
Product Note 85150-6

Solutions from HP EEsof

Sharing Data Between the
Microwave Design System and OmniSys/CDS

Introduction

This application note describes the tools and techniques that can be used to share
nonlinear simulation data between the HP Microwave Design System (MDS), and the
OmniSys Design Suite or the HP Communication Design Suite (OmniSys/CDS). There are
several different paths that may be taken to transfer data. The correct path depends on
the type of data to be shared and the type of simulator used.

Background

MDS Release 7.0 contains a new type of simulator. Called the Circuit Envelope simulator,
this tool efficiently handles complex modulation waveforms in the time domain. To do so,
it decomposes signals into a complex I and Q envelope and a carrier signal. Special
mathematical algorithms then operate on these signal components to yield a fast,
accurate simulation of circuits driven by even the most complicated modulated
waveforms.

In addition, MDS includes a state-of-the-art harmonic balance simulator for finding
steady-state circuit solutions in the frequency domain.

OmniSys and CDS, Release 5.0 and above, contain a Discrete Time simulator for use with
block-level system analyses. Like the Circuit Envelope simulator, the Discrete Time
simulator decomposes signals into a complex I and Q envelope and a carrier. The
algorithms in the Discrete Time simulator are specialized for use in system-level
simulation applications, yielding fast, accurate simulations of complete systems.

In addition to the Discrete Time simulator, CDS also includes Series IV’s harmonic
balance circuit simulator. In this product, the Discrete Time simulator is capable of
automatically invoking the harmonic balance simulator to find solutions for
component-level subcircuits. Using power-dependent S-parameter data generated by the
harmonic balance simulator, the Discrete Time simulator can include component-level
circuits within block-level system simulations.

Designers of RF circuits can run into problems trying to simulate complex circuits,
particularly those found in today’s wireless communications products. MDS’s new Circuit
Envelope simulator can analyze these complex designs at the circuit level, but the
OmniSys/CDS Discrete Time simulator is needed to analyze the designs at the system
level. Furthermore, sometimes it would be convenient to use an MDS harmonic balance
simulator output in OmniSys or CDS. The solution to these problems is the basis of this
application note; namely, sharing data between MDS and OmniSys or CDS.

Sharing Data Between the Microwave Design System and OmniSys/CDS

2

Example

Consider the block diagram of a simple communications system, as shown in Figure 1.

Figure 1. Block diagram of the analog portion of a simple communications system. Some or all of the components
in this block diagram can be simulated by OmniSys/CDS, MDS, or both.

Typically, a baseband signal is generated, upconverted, amplified, transmitted, and
received by a chain of components similar to those in Figure 1. Variations on this basic
block diagram can be either simple or extremely complex, but the fundamental structure
remains constant.

When a system designer uses OmniSys/CDS to simulate a system like the one in Figure 1,
the power amplifier’s compression characteristics can be specified using a number of
different parameters, such as third-order intercept point and 1-dB compression point. The
entire system can be simulated to verify acceptable performance. However, adjacent
channel interference is not necessarily correlated with the amplifier’s third-order
intercept or with its 1-dB compression point because the input signal may be very
complicated.

One solution to this problem is to simulate the power amplifier at the circuit level rather
than with a black-box approximation. By using a circuit simulator to determine the power
amplifier’s exact operating characteristics under realistic signal conditions, good overall
system performance is assured. Figure 2 shows a flow chart representation of this type of
design flow.

Antenna
 Link

Signal
Source

Upconverter

Preamp

Power Amp LNA

Downconverter

Receive
 Amp

Sharing Data Between the Microwave Design System and OmniSys/CDS

3

Figure 2. A design flow using both OmniSys/CDS and the MDS Circuit Envelope simulator.

With the techniques that are shown in Figure 2 and described in the remainder of this
application note, system and circuit designers can:

• Verify subsystem performance.
• Have confidence that the completed system will function properly.
• Avoid subsystem rework and unnecessary design cycles.

The remainder of this application note details the steps necessary to transfer signal
waveform data between OmniSys/CDS and MDS.

Simulate all components
before the power amplifier
using OmniSys/CDS.

Capture the output of the
preamp and transfer the
voltage waveform to MDS.

Design the power amplifier
in MDS, using harmonic
balance or the Circuit
Envelope simulator.

Apply the captured
OmniSys/CDS signal to
the poweramp.

Capture the output of the
poweramp simulation in
MDS and transfer it back
to OmniSys.

Verify acceptable system
performance.

Build prototype.

Iterate as
needed.

Sharing Data Between the Microwave Design System and OmniSys/CDS

4

Using MDS Harmonic Balance Data in OmniSys/CDS

One important capability of the Communications Design Suite is its ability to handle
circuit-level simulation data within a system-level simulation. This is accomplished with
the use of power-dependent S-parameters. When the system simulator encounters a
circuit-level component model, such as an amplifier, it automatically invokes the Series IV
harmonic balance simulator. In turn, the harmonic balance simulator calculates a set of
power-dependent S-parameters that it returns to the system simulator. System
simulation then continues, using the power-dependent S-parameters as a model for the
circuit-level component.

