP-IB error ",I6,2X," ha5 occurred for lU ",16,
+T70," I quit.",S/)

RETURN
END

c *.******.***.*******************
C Subroutine to remove trailing blank5 from the MCl lines 5tored in the
C di5k file5. Downloading 5peed i5 much improved with thi5 technique.
C

C

C

SUBROUTINE BLANK (lINE, BEFORE, AFTER)

lINE(80), lENGTH, BEFORE, AFTER
s ' BEFORE

INTEGER
AFTER

100 IF (LINE (AFTER) .NE. 2H) RETURN
C

C

IF (AFTER .EG .
AFTER = 0
RETURN

END IF

AFTER ,. AFTER - 1
GO TO 100
END

) THEN

Figure 8. Sample Program DEMO (Sheet 6 of 6)

24-25

\

HP 2250NHP 1000

FTN4X,l
C

SUBROUTINE
C

DGREE (CElS, FAHR)

C Subroutine to convert thermocouple readings in .1 Degrees C to Fahrenheit.
C

C

C

INTEGER CElS
REAL FAHR

FAHR • C FLOATCCElS)/10.0) * 1.8 + 32.0

RETURN
END

Figure 9. Downloaded Subroutine &DGREE

NTASKS(10)
DIMENSION C 20, 3, 5, 20, 2)

Figure 10. MeuSO Task SETUP

24-26

1
I

I
.1

Set up error processing

Initialize buHers -

Clear Bus Trigger Flag

Initialize Thermocouple

NO

Initialize Loop Counter

Increment Loop Counter

Take a group of temperature readings
Pace to reduce 60 Hz nOise

Average the group of readings

Store average into buHer

SRQ(1) to tell host data is ready

Upon run-time error,
transfer here

-------..

Figure 11. Flowchart for TEMPS Task

24-27

HP 2250NHP 1000

Put error code into
Variable 13 for
host to read

Flowchart for
TEMPS task
which takes
thermocouple readings

\ -- ..

HP 2250AlHP 1000

TASK(2)

V13 • 0
ONERROR (13)

REWI ND (.B2)

IF BT· 1 ENDIF

IN (B3)

REWIND (B3)

RANGE (2,1) 50 RANGE (2,16) 1000 REF (2, 16)

LABEl(1)

IF BT <> 1 THEN
PAUSE
GOTO (1)

ENDIF

V1 • 0

LABEl(2)

V1 • V1 + 1

REWIND (B1)
PACE (0, 4, 167)
REF (2, 16)
CLB (2)

REPEAT (4)
IN (B1)
WPACE
ETEMP (2,1)

NEXT

V2 • 0
AAV (B1, 4, V2)
CALL DGREE (V2, V3)

IN (B2)
OUT (V3)
ECHO (2)

IF V1). 10 THEN GOTO (3)

CTIMER
PTIMER (0, 0, 100)
GOTO (2)

ENDIF

Figure 12. MCW50 Code for TEMPS Task (Sheet 1 of 2)

24-28

LABEL< 3)

RELEASE (B2, A)

SRQ(1)

STOP

LABEL< 13)

V13 = ERROR

SRQ(2)

HP 2250NHP 1000

\

Figure 12. MCLJ50 Code for TEMPS Task (Sheet 2 of 2)

.~ r---~

REL,XDGREE
LI B, $QLI B
LI B, $MLI B1
LIB,$MLIB2
LIB,$MLIB3
MCL,DGREE
EN

Figure 13. *DGREE Command file for use with the LlNKR Program

System Performance

The amount of time necessary to transfer data from the
memory of the HP2250A to the memory of the host computer
is shown in Figure 14, for both the F-series and the L-Series
HP 1000 computers. The performance measurements were
made on quiescent (nothing else happening) systems.

READ and WRITE statements in FORTRAN incur formatting
overhead each time they execute. This overhead for I/O
transfers can be avoided with the use of EXEC calls. EXEC is
included in all RTE operating systems, and performs a variety
of control functions. The form of an EXEC call is shown
below.

