This solution requires a C-size VXI cage, a control card, an E1420A counter and, if more than two E1440As are used, an E1366A switching unit.

Features and benefits
-Slave E1440A frequencies can be a multiple of master frequency.
-Channels can be independently modulated (AM or PM).
-11-digit frequency resolution.
-Phase accuracy $/-2$ degree at 20 MHz (even better at lower frequencies due to counter's 200 ps time-interval resolution).
-Output waveforms need not be the same, and are selectable from:
sine (up to 21 MHz), square or triangle (up to 11 MHz), and ramp (up to 11 kHz). Minimum frequency is 1 uHz .
-5 ppm stability, if E1440As are daisy-chained. Can be improved by using the counter reference.
-Independent amplitude 1 mVpp to 10 Vpp into 50 ohm . Option 001 provides 4 mVpp to 40 Vpp into 500 ohm .

Application example: Navigation Systems

Test of vehicle receivers used in Decca-type location systems requires a number of synthesizers to simulate the signals from a number of fixed transmitters. The frequencies, which are multiples of the master transmitter frequency, must not only be phase-locked, but also of programmable phase so that receiver performance can be verified for any vehicle position.

```
Setting up for the first time
```

After inserting the modules in the VXI-cage, the front panel connections shown in the following diagram must be made. Additionally, the counter's 10 MHz reference can be "daisychained" to all E1440As; this however is not essential, the VXI-internal CLK10 line can be used instead.
a) Two channels

Master E1440A (left)

b) Three to five channels

Master E1440A (furthest left)

Try to keep the Sync Out path lengths as equal as possible. The same applies to the main outputs. Perform a phase measurement at the device and note any offset needed. With propagation times equalized, the phase accuracy lies in the range /-1 to /- 7 degree depending on waveform and amplitude mix, and frequency.

From here on, correct phase relationship is simply a matter of setting each slave to the required phase. Subsequently, whenever frequency, waveform or amplitude are changed, a phase-cal should be performed. If more than one counter is detected, the one with the lowest slot number will be taken.

Also, the current settings of the counter and switch are stored. This is to allow the counter to be used for other measurements. After the phase calibration, the previous counter settings are automatically recalled.

The calibration is done by the subprogram Sc_calibrate, which first measures the time delay between the positive slopes of the sync signal from the master device (which is used as a reference) and the sync signals from the slaves. It then calculates the phase error between master and slave and adjusts each slave so that all channels are in phase with the master.

After calibration, the program sets the different E1440A's to the desired phase values. Then, as mentioned above, counter and switch are returned to their previous settings.

Automation

```
UNSUPPORTED programs are attached:
    1. PHASECAL: provides a user interface and phase-calibrates
                    automatically.
    2. ERRORHANDLING: a utility for use in any application where
                        self-test is to be implemented.
The programs are in HP Basic and stored as ASCII files (use the
HP Basic command GET to load the file).
PHASECAL implements phase calibration for up to five HP E1440As.
If a daisy-chained reference signal is used instead of VXI line
CLK10, change line 109 from:
    109 OUTPUT Hpib E1440(I,2);":SOURCE:ROSC:SOURCE CLK10"
        ! CLK10 is ref
to:
    109 OUTPUT Hpib E1440(I,2);":SOURCE:ROSC:AUTO ON"
        ! Daisy chain ref
```

Initially, the routine detects the cards in the VXI-cage (SUB Sc_getdev) and assigns the E1440A with the lowest slot number as master, the one with the next higher slot number will be slave 1, and so-on. If more than one E1420A counter is detected, the one with the lowest slot number will be taken.

Also, the current settings of the counter and switch are stored.

This is to allow the counter to be used for other measurements.

The calibration is done by the subprogram Sc_calibrate, which first measures the time delay between the positive slopes of the sync signal from the master device (which is used as reference) and the sync signals from the slaves. It then calculates the phase error between master and slave and adjusts each slave so that all channels are in phase with the master.