With Release 7.0, MDS can also create power-dependent S-parameters and save them in a
file. That file can then be used by the Communications Design Suite in a larger
system-level simulation.

Using MDS to Create Power-Dependent S-Parameters

Figure 3 shows an
amplifier circuit from
MDS with a simulation
setup that will create a
power-dependent
S-parameter file.

It is easy to create
power-dependent
S-parameters in MDS:

• Except for the
simulation control
block, circuits are
entered as if a
normal small-signal
S-parameter
simulation is to be
done. S-parameter
port impedance
components are used
at the inputs and
outputs. (Note that the default impedance for components in OmniSys is 50 ohms,
which matches the default impedance of S-parameter ports in MDS. These impedances
can be changed in both systems. If a non-50 ohm simulation is to be performed in
OmniSys using data from MDS, then the impedance of the S-parameter ports in MDS
should be adjusted to match the impedance used in OmniSys.)

• Instead of an S-parameter simulation control block, a power-dependent S-parameter
(P2D) simulation block is used. The P2D simulation block can be found using the
INSERT/MDS CONTROL/ANALYSIS/S PARAMETER/P2D FILE - START/STOP menu
command. This simulation control block includes entries for a frequency range as well
as a power range. Power-dependent S-parameters will be generated that span these
ranges, and placed into the specified file.

Note that the final parameter shown on the P2D simulation control block in Figure 3 is
ORDER. This parameter specifies the number of harmonics used in the harmonic balance
simulation and is identical to the ORDER parameter for any other harmonic balance
simulation. The power-dependent S-parameters only include data for the fundamental

Figure 3. An amplifier circuit in MDS, with a simulation setup that will create
power-dependent S-parameters and place them into a file called results.p2d.

 Power-dependent
S-parameter simulation
 control

Ordinary S-parameter
 ports

Sharing Data Between the Microwave Design System and OmniSys/CDS

5

frequency because OmniSys does not need data for harmonics. However, the ORDER
parameter must be set correctly to obtain accurate answers.

When creating power-dependent S-parameters, it is important to specify a wide enough
bandwidth and power range to enable OmniSys to accurately simulate signals in the
system-level simulation. To accomplish this, set the frequency span so that it contains the
entire bandwidth of the signal (including spurious signals) that OmniSys will use. Set the
power range so that the highest power level is at least as high as the strongest signal that
will be included in the OmniSys simulation, and the lowest power level is small enough so
it does not generate significant nonlinearities in the circuit.

Using MDS Power-Dependent S-Parameter Data in OmniSys

Once a power-dependent S-parameter file has been generated with MDS, it is easy to use
the data in a system simulation with OmniSys or the Communications Design Suite. In
OmniSys, a P2D component is inserted, and the name of the data file is entered as a
parameter. Figure 4 illustrates.

By default, the P2D component assumes that the power-dependent S-parameter data file
is located in the data subdirectory of the current OmniSys/CDS project directory. This can
be overridden by entering a full pathname on the P2D component. In general, however, it
is more convenient to simply move the data file into the project directory so that
everything associated with the OmniSys project stays together.

Figure 4. A simple system schematic in OmniSys/CDS that uses previously calculated power-dependent
S-parameters to model an amplifier. The power-dependent S-parameter data could have been generated by
either MDS or by a separate OmniSys/CDS simulation.

 P2D component
uses data from MDS

Sharing Data Between the Microwave Design System and OmniSys/CDS

6

Using OmniSys Envelope Data with
the MDS Circuit Envelope Simulator

Since the MDS Circuit Envelope Simulator and the OmniSys Discrete Time Simulator
both work with complex (I and Q) signal envelopes, it is conceptually easy to transfer data
between the two simulators. Because both simulators yield time-domain data using a time
step that is determined by the signal envelope rather than the carrier frequency, it is
important to transfer only baseband envelope data. If a modulated signal is to be
transferred, the correct approach is to capture only the baseband envelope data in
OmniSys, transfer it to MDS, and then re-modulate the captured envelope in MDS.
OmniSys and MDS can accomplish the de-modulation and re-modulation steps as
mathematically perfect operations, so the signal is not degraded.

To transfer this data, there are only two difficulties that must be overcome:

• File format differences.
• Handling imperfect impedance matches.

The solutions to these problems, along with the step-by-step procedure for data transfer,
is outlined in this section.

Creating Envelope Data in OmniSys

Signal envelope data transfer between OmniSys and MDS can be accomplished via
time-domain data files. In OmniSys, these files are known as TIM files and they have a
filename extension of .tim. TIM files are created using OUTTIM components, which are
found in the Output Data Files component palette in the OmniSys test bench window.

Figure 5 illustrates the use of OUTTIM components. In this simple OmniSys test bench, a
π/4 DQPSK signal at 1 GHz drives an amplifier whose output I and Q envelope waveforms
are captured by IV and QV measurement components. The two OUTTIM components instruct
the simulator to create TIM files containing the signal envelope data.

