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Introduction

This application note describes the tools and techniques that can be used to share 
nonlinear simulation data between the HP Microwave Design System (MDS), and the 
OmniSys Design Suite or the HP Communication Design Suite (OmniSys/CDS). There are 
several different paths that may be taken to transfer data. The correct path depends on 
the type of data to be shared and the type of simulator used.

Background

MDS Release 7.0 contains a new type of simulator. Called the Circuit Envelope simulator, 
this tool efficiently handles complex modulation waveforms in the time domain. To do so, 
it decomposes signals into a complex I and Q envelope and a carrier signal. Special 
mathematical algorithms then operate on these signal components to yield a fast, 
accurate simulation of circuits driven by even the most complicated modulated 
waveforms.

In addition, MDS includes a state-of-the-art harmonic balance simulator for finding 
steady-state circuit solutions in the frequency domain.

OmniSys and CDS, Release 5.0 and above, contain a Discrete Time simulator for use with 
block-level system analyses. Like the Circuit Envelope simulator, the Discrete Time 
simulator decomposes signals into a complex I and Q envelope and a carrier. The 
algorithms in the Discrete Time simulator are specialized for use in system-level 
simulation applications, yielding fast, accurate simulations of complete systems.

In addition to the Discrete Time simulator, CDS also includes Series IV’s harmonic 
balance circuit simulator. In this product, the Discrete Time simulator is capable of 
automatically invoking the harmonic balance simulator to find solutions for 
component-level subcircuits. Using power-dependent S-parameter data generated by the 
harmonic balance simulator, the Discrete Time simulator can include component-level 
circuits within block-level system simulations.

Designers of RF circuits can run into problems trying to simulate complex circuits, 
particularly those found in today’s wireless communications products. MDS’s new Circuit 
Envelope simulator can analyze these complex designs at the circuit level, but the 
OmniSys/CDS Discrete Time simulator is needed to analyze the designs at the system 
level. Furthermore, sometimes it would be convenient to use an MDS harmonic balance 
simulator output in OmniSys or CDS. The solution to these problems is the basis of this 
application note; namely, sharing data between MDS and OmniSys or CDS.
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Example

Consider the block diagram of a simple communications system, as shown in Figure 1. 

Figure 1. Block diagram of the analog portion of a simple communications system. Some or all of the components 
in this block diagram can be simulated by OmniSys/CDS, MDS, or both.

Typically, a baseband signal is generated, upconverted, amplified, transmitted, and 
received by a chain of components similar to those in Figure 1. Variations on this basic 
block diagram can be either simple or extremely complex, but the fundamental structure 
remains constant.

When a system designer uses OmniSys/CDS to simulate a system like the one in Figure 1, 
the power amplifier’s compression characteristics can be specified using a number of 
different parameters, such as third-order intercept point and 1-dB compression point. The 
entire system can be simulated to verify acceptable performance. However, adjacent 
channel interference is not necessarily correlated with the amplifier’s third-order 
intercept or with its 1-dB compression point because the input signal may be very 
complicated.

One solution to this problem is to simulate the power amplifier at the circuit level rather 
than with a black-box approximation. By using a circuit simulator to determine the power 
amplifier’s exact operating characteristics under realistic signal conditions, good overall 
system performance is assured. Figure 2 shows a flow chart representation of this type of 
design flow.
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Figure 2. A design flow using both OmniSys/CDS and the MDS Circuit Envelope simulator.

With the techniques that are shown in Figure 2 and described in the remainder of this 
application note, system and circuit designers can:

• Verify subsystem performance.
• Have confidence that the completed system will function properly.
• Avoid subsystem rework and unnecessary design cycles.

The remainder of this application note details the steps necessary to transfer signal 
waveform data between OmniSys/CDS and MDS.

Simulate all components
before the power amplifier
using OmniSys/CDS.

Capture the output of the
preamp and transfer the
voltage waveform to MDS.

Design the power amplifier
in MDS, using harmonic
balance or the Circuit
Envelope simulator.

Apply the captured
OmniSys/CDS signal to
the poweramp.

Capture the output of the
poweramp simulation in
MDS and transfer it back
to OmniSys.

Verify acceptable system
performance.

Build prototype.

Iterate as
needed.