After calibration, the program sets the different E1440's to the desired phase values, and returns the counter and switch to their previous settings.

```
    PHASE CALIBRATION UTILITY (IN RMB) FOR A MASTER E1440A
    WITH UP TO FOUR SLAVE E1440As.
    E1420A COUNTER MUST BE INSTALLED IN THE SAME MAINFRAME.
    IF THERE IS MORE THAN ONE SLAVE, A PROGRAMMABLE CO-AX
    SWITCH WILL ALSO BE NEEDED. THIS PROGRAM USES THE
    E1366A SWITCH
    !
    !
REAL Counter ! HPIB-address of E1420 e.g. }7160
REAL Switch ! HPIB-address of Switchbox
REAL Master ! HPIB-address of master E1440
REAL Frequency ! Frequency of master E1440
REAL Master_phase ! Phase of master E1440 after calibration
REAL Slave(1:4) ! HPIB-addresses of slave E1440's, 0 for
                                unused slaves
INTEGER Slave_multi(1:4)
REAL Slave_phase(1:4) ! Slave phase after cal
REAL Error ! Return value: 0=cal ok, 1=timeout
INTEGER Pm_cal ! 0: CALIBRATION WILL BE DONE FOR PM BY
                    SWITCHING OFF/ON PM INPUTS
                THIS MAY CAUSE FOR SQUAREWAVES A PHASE
        SHIFT OF }180\mathrm{ DEGREES
            !<>0: FOR SQUAREWAVES WITH PM, THE PROGRAM WILL
                CALIBRATE WITH PM SWITCHED ON AND ASK
                TO DISCONNECT/CONNECT THE CABLES TO THE
                PM INPUTS. THIS PROTECTS FROM THE PHASE
                SHIFT, BUT NEEDS MANUAL MODIFICATIONS OF
                        THE TEST CABLE CONNECTIONS
    !
Frequency=1500
Slave_multi (1)=1
    !
REAL Hpib ! incl sec addr. Used only for Sc_getdev subpgm
Hpib=71600 ! HAS TO BE CHANGED TO VALID ADDRESS
CALL Sc_getdev(Hpib, Counter,Switch,Master,Slave (*))
                            ! assign dev addresses
!CALL
!!c_calibrate (Counter,Switch,Master,Frequency,
                Master_phase,Slave(*),
!!Slave_multi(*),Slave_phase(*),Error,Pm_cal)
    END
    !
    !=========================================================
SUB Sc_getdev(Hpib, Counter,Switch,Master,Slave (*))
        ! CHECK DEV ADDRESSES
        ! this subprogram is only used to show how the
        configuration of the VXI
        ! -mainframe can be detected automatically. It is
            not needed for calibration
    INTEGER I,Devnumber, Count,E1440a,E1420a,Sbox
!!REAL Mfg,Dummy,La (1:13),E1440 (1:5,1:2),Slot,Dev,
!!Switchbox(1:3,1:2),E1420(1:3,1:2)
    DIM Dev$[20],Dummy$[200],Dlad$ [50]
```

```
Counter=0
IF NOT Hpib THEN SUBEXIT
ON TIMEOUT INT(Hpib/10000),5 GOTO Timeout_error