After simulation, the test bench in Figure 5 creates files called i.tim and q.tim. These
files will be located in the data subdirectory within the OmniSys project directory.

Note that the IV and QV measurements are applied to a modulated signal in this
example, even though only unmodulated, baseband data should be transferred to the
Circuit Envelope simulator. This works because the output of the IV and QV measurement
components only includes baseband envelope data, whether their input signal is
modulated or not.

Sharing Data Between the Microwave Design System and OmniSys/CDS

7

Figure 5. An OmniSys test bench designed to save signal I and Q envelope waveforms in TIM files.

Translating TIM Files into CITIfiles

MDS cannot directly read OmniSys TIM files. Instead, the TIM files must be translated
into CITIfile format. Appendix A shows a UNIX shell script that can be used to perform
the translation. This script is invoked from the UNIX command line by typing

tim2citi i.tim q.tim iq.citi

Where tim2citi = the name of the file containing the script from Appendix A.

i.tim = the name of the TIM file containing the I envelope data. If necessary,
a complete pathname can be specified.

q.tim = the name (or complete pathname) of the TIM file containing the Q
envelope data.

iq.citi = the name (or complete pathname) of a CITIfile that will be created. If
a file with this name already exists, it will be overwritten.

The CITIfile format supports the ability to include more than one dependent variable in a
single file, so the script in Appendix A combines the data in both TIM files into a single
CITIfile. While not strictly necessary, this makes the data somewhat easier to handle and
results in the creation of only a single MDS dataset in the next step of the data transfer
process.

Creates a modulated
 π/4 DQPSK signal

Measures the signal’s
 Q envelope

 Stores the signal’s Q
envelope in a file called
 q.tim

Sharing Data Between the Microwave Design System and OmniSys/CDS

8

Reading CITIFILE Data into MDS

Once a CITIfile has been created, it must be read
into an MDS dataset. Then the data can be used to
define a signal source that can be used in the
Circuit Envelope simulator.

To read the CITIfile data into an MDS dataset, open
an MDS collector window (a file, workbench, or
library icon) and use the INSERT/DATASET command
from the pop-up menus to create a new (empty)
dataset, as illustrated in Figure 6. Place the
dataset’s icon anywhere in the collector window, and
give it the name of your choice. (In the example that
follows, the dataset has simply been named
Dataset.) Then double-click on the dataset icon to
open it. The resulting window will display the
dataset icon’s index page, as shown in Figure 7.

Within the new dataset’s index page, use the pop-up
menu command PERFORM/READ/CITIFILE to read
the signal envelope data into MDS. When MDS asks
for the name of a CITIfile, enter the name
(or complete pathname) of the CITIfile
that was previously created by the shell
script in Appendix A.

When the CITIfile data has been read
into the dataset, close the dataset’s
window. It is also a good idea to give the
dataset a descriptive name.

Creating a Signal Source
Component in MDS

Although the envelope waveform is now
contained in a dataset, a small circuit
must be constructed that extracts the
data and uses it as a voltage in a circuit
simulation. This is accomplished
through the use of a VTDATA component
in MDS, as shown in Figure 8. (The
VTDATA component is accessed with the
INSERT/MDS SOURCES/INDEPENDENT

VOLTAGE/TIME DOMAIN

WAVEFORM/DATA-BASED menu item.)

The VTDATA source component
simultaneously reads the
waveform data from the MDS
dataset and re-modulates it to a
specified carrier frequency. Figure
8 shows how to configure a VTDATA
variable.

Figure 6. Use the INSERT/DATASET menu
command to create a new, empty dataset in

MDS.

Figure 7. Use the PERFORM/READ/CITIFILE menu
command to read CITIfile data into an MDS dataset.

Figure 8. A single VTDATA voltage source component is used to
re-modulate the OmniSys signal envelope data in MDS.

 Re-modulates the
 envelope data

Sharing Data Between the Microwave Design System and OmniSys/CDS

9

There are four parameters that must be supplied by the user:

• The dataset name. In Figure 8, the dataset has been named Dataset.
• The name of the variable in the dataset. A CITIfile can hold any number of dependent

variables, each with its own unique name. This name is also stored in the MDS dataset.
The script in Appendix A gives the name IQdata to the contents of the OmniSys TIM
files, and Figure 8 shows the use of that name.

• A gain parameter, which is normally set to 1 but may be set to a different value to
account for impedance mismatches. See the next section for a discussion on handling
impedances.

• A frequency parameter, which specifies the carrier frequency used for modulating the
envelope waveform. To create a baseband (unmodulated) source, set this parameter to
zero. The example in Figure 8 uses a carrier frequency of 1 GHz.

The simple circuit shown in Figure 8 can be simulated, and it is useful for verifying that
all steps in the data transfer process worked correctly. The simulated data at the Vout
wire label should exactly match the envelope data that was originally created by
OmniSys. More specifically, real(Vout) should exactly match the I component of the
envelope, and imag(Vout) should exactly match the Q component. However, circuits such
as power amplifiers are sensitive to the impedances of other circuit components, so these
other impedances need to be taken into account.