Sharing Data Between the Microwave Design System and OmniSys/CDS

4

Using MDS Harmonic Balance Data in OmniSys/CDS

One important capability of the Communications Design Suite is its ability to handle 
circuit-level simulation data within a system-level simulation. This is accomplished with 
the use of power-dependent S-parameters. When the system simulator encounters a 
circuit-level component model, such as an amplifier, it automatically invokes the Series IV 
harmonic balance simulator. In turn, the harmonic balance simulator calculates a set of 
power-dependent S-parameters that it returns to the system simulator. System 
simulation then continues, using the power-dependent S-parameters as a model for the 
circuit-level component.

With Release 7.0, MDS can also create power-dependent S-parameters and save them in a 
file. That file can then be used by the Communications Design Suite in a larger 
system-level simulation.

Using MDS to Create Power-Dependent S-Parameters

Figure 3 shows an 
amplifier circuit from 
MDS with a simulation 
setup that will create a 
power-dependent 
S-parameter file.

It is easy to create 
power-dependent 
S-parameters in MDS:

• Except for the 
simulation control 
block, circuits are 
entered as if a 
normal small-signal 
S-parameter 
simulation is to be 
done. S-parameter 
port impedance 
components are used 
at the inputs and 
outputs. (Note that the default impedance for components in OmniSys is 50 ohms, 
which matches the default impedance of S-parameter ports in MDS. These impedances 
can be changed in both systems. If a non-50 ohm simulation is to be performed in 
OmniSys using data from MDS, then the impedance of the S-parameter ports in MDS 
should be adjusted to match the impedance used in OmniSys.)

• Instead of an S-parameter simulation control block, a power-dependent S-parameter 
(P2D) simulation block is used. The P2D simulation block can be found using the 
INSERT/MDS CONTROL/ANALYSIS/S PARAMETER/P2D FILE - START/STOP menu 
command. This simulation control block includes entries for a frequency range as well 
as a power range. Power-dependent S-parameters will be generated that span these 
ranges, and placed into the specified file.

Note that the final parameter shown on the P2D simulation control block in Figure 3 is 
ORDER. This parameter specifies the number of harmonics used in the harmonic balance 
simulation and is identical to the ORDER parameter for any other harmonic balance 
simulation. The power-dependent S-parameters only include data for the fundamental 

Figure 3. An amplifier circuit in MDS, with a simulation setup that will create 
power-dependent S-parameters and place them into a file called results.p2d.

 Power-dependent
S-parameter simulation
       control

Ordinary S-parameter
       ports
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frequency because OmniSys does not need data for harmonics. However, the ORDER 
parameter must be set correctly to obtain accurate answers.

When creating power-dependent S-parameters, it is important to specify a wide enough 
bandwidth and power range to enable OmniSys to accurately simulate signals in the 
system-level simulation. To accomplish this, set the frequency span so that it contains the 
entire bandwidth of the signal (including spurious signals) that OmniSys will use. Set the 
power range so that the highest power level is at least as high as the strongest signal that 
will be included in the OmniSys simulation, and the lowest power level is small enough so 
it does not generate significant nonlinearities in the circuit.

Using MDS Power-Dependent S-Parameter Data in OmniSys

Once a power-dependent S-parameter file has been generated with MDS, it is easy to use 
the data in a system simulation with OmniSys or the Communications Design Suite. In 
OmniSys, a P2D component is inserted, and the name of the data file is entered as a 
parameter. Figure 4 illustrates.

By default, the P2D component assumes that the power-dependent S-parameter data file 
is located in the data subdirectory of the current OmniSys/CDS project directory. This can 
be overridden by entering a full pathname on the P2D component. In general, however, it 
is more convenient to simply move the data file into the project directory so that 
everything associated with the OmniSys project stays together.

Figure 4. A simple system schematic in OmniSys/CDS that uses previously calculated power-dependent 
S-parameters to model an amplifier. The power-dependent S-parameter data could have been generated by 
either MDS or by a separate OmniSys/CDS simulation.

 P2D component
uses data from MDS
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Using OmniSys Envelope Data with 
the MDS Circuit Envelope Simulator

Since the MDS Circuit Envelope Simulator and the OmniSys Discrete Time Simulator 
both work with complex (I and Q) signal envelopes, it is conceptually easy to transfer data 
between the two simulators. Because both simulators yield time-domain data using a time 
step that is determined by the signal envelope rather than the carrier frequency, it is 
important to transfer only baseband envelope data. If a modulated signal is to be 
transferred, the correct approach is to capture only the baseband envelope data in 
OmniSys, transfer it to MDS, and then re-modulate the captured envelope in MDS. 
OmniSys and MDS can accomplish the de-modulation and re-modulation steps as 
mathematically perfect operations, so the signal is not degraded.