Dev=Hpib
OUTPUT Hpib;":VXI:CONF:DNUM?"
ENTER Hpib;Devnumber
OUTPUT Hpib;":VXI:CONF:DLAD?"
ENTER Hpib;Dlad$
FOR I=1 TO Devnumber
    La (I) =VAL (Dlad$)
    Dlad$=Dlad$ [POS (Dlad$,",") 1,LEN(Dlad$)]
    OUTPUT Hpib;":VXI:CONF:DLIS? "&VAL$(La(I))
    ENTER Hpib;Dummy,Dummy,Mfg, Dummy,Slot,Dummy$
    IF Mfg=4095 THEN ! manufacturer hp ?
        La (I)=INT (La (I)/8)
        Dev=Hpib La(I)
        OUTPUT Dev;"*IDN?"
        ENTER Dev;Dummy$
        Dummy$=Dummy$[POS (Dummy$,",") 1,LEN(Dummy$)]
        Dummy$=Dummy$[1,POS (Dummy$,",")-1]
        SELECT Dummy$
        CASE "E1440A"
        E1440a=E1440a 1
        Count=Count 1
        IF Count<6 THEN
            E1440 (Count,1)=Slot
            E1440 (Count,2)=La (I)
            END IF
    CASE "E1420A"
        E1420a=E1420a 1
        E1420(E1420a,1)=Slot
        E1420 (E1420a,2) =La (I)
    CASE "SWITCHBOX","E1472A"
        Sbox=Sbox 1
        Switchbox (Sbox,1)=Slot
        Switchbox (Sbox, 2)=La (I)
    CASE ELSE
    END SELECT
    END IF
NEXT I
IF Count THEN
    !!MAT SORT E1420(*,1)
    !!MAT SORT Switchbox(*,1)
    FOR I=3 TO 1 STEP -1
        IF E1420(I,2) THEN
            Counter=Hpib E1420(I,2)
    END IF
    IF Switchbox(I,2) THEN
        Switch=Hpib Switchbox(I,2)
    END IF
    NEXT I
    !!MAT SORT E1440(*,1)
    Count=0
    FOR I=1 TO 5
        IF E1440(I,2) THEN
            Count=Count 1
            IF Count=1 THEN Master=Hpib E1440(I,2)
            IF Count>1 THEN Slave(Count-1)=Hpib E1440(I,2)
            OUTPUT Hpib E1440(I,2);":SOURCE:ROSC:SOURCE CLK10"
                ! CLK10 is ref
    END IF
    NEXT I
END IF
IF E1420a=0 THEN PRINT "CONFIG ERROR: No E1420 cntr"
IF Sbox=0 AND E1440a>1 THEN
    PRINT "CONFIG MESSAGE: No Switchbox"
END IF
IF E1440a<2 THEN PRINT "CONFIG ERROR: No E1440"
OFF TIMEOUT
SUBEXIT
```

```
120
1 2 1
122 !!PRINT "ERROR: No device "&VAL$ (Dev)&
123 SUBEND !!
124 !!SUB Sc_calibrate(Counter,Switch,Master,Frequency,
    Master_phase,Slave (*),
            !!IF (Switch MOD 10000) THEN OUTPUT Switch;":rout
                                    :clos (@11"&VAL$(I-1)&")
    !! "Slave_frequency=Frequency*Slave_multi(I)
                    ! calculate new slave frequency
    OUTPUT Slave(I);":FREQ:FIX "&VAL$(Slave_frequency)&"HZ;
                                    :SOURCE:PM:STATE?"
    ENTER Slave(I);Slave_pm ! check slave for pm
    OUTPUT Slave(I);":SOURCE:FUNCTION:SHAPE?"
```