Note that a similar MDS source component, VTCDATA, can be used instead of the VTDATA
component. The VTCDATA component is identical to the VTDATA component except that it
allows the time axis to be offset and scaled.

Handling Impedances

OmniSys' default behavior is to assume that all components are matched perfectly in a
50-ohm system. For non-50-ohm circuits, lumped-element circuit components and
terminations are available. If OmniSys data is to be used in circuit simulations, it is
important to account for imperfect impedances.

As a simple example, consider Figure 5. Assume that the simple system shown in the
figure models everything except for a final power amplifier. Since the final power amplifier
design is extremely nonlinear and critical to the performance of the system, the power
amplifier will be modeled using the Circuit Envelope simulator. To do this correctly, we
need to know the output impedance of the preamp.

If the output impedance of the
preamp is close to 50 ohms and the
input impedance of the power
amplifier is close to 50 ohms, then
it can be treated as a 50-ohm
signal source in MDS. Figure 9
illustrates.

Figure 9 is similar to Figure 8,
except the voltage of the source is
multiplied by two, which is
necessary to correctly account for
the source impedance. The original
OmniSys simulation assumed that
the output impedance of the
preamp was 50 ohms and the input
impedance of both measurement

Figure 9. A single VTDATA voltage source component is used to
re-modulate the OmniSys signal envelope data in MDS.

 Voltage is multiplied by 2
 to account for source
 impedance

Sharing Data Between the Microwave Design System and OmniSys/CDS

10

components was 50 ohms. The data that OmniSys stored in the original TIM files, then,
corresponds to the voltage at the connector labeled Vout in Figure 9. In order for the
voltage at the connector to match the OmniSys data, the envelope data at the source must
be multiplied by two.

If either the preamp or the power amplifier is a non-50-ohm device, then more care must
be taken in the OmniSys simulation, before the data is transferred to MDS, to ensure that
the Circuit Envelope simulator receives the correct driving voltage. This is accomplished
through the use of lumped-element components to model non-50-ohm impedances and the
SPLIT2 element to capture the desired voltage. (SPLIT2 components are found in the
Electrical Miscellaneous Elements component library in OmniSys/CDS.)

Figure 10 shows an OmniSys test bench that models a preamp with a complex output
impedance and a power amplifier with a 30 ohm input impedance. In addition, a SPLIT2
element has been added. One of the outputs of the SPLIT2 element is used to capture a
voltage waveform that will be sent to MDS.

Figure 10. An OmniSys test bench that could be used to model a preamp with a complex output impedance and a
power amplifier with a 30-ohm input impedance.

The SPLIT2 element shown in Figure 10 is placed in the circuit before the capacitor that
models the complex part of the preamp’s output impedance. The reason for this can be
understood by considering the forward-travelling and reverse-travelling parts of the
signal at the output of the preamp. The simple schematic in Figure 11 illustrates.

In Figure 11, the voltage (V) is to be measured and transferred to MDS. Consider the
forward-travelling voltage waveform that is created by this source. After passing through
the 50-ohm resistor, the signal encounters an ideal splitter. The top branch of the splitter,
which has a voltage gain of 2, terminates the signal in an ideal 50-ohm impedance (the IV
and QV measurement components provide this ideal termination, despite the fact that
there are two measurement components). Therefore, no signal is reflected from the upper
port of the splitter back into the amplifier. The voltage at the upper splitter port is
multiplied by 2 to account for the voltage-dividing action of the two 50-ohm resistors.
(Note that the SPLIT2 component’s parameters are specified in terms of power gain in dB,

 Capacitor models the
 reactive part of the
preamp output impedance

SPLIT2 element captures a
voltage waveform for MDS

Termination component
 models non-50-ohm
 power amplifier input

Sharing Data Between the Microwave Design System and OmniSys/CDS

11

so the S21 parameter is specified as 6.02 dB.) The lower port of the splitter has no voltage gain and
transmits the forward-travelling voltage unchanged. The forward-travelling signal is reflected back
through the lower splitter port and is “seen” by the preamp component.

Figure 11. Equivalent circuit of the output stages of the OmniSys simulation in Figure 10.

When the data created by simulating Figure 10 is transferred to MDS, a few
lumped-element components are used to re-create the non-50-ohm impedances that were
modeled in OmniSys/CDS. Figure 12 shows a simple model that re-creates the
impedances used in the OmniSys/CDS simulation in Figure 10. In Figure 12, the input
impedance of the power amplifier is modeled as a single resistor. For a complete circuit
analysis of a power amplifier design, this resistor can be replaced by a complete power
amplifier design.

Figure 12. An MDS circuit that
models the output impedance of
the OmniSys preamp. In this
circuit, the power amplifier’s
input impedance is modeled as
a single resistor. For more
advanced simulations this
resistor is replaced with the
complete power amplifier
circuit.