CALL EXEC (I, LU, BUFFER, LENGTH)

24-29

where:
[

LU

= Which operation to perform (1 = read,
2 = write)

= LU of the device to be read
BUFFER = Variable or array in the user program for the

data to be transferred
LENGTH = How many words of data to transfer

The HP 2250A will return integer data to an HP 1000 in the
HP 1000's internal format, so no extra formatting of the data
returned by an EXEC call is required . If I/O transfer rates
must be maximized, then the use of EXEC calls in user
application programs is appropriate.

Execution times for specific MCU50 commands can be found
in the HP 2250A Performance Guide. However, there is a
simple method of determining how long any given task will
take to execute. Figure 15 shows how to determine the time
necessary to read 100 digital channels.

•

HP 2250A/HP 1000

------- 100
60 00

90

50
80

Cii a: 0
Z UJ

0 70 I-
~

U 40 Cl.
UJ ~ CJ)

0 ::J 60 -.J (,)

~ I-
CJ)

a: 0
UJ 30 50 :r:
u. u.
CJ) 0 z « z a: 40 0
I- i=
0 «
I- 20 N
UJ 30 ::J
~ i=
i= ~

>!2. 0

20
10

(2) 10

0 25 50 75 100

WORDS TRANSFERRED
FROM HP 2250 TO L-SERIES HP 1000

KEY: 1 "EXEC 1" Read from the HP 2250's Main Result
Buffer

2 FORTRAN-IVX "READ" from the HP 2250's Main
Result Buffer

3 Percent Utilization of L-Series during

4 Percent Utilization of L-Series during 2

---------- ---- 100
30 0000

90

80

Cii a: 0
Z 70 UJ

0 I-
~ U 20 Cl.

UJ ~ CJ)
0 ::J 60

=::! ()

~ I-
CJ)

a: 50
0

UJ :r:
u. u. CJ) 0) 0 z « z a: 40 0
I-

~ 0
I- 10 N
UJ 30 ::i
~ (0 i=
i= ~

>!2. 0

20

10

0 25 50 75 100

WORDS TRANSFERRED
FROM HP 2250 TO F-SERIES HP 1000

KEY: 1 "EXEC 1" Read, non-DMA, from HP 2250's Main
Result Buffer

2 "EXEC 1" Read, DMA, from HP 2250's Main Re
sult Buffer

3 FORTRAN-IVX "READ", non-DMA, from HP
2250's Main Result Buffer

4 FORTRAN-IVX "READ", DMA, from HP 2250's
Main Result Buffer

5 Percent Utilization of F·Series during

6 Percent Utilization of F-Series during 2

7 Percent Utilization of F·Series during 3

8 Percent Utilization of F-Series during 4

Figure 14. Transfer Rate for 110 between the HP 2250A and the HP 1000 F· and L-Series Computers

24-30

,

I (]

,1

{
" '.

"

MCU50 Task

DIMENSION (10, ; 0)

CTI MER

BLOCK

DI (5,1,100)

IN (V1)

RTIMER

HP 2250NHP 1000

Comments

Set up for 10 variables

Reset the HP 2250 timer

Take all the readings on one channel instead of
adjacent channels (saves needing 100 physical
channels)

Put 100 readings into the main result buffer

V1 - hours, V2 - seconds,
V3 - millisec, V4 - microsec
that have elapsed since the
CTIMER command

Figure 15. How to perform your own MCU50 Execution Speed Benchmark

To run the above experiment, first determine the overhead
time that is involved by executing the above task without the
BLOCK and DI(5, 1, 100) commands. Then, include them
and run the task again, and subtract the overhead time to get
the final result.

24-31

This experiment was done for the following commands:

1. DI - Digital point input

2. FI - Digital field input

3. DO - Digital point output

4. FO - Digital field output

5. AI - Analog input

The results of these measurements for successive numbers
of channels are shown in Figure 16.

5.0

4.0

3.0

Cii
~
w
:2
1=

2.0

1.0

0.0

0

rlifll HEWLETT
~~ PACKARD

AI

5 10

CHANNELS SCANNED

Figure 16. MCU50 Execution Speed Measurements

j
1
j

1 ,
1
1
I .

l ~
DI,FI I DO,FO

~
I

Printed in U.S.A. 4/81 5953-4290