ENTER Slave(I);Slave_wave\$! check slave waveform IF Slave_wave\$<>"DC" AND Slave_frequency<2.1E 7 THEN !! ! no calibration for dc or frequencies above 21 MHz IF (Slave_wave\$<>"SQUARE") OR Slave_pm<>1 OR Pm_cal=0 THEN
OUTPUT Slave(I);":SOUR:PM:STAT OFF"
Test2=180
ELSE
Test2=0
PRINT "CALIBRATION MESSAGE: Please disconnect cable from PM input"
!! "at slave"\&VAL\$(I)\&" device ("\&VAL\$ (Slave(I)) \&")
then press any key"
! ON KBD ALL GOTO 176
!! GOTO 175 ! wait for user action
!!OFF KBD
END IF
IF Slave_phase (I) <> (180-Test2) THEN FOR J=Slave_phase(I) TO 180-Test2 STEP
(180-Slave_phase (I)) /15
!!! omit phase shift below 25 kHz for phase changes > 25 deg (squarewave)
OUTPUT Slave(I);":SOUR:PHAS"\&VAL\$ (PROUND (J,-1)) \&" DEG"
NEXT J
END IF
!
CALL Sc_measure (Counter,Master,Slave (I), Test2, Slave_frequency, Fault)
!
!! IF ABS (Fault-180)<179.5 THEN OUTPUT Slave(I);":SOUR: PHAS "\&VAL\$
!! (Fault) \&" DEG;:SOURCE:PHASE:REFERENCE"
IF Slave_phase(I) THEN
FOR J=0 TO Slave_phase(I) STEP (Slave_phase(I))/15
! omit phase shift below 25 kHz OUTPUT Slave(I);":SOUR:PHAS "\&VAL\$ (PROUND (J,-1)) \& " DEG"
NEXT J
END IF
OUTPUT Slave(I);":SOUR:PM:STAT "\&VAL\$ (Slave_pm)
IF (Slave_wave\$="SQUARE") AND Slave_pm=1 AND Pm_cal<>0
THEN
!! PRINT "CALIBRATION MESSAGE: Please connect cable to PM input at
!!slave"\&VAL\$(I)\&" device ("\&VAL\$(Slave(I))\&") then press any key"
!! ON KBD ALL GOTO 197
GOTO 196 ! wait for user action
!! OFF KBD
END IF
END IF
END IF
NEXT I
IF Test1<>Master_phase THEN
FOR J=Test1 TO Master_phase STEP (Master_phase-Test1)/15
! omit phase shift below 25 kHz for changes $>25 \mathrm{deg}$ (only for squarewave)
OUTPUT Master;":SOUR:PHAS "\&VAL\$ (PROUND (J,-1))\&" DEG"
NEXT J
END IF
OUTPUT Master;":SOUR:PM:STAT "\&VAL\$ (Master_pm)
IF (Master_wave\$="SQUARE") AND Master_pm=1 AND Pm_cal<>0 THEN
!! PRINT "CALIBRATION MESSAGE: Please connect cable to PM input at
!!master device ("\&VAL\$ (Master) \&"), then press any key"
!! ON KBD ALL GOTO 212
GOTO 211 ! wait for user action
!! OFF KBD
END IF

```
    OUTPUT Counter;"*rcl 9" ! re-store counter setup
    IF (Switch MOD 10000) THEN OUTPUT Switch;"*rcl 9"
                                    ! re-store mux setup
    OFF TIMEOUT
    Error=0 ! no error occured
    SUBEXIT
    No_cal:!
    ON TIMEOUT INT(Counter/10000),7 GOTO No_count
    ! if device timeout then abort
    OUTPUT Counter;"*rcl 9" ! re-store counter setup
    IF (Switch MOD 10000) THEN OUTPUT Switch;"*rcl 9"
                                    ! re-store mux setup
No_count: !
    OFF TIMEOUT ! calibration not successful, timeout
    SUBEND
    ==================================================
SUB Sc_measure (Counter,Master,Slave,Test2,Frequency,Fault)
    REAL Resolution,Measure(1:3),J,Tout
    IF Frequency>2000 THEN
    ! select measurement resolution of counter depending on
                                    expected timeinterval
    Resolution=1.E-10
    ELSE
    Resolution=1.E-9
    END IF
    Tout=3/Frequency 5
    Sc_getdelay (Frequency,Resolution,360, Counter, Tout,
                                    Measure (1))
    Sc_getdelay(Frequency,Resolution, 360, Counter,Tout,
                                    Measure (2))
    !!IF (ABS (Measure (2)-Measure (1))>1.5) AND ((ABS
                            (Measure (1)-180) <179)
    !! OR (ABS (Measure (2)-180)<179)) THEN
                                    ! both values in tolerance?
    ON TIMEOUT INT(Counter/10000),5 GOTO End
    FOR J=180-Test2 TO Test2 STEP (Test2/5-18)
    ! omit phase shift below 25 KHz for phase changes >
                    25 deg on squarewave signals
        OUTPUT Slave;":SOUR:PHAS "&VAL$(PROUND (J,-1)) &" DEG"
    NEXT J
    WAIT . }
    Sc_getdelay(Frequency,Resolution,540, Counter,Tout,
                                    Measure(3))
    !!IF (ABS (Measure (2) -Measure (3))>2) AND ((ABS
                            (Measure (2) -180)<178.5) OR
    !! (ABS (Measure (3)-180)<178.5)) THEN
                            ! compare second with third measurement
        Measure (3)=Measure (1)
        Measure (1) =Measure (3)
        Sc_getdelay(Frequency,Resolution,540, Counter, Tout,
                            Measure (3))
        !!IF (ABS (Measure (1)-Measure (3))>3) AND ((ABS
                                    (Measure(1)-180)<178) OR
        !!(ABS (Measure (3)-180)<178)) THEN 246
            ! last two measurements in tolerance?
        Measure (2)=Measure (3)
    ELSE
        Measure (1)=Measure (3)
    END IF
    FOR J=Test2 TO 180-Test2 STEP (18-Test2/5)
                                    ! omit phase shift
    ! below 25 KHz for phase changes > 25 deg on squarewave
                                    signals
        OUTPUT Slave;":SOUR:PHAS "&VAL$(PROUND (J,-1))&" DEG"
    NEXT J
    END IF
    IF Measure(1)>355 AND Measure(2)<5 THEN Measure(1)=
                            Measure (1)-360
    IF Measure (2)>355 AND Measure(1)<5 THEN Measure(2)=
```