Termination supplied
 by measurement
 componentsTIM files measure

 voltage here

Model of preamp

Power amp input

V

Gain = 2

Gain = 1

CS = 1 pF RL = 30

R = 50

VtestRS = 50

Lumped elements model
the output impedance of
 the preamp

Power amplifierl
input impedance

Voltage at this point should
 equal the voltage at the
 node Vtest in Figure 11

Sharing Data Between the Microwave Design System and OmniSys/CDS

12

Using MDS Circuit Envelope Data in OmniSys

Transferring waveform data from the MDS Circuit Envelope simulator into the
OmniSys/CDS environment requires the exact opposite of the procedure described in the
previous section. Simply put, the steps involved are:

• Translate an MDS dataset into a CITIfile.
• Translate the CITIfile into a pair of TIM files.
• Use the .tim files as sources in OmniSys/CDS.

Creating Waveform Envelope Data in MDS

Figure 13 shows a simple BJT amplifier in MDS that illustrates a simulation setup that
can be used to capture a signal waveform for later use in OmniSys/CDS.

The simulation setup shown in figure 13 creates an MDS dataset named DataOut. This
dataset will contain, among other things, the complex envelope waveform at the point
labeled Vout on the schematic. The data is in real-imaginary (I and Q) format, and covers
all specified harmonics of the 1 GHz fundamental frequency.

Figure 13. A BJT amplifier analysis in MDS, using the Circuit Envelope simulator. The signal at the point
labeled Vout will be transferred to OmniSys/CDS. The signal source at the upper left is a subcircuit that contains
the signal source created in the previous section.

Translating MDS Datasets into CITIfile Format

Once an MDS dataset has been created, translating it into CITIfile format is simple:

1. Find the dataset's icon, and double-click on it to open it.

2. Normally, the dataset's Index page will be visible. If not, use the menu command
WINDOW/CHANGE PAGE/INDEX PAGE.

3. Use the menu command PERFORM/WRITE/CITIFILE. The system will ask for a file name.
Any file name, including complete pathnames, may be entered.

 Data from this point
will be transferred to
 OmniSys/CDS

Signal source imported
from CDS and placed
into a subcircuit

Sharing Data Between the Microwave Design System and OmniSys/CDS

13

Translating a CITIfile into TIM Files

Typically, CITIfiles created by MDS contain several variables. For a simple Circuit
Envelope simulation like the one shown in Figure 13, the resulting CITIfile will contain
two independent variables (time and frequency) and at least as many dependent variables
as there are wire labels on the schematic. Finding the correct data within the CITIfile and
transferring it into TIM files can be complicated.

The UNIX shell script in Appendix B can be used to find data in a CITIfile and create a
pair of TIM files. To use the script, type the following command:

citi2tim CITIfile Data Freq Ifile Qfile

where citi2tim = the name of the script in Appendix B.

CITIfile = the name of the CITIfile to translate.

Data = the name of the data (from an MDS wire label).

Freq = the carrier frequency for which you want to extract data.

Ifile = the name (or pathname) of the TIM file to create for the I channel data.

Qfile = the name (or pathname) of the TIM file to create for the Q channel
data.

For example, if the CITIfile’s name is data.citi, and name of an MDS wire label is Vout,
and the desired waveform’s carrier frequency is 1 GHz, type:

citi2tim data.citi Vout 1E9 i.tim q.tim

The script will extract the I and Q signal envelope data from the CITIfile at the specified
frequency and create two TIM files, which can then be used as source components in
OmniSys/CDS.

Note that the script in Appendix B makes a few assumptions about the contents of the
CITIfile. In particular, the script only works for straightforward Circuit Envelope
simulations like the one shown in Figure 13. This simulation creates two independent
variables, time and frequency. If any other circuit parameter is swept, the script will fail.

The two TIM files that are created by the script in Appendix B will be used later in an
OmniSys/CDS simulation. Because OmniSys/CDS assumes (by default) that TIM files
reside in the data subdirectory of the current project directory, it is most convenient to
store the TIM files there.

Sharing Data Between the Microwave Design System and OmniSys/CDS

14

Using TIM Files in an OmniSys/CDS Simulation

Given a pair of TIM files that contain I and Q waveform data, the signal from MDS can be
re-created in OmniSys/CDS through the use of a single component, as illustrated in
Figure 14.

Figure 14. An OmniSys/CDS test bench that uses a QAM_F source to create a modulated signal from a pair of
TIM files.

In Figure 14, a QAM_F component is used to create a modulated signal. (QAM_F stands for
QAM with input by file, and the component can be found in the Sources and Terminations
library in an OmniSys/CDS test bench.) On the QAM_F component, the first parameter (Fc)
is set to equal the carrier frequency that was used in the MDS Circuit Envelope
simulation. The second parameter (Pwr) should be set so that the carrier amplitude is 1
volt into whatever load impedance is used. The final two parameters (File1 and File2)
specify the names of the TIM files that were created using the script in Appendix B.

The QAM_F component can be used with several different file formats, and the default
format is not TIM. To use QAM_F components with TIM files, it is necessary to edit the
component parameters as follows:

1. Double-click on the QAM_F component to edit the parameters.

2. In the dialog box that appear, click on the FileI parameter

3. Change the value type setting (in the upper right portion of the dialog box) from the
default SPE filename to TIM filename.

4. Repeat steps 2 and 3 for the FileQ parameter.

Note that the values of the FileI and FileQ parameters shown in Figure 14 are i and q,
respectively. Series IV automatically appends a .tim extension to these file names, so the
actual UNIX file names of these files are i.tim and q.tim. The default location for these
files is the data subdirectory of the Series IV project directory.

The output of the QAM_F component can then be applied to other OmniSys/CDS
components for further overall system simulation and measurements. In illustration,
Figure 14 shows the signal being filtered and then transmitted over a mobile antenna
link, with several measurements applied at the receiver.

QAM_source uses two
 TIM files to create a
 modulated signal

Sharing Data Between the Microwave Design System and OmniSys/CDS

15

Handling Impedance Mismatches

Because the signal data in this scenario originates in the MDS circuit simulator,
impedance mismatch problems are easy to handle. The impedance of an OmniSys/CDS
component can be modeled in the MDS simulation, and an MDS wire label can be placed
at the correct point in the circuit to capture the waveform at the input to the OmniSys
device.

For example, consider the OmniSys mobile antenna model. This component includes
parameters for specifying the input impedance of the antenna. For the sake of example,
assume that the antenna impedance can be modeled as a series resistor-inductor pair. The
MDS model that could be used for this is shown in Figure 15.

By modeling the input impedance of the OmniSys/CDS component in the MDS
environment, the captured waveform data can be used in OmniSys/CDS and applied
directly to the input of a non-50-ohm component for further system simulation.

Figure 15. An MDS simulation that models a non-50-ohm input impedance of an OmniSys/CDS antenna component. The voltage
at the Vout wire label can be transferred to OmniSys/CDS and applied to the input of an antenna component for further system-level
simulations.

 Resistor/inductor pair
models input impedance
 of OmniSys/CDS

Wire label captures
 signal waveform

 antenna model

Sharing Data Between the Microwave Design System and OmniSys/CDS

16

Appendix A - UNIX Shell Script to Translate TIM Files to CITIfile

This UNIX shell script can be used to translate TIM files from OmniSys/CDS into CITIfile
format. This script uses the Korn shell, and uses only common UNIX utilities like awk and
grep. However, it has only been minimally tested on the HP-UX 9.05 operating system.
For other operating systems, some modifications may be necessary.

This script is available electronically via anonymous ftp at hpeesof.external.hp.com
(192.6.21.2) in the distribution/app_note directory, or from the HP EEsof worldwide
web site (http://www.hp.com/go/hpeesof) in the Applications area.

#! /bin/ksh

This script uses a temporary file. Set the
file name and path here...
TEMPFILE=/tmp/cititemp

Check for the correct number of parameters...
if ["$#" -ne 3] ; then

echo "Usage: $0 Ifile Qfile CITIfile"
echo " Ifile = the .tim file containing the I channel data"
echo " Qfile = the .tim file containing the Q channel data"
echo " CITIfile = the name of the CITIfile to create"
echo ""
exit

fi

Insert CITIFILE header information...
echo "CITIFILE A.01.01" > $3
echo "COMMENT I/Q data from "$1" and "$2 >> $3
echo "NAME I_Q_DATA" >> $3
echo "#MDS DATATYPE TRAN" >> $3
echo "#MDS VARTABLE IVARDATA1" >> $3

Find out how many data points are in the .TIM files. This script
assumes that there are the same number of points in both .TIM
files, and doesn’t do any checking of that assumption. The
first ’grep’ command filters out any blank lines, and the second
counts the lines that only contain numbers.
NUMDATA=‘grep -v ’^[\t]*$’ $1 | grep -c -i -x ’[- \t0-9e.]*’‘

more CITIFILE header information...
echo "VAR TIME MAG "$NUMDATA >> $3
echo "DATA IQdata RI" >> $3
echo "" >> $3

Figure out that the time scale is. The time scale is given on the second
line of the .TIM file, and it can be ’sec’, ’msec’, or ’usec’. Knowing
that, we can scale the independent data (time) correctly, because MDS
always assumes that time data is in seconds. Once again, this script
assumes that the I and Q data have the same scale factor, and doesn’t
check the assumption.
The second line in the .TIM file should begin with "# T(", so the
following grep command finds it. Then the awk command picks out
the scale factor, which is the third field.
TIMESCALE=‘grep ’^#[\t]*[tT](’ $1 | awk ’{print $3}’ -‘

Figure out what the voltage scale is. The voltage scale factor can only
be volts, millivolts, or "data" (which means that the data has abrupt
transitions rather than piecewise-linear transistions). If the
scale is "data", this script treats it like "volts".
VOLTSCALE=‘grep ’^#[\t]*[tT](’ $1 | awk ’{print $4}’ -‘