 Measure (2) -360
 Fault=PROUND((Measure (1) Measure (2))/2,-1)
 ! thats the phase error
 283 BEEP 200,.05 ! MEASUREMENT DONE
284 End:OFF TIMEOUT
285 SUBEND
286 !=============
287 SUB Sc_getdelay(Frequency,Resolution,Degree, Counter,Tout,
Measure)
OFF TIMEOUT
IF Tout<32 THEN
! if calibration needs longer than 32.767 seconds, the
! timeout command can't be used to avoid a hang-up
ON TIMEOUT INT (Counter/10000),Tout GOTO T_out
ELSE
!! ON TIME Tout GOTO T_out
END IF
OUTPUT Counter;":MEASURE1:TINTERVAL? 1,"\&VAL\$ (Resolution)
ENTER Counter;Measure
Measure=(PROUND (Measure*Frequency*360,-1) Degree) MOD 360
T_out:OFF TIMEOUT
!!OFF TIME
SUBEND
Part 4.

```
```

 !E1440A Self-cal error-handling routine.
    ```
    !E1440A Self-cal error-handling routine.
    !Prints "self-cal OK" or, if there is a fault, the
    !Prints "self-cal OK" or, if there is a fault, the
                                    self-cal results.
                                    self-cal results.
    !A timeout recovers system control if the E1440A fails
    !A timeout recovers system control if the E1440A fails
                                    to respond.
                                    to respond.
    CLEAR SCREEN
    CLEAR SCREEN
    ASSIGN @Fg TO 71611
    ASSIGN @Fg TO 71611
    ABORT }
    ABORT }
    CLEAR 7
    CLEAR 7
    CLEAR @Fg
    CLEAR @Fg
    !
    !
    Cal$=" 9"
    Cal$=" 9"
    !
    !
    OUTPUT @Fg;"*RST;:STATUS:PRESET;*CLS"
    OUTPUT @Fg;"*RST;:STATUS:PRESET;*CLS"
    OUTPUT @Fg;":VOLT 5V" ! This statement causes self-cal
    OUTPUT @Fg;":VOLT 5V" ! This statement causes self-cal
    ON TIMEOUT 7,3 GOTO Timeout
    ON TIMEOUT 7,3 GOTO Timeout
    OUTPUT @Fg;":CAL?" ! Self-cal data requested
    OUTPUT @Fg;":CAL?" ! Self-cal data requested
    ENTER @Fg;Cal$ ! Self-cal data uploaded
    ENTER @Fg;Cal$ ! Self-cal data uploaded
    IF Cal$=" 0" THEN
    IF Cal$=" 0" THEN
            PRINT "Self-cal ok"
            PRINT "Self-cal ok"
    ELSE
    ELSE
        PRINT "Self-cal error ";Cal$;"see Manual p 5-9"
        PRINT "Self-cal error ";Cal$;"see Manual p 5-9"
    END IF
    END IF
    GOTO End
    GOTO End
    !
    !
    Timeout:PRINT "Timeout, E1440A doesn't respond within normal self-cal time (
    Timeout:PRINT "Timeout, E1440A doesn't respond within normal self-cal time (
)"
260 !
270 End:LOCAL @Fg
280 !
290 END
```