The independent variable data (time) goes here, followed by the I channel
data and the Q channel data, in that order. The grep commands filter
out any blank lines, and the awk commands filter out the .TIM file
header and trailer lines. We use the scale factor, found above,
to re-scale the time data here.
echo "VAR_LIST_BEGIN" >> $3
case $TIMESCALE in

psec | PSEC) grep -v ’^[\t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($1*1E-12)}’ - >> $3 ;;

nsec | NSEC) grep -v ’^[\t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($1*1E-9)}’ - >> $3 ;;

msec | MSEC) grep -v ’^[\t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \

Sharing Data Between the Microwave Design System and OmniSys/CDS

17

print($1*1E-3)}’ - >> $3 ;;
usec | USEC) grep -v ’^[\t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \

print($1*1E-6)}’ - >> $3 ;;
) grep -v ’^[\t]$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; print $1}’ - \

>> $3 ;;
esac

echo "VAR_LIST_END" >> $3
echo "" >> $3

Output the data here. Use the VOLTSCALE scale factor from above
to properly scale the voltage data. Here, all of the data goes
into a single temporary file. Later, this file will be re-read
so the data can be formatted correctly as real-imaginary pairs
in the CITIfile.

I channel data...
echo "BEGIN" >> $3
case $VOLTSCALE in

mv | MV) grep -v ’^[\t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($2*1E-3)}’ - >> $TEMPFILE ;;

) grep -v ’^[\t]$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {print $2}’ - >> $TEMPFILE ;;
esac

Q channel data...
case $VOLTSCALE in

mv | MV) grep -v ’^[\t]*$’ $2 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($2*1E-3)}’ - >> $TEMPFILE ;;

) grep -v ’^[\t]$’ $2 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {print $2}’ - >> $TEMPFILE ;;
esac

Read the temporary file all at once, and output the data
into the CITIfile with the correct formatting...
awk ’BEGIN {i = 0;} {data[i++] = $1;} END {i /= 2; for (j = 0; j < i; j++) \
print(data[j],",",data[i+j]);}’ $TEMPFILE >> $3
echo "END" >> $3

Clean up...
rm $TEMPFILE

Sharing Data Between the Microwave Design System and OmniSys/CDS

18

Appendix B - UNIX Shell Script to Translate CITIfiles to TIM Files

This UNIX shell script can be used to translate CITIfiles into OmniSys/CDS TIM files.
This script uses the Korn shell, and uses only common UNIX utilities like awk and grep.
However, it has only been minimally tested on the HP-UX 9.05 operating system. For
other operating systems, some modifications may be necessary. Note that this script only
works with the results of the Circuit Envelope simulator, and it will not work if any MDS
variable (other than time) is swept.

This script is available electronically via anonymous ftp at hpeesof.external.hp.com
(192.6.21.2) in the distribution/app_note directory, or from the HP EEsof worldwide
web site (http://www.hp.com/go/hpeesof) in the Applications area.

#! /bin/ksh

Check for the correct number of parameters...
if ["$#" -ne 5] ; then

echo "Usage: $0 CITIfile Data Freq Ifile Qfile"
echo " CITIfile = name of the CITIfile to translate"
echo " Data = name of the data (from an MDS wire label)"
echo " Freq = carrier frequency for which you want to extract data"
echo " Ifile = name (or pathname) of the .tim file to create for the I channel data"
echo " Qfile = name (or pathname) of the .tim file to create for the Q channel data"
echo ""
exit

fi

It can be hard to find the data you want in the CITIfile, because a CITIfile can contain
many different variables, both dependent and independent. Independent variables are defined
by VAR statements, and dependent variables are defined by DATA statements. We have to find
the
relative locations of the DATA and VAR statements and remember them in order to sort out the
data
we want. This part of the script finds values for TIME_LOCATION and FREQ_LOCATION, which are
integer values indicating the location of the data in the CITIfile. For instance, if "time"
is the first independent variable in the file, then TIME_LOCATION will be 0.
#
Note that this script assumes that there are only two independent variables: time and
frequency. This will always be true of a Circuit Envelope simulation unless the user
sets up a simulation with another swept parameter. If that happens, this script
will not work.
LOWEST_VAR_LOCATION=‘grep -n -i "^VAR[\t]*" $1 | awk -F: ’{print $1;exit}’‘
TIME_LOCATION=‘grep -n -i "^VAR[\t]*time[\t]*MAG" $1 | awk -F: ’{print $1;exit}’‘
FREQ_LOCATION=‘grep -n -i "^VAR[\t]*freq[\t]*MAG" $1 | awk -F: ’{print $1;exit}’‘
let TIME_LOCATION=TIME_LOCATION-LOWEST_VAR_LOCATION
let FREQ_LOCATION=FREQ_LOCATION-LOWEST_VAR_LOCATION
if [$TIME_LOCATION -ne 0] ; then

echo "Sorry, I can’t handle this CITIfile."
echo "Either there are too many swept variables, or"
echo "the data is not in the order I expect."
exit

fi
if [$FREQ_LOCATION -ne 1] ; then

FREQ_LOCATION=0
fi

Find the number of points in the time data, and the number
of frequency points...
TIME_POINTS=‘grep -i "^VAR[\t]*time[\t]*MAG" $1 | awk ’{print $4;exit}’‘
FREQ_POINTS=‘grep -i "^VAR[\t]*freq[\t]*MAG" $1 | awk ’{print $4;exit}’‘

Find the location of the data we want. As with the independent variables, there can be
many dependent variables in a CITIfile. Here, DATA_LOCATION is an integer
like TIME_LOCATION and FREQ_LOCATION.
LOWEST_LOCATION=‘grep -n -i "^DATA" $1 | awk -F: ’{print $1;exit}’‘
DATA_LOCATION=‘grep -n -i -x "^DATA[\t]*$2[\t]*RI" $1 | awk -F: ’{print $1;exit}’‘

Now, find the index of the frequency
that we want. The frequency list is stored in
the CITIfile as a single list. This
’awk’ command finds the frequency data, and
then finds the desired frequency within
that list. FREQ_INDEX becomes an integer
that is the index of the desired frequency

Sharing Data Between the Microwave Design System and OmniSys/CDS

19

within the list.
FREQ_INDEX=‘awk ’BEGIN {e = 1e9; i = 0; found = 0; best = 0;} \

/^VAR_LIST_BEGIN/, /^VAR_LIST_END/ { \
if ($1 == "VAR_LIST_BEGIN") found++; \
else if ((found == 2) && ($1 != "VAR_LIST_END")) { \

if ($1 >= desired) { \
if ($1 - desired < e) {best = i; e = $1 - desired;} \
} \

else if (desired - $1 < e) {best = i; e = desired - $1;} \
i++; \
} \

} \
END {print best}’ \
desired=$3 $1‘

Make sure that the data names, as entered on the command line,
are correct and the data actually does exist in the CITIfile.
Note that the data type has to be "RI" (for real/imaginary),
or this script will not work.
if [${#DATA_LOCATION} -eq ""] ; then

echo "Sorry, but there is no data called "$2" in the CITIfile."
echo "(Or if it does exist, it’s the wrong kind of data.)"
exit

fi
let DATA_LOCATION=DATA_LOCATION-LOWEST_LOCATION

Get, and output, the I channel data. Since the CITIfile contains the independent
data and dependent data in a single column of text, the awk command below reads all
the data into a single (large) array, and then prints it back out in two columns.
The values that are calculated above are used here to index into the
data array and find the subset of the data that we are looking for.
echo "BEGIN TIMEDATA" > $4
echo ’# T(SEC V R 50.0)’ >> $4
echo ’% T V’ >> $4
awk ’BEGIN {OFMT = "%.14g"; i = 0;} \

/^VAR_LIST_BEGIN/, /^VAR_LIST_END/ {if (i <= time_points) time[i++] = $1;} \
/^BEGIN/, /^END/ {data[j++] = $1;} \
END {data_points = 2 + (time_points * freq_points); \
offset = freq_index + 1 + (i_offset * data_points); \
for (i = 0; i < time_points; i++) print time[i+1],",",data[(i*freq_points)+offset];}’ \
i_offset=$DATA_LOCATION time_points=$TIME_POINTS \
freq_points=$FREQ_POINTS freq_index=$FREQ_INDEX \
$1 | awk -F, ’{print $1," ",$2}’ >> $4

echo "END" >> $4

Output the Q channel data...
echo "BEGIN TIMEDATA" > $5
echo ’# T(SEC V R 50.0)’ >> $5
echo ’% T V’ >> $5
awk ’BEGIN {OFMT = "%.14g"; i = 0;} \

/^VAR_LIST_BEGIN/, /^VAR_LIST_END/ {if (i <= time_points) time[i++] = $1;} \
/^BEGIN/, /^END/ {data[j++] = $1;} \
END {data_points = 2 + (time_points * freq_points); \
offset = freq_index + 1 + (i_offset * data_points); \
for (i = 0; i < time_points; i++) print time[i+1],",",data[(i*freq_points)+offset];}’ \
i_offset=$DATA_LOCATION time_points=$TIME_POINTS \
freq_points=$FREQ_POINTS freq_index=$FREQ_INDEX \
$1 | awk -F, ’{print $1," ",$3}’ >> $5

echo "END" >> $5

For more information, contact a regional
HP office listed below, or check your
telephone directory for a local HP sales office.

United States
(800) 452 4844

Canada
(905) 206 4725

Europe (Amsterdam)
Hewlett-Packard
European Marketing Centre
P.O. Box 999
1180 AZ Amstelveen
The Netherlands

Japan
(81) 426 48 0722

Latin America (Miami, Florida)
(305) 267 4245

Australia/New Zealand
(13) 1347 Ext. 2902

Asia Pacific (Hong Kong)
(8522) 599 7070

Data subject to change
© 1996 Hewlett-Packard Company
Printed in USA PN 85150-6 5M 4/96

5965-1211E