To transfer this data, there are only two difficulties that must be overcome:

• File format differences.
• Handling imperfect impedance matches.

The solutions to these problems, along with the step-by-step procedure for data transfer, 
is outlined in this section.

Creating Envelope Data in OmniSys

Signal envelope data transfer between OmniSys and MDS can be accomplished via 
time-domain data files. In OmniSys, these files are known as TIM files and they have a 
filename extension of .tim. TIM files are created using OUTTIM components, which are 
found in the Output Data Files component palette in the OmniSys test bench window.

Figure 5 illustrates the use of OUTTIM components. In this simple OmniSys test bench, a 
π/4 DQPSK signal at 1 GHz drives an amplifier whose output I and Q envelope waveforms 
are captured by IV and QV measurement components. The two OUTTIM components instruct 
the simulator to create TIM files containing the signal envelope data.

After simulation, the test bench in Figure 5 creates files called i.tim and q.tim. These 
files will be located in the data subdirectory within the OmniSys project directory.

Note that the IV and QV measurements are applied to a modulated signal in this 
example, even though only unmodulated, baseband data should be transferred to the 
Circuit Envelope simulator. This works because the output of the IV and QV measurement 
components only includes baseband envelope data, whether their input signal is 
modulated or not.
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Figure 5. An OmniSys test bench designed to save signal I and Q envelope waveforms in TIM files.

Translating TIM Files into CITIfiles

MDS cannot directly read OmniSys TIM files. Instead, the TIM files must be translated 
into CITIfile format. Appendix A shows a UNIX shell script that can be used to perform 
the translation. This script is invoked from the UNIX command line by typing

tim2citi i.tim q.tim iq.citi

Where tim2citi = the name of the file containing the script from Appendix A.

i.tim = the name of the TIM file containing the I envelope data. If necessary, 
a complete pathname can be specified.

q.tim = the name (or complete pathname) of the TIM file containing the Q 
envelope data.

iq.citi = the name (or complete pathname) of a CITIfile that will be created. If 
a file with this name already exists, it will be overwritten.

The CITIfile format supports the ability to include more than one dependent variable in a 
single file, so the script in Appendix A combines the data in both TIM files into a single 
CITIfile. While not strictly necessary, this makes the data somewhat easier to handle and 
results in the creation of only a single MDS dataset in the next step of the data transfer 
process.

Creates a modulated
 π/4 DQPSK signal

Measures the signal’s
    Q envelope

     

 Stores the signal’s Q
envelope in a file called
        q.tim
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Reading CITIFILE Data into MDS

Once a CITIfile has been created, it must be read 
into an MDS dataset. Then the data can be used to 
define a signal source that can be used in the 
Circuit Envelope simulator.

To read the CITIfile data into an MDS dataset, open 
an MDS collector window (a file, workbench, or 
library icon) and use the INSERT/DATASET command 
from the pop-up menus to create a new (empty) 
dataset, as illustrated in Figure 6. Place the 
dataset’s icon anywhere in the collector window, and 
give it the name of your choice. (In the example that 
follows, the dataset has simply been named 
Dataset.) Then double-click on the dataset icon to 
open it. The resulting window will display the 
dataset icon’s index page, as shown in Figure 7.

Within the new dataset’s index page, use the pop-up 
menu command PERFORM/READ/CITIFILE to read 
the signal envelope data into MDS. When MDS asks 
for the name of a CITIfile, enter the name
(or complete pathname) of the CITIfile 
that was previously created by the shell 
script in Appendix A.

When the CITIfile data has been read 
into the dataset, close the dataset’s 
window. It is also a good idea to give the 
dataset a descriptive name.

Creating a Signal Source 
Component in MDS

Although the envelope waveform is now 
contained in a dataset, a small circuit 
must be constructed that extracts the 
data and uses it as a voltage in a circuit 
simulation. This is accomplished 
through the use of a VTDATA component 
in MDS, as shown in Figure 8. (The 
VTDATA component is accessed with the 
INSERT/MDS SOURCES/INDEPENDENT 

VOLTAGE/TIME DOMAIN 

WAVEFORM/DATA-BASED menu item.)

The VTDATA source component 
simultaneously reads the 
waveform data from the MDS 
dataset and re-modulates it to a 
specified carrier frequency. Figure 
8 shows how to configure a VTDATA 
variable. 

Figure 6. Use the INSERT/DATASET menu 
command to create a new, empty dataset in 

MDS.

Figure 7. Use the PERFORM/READ/CITIFILE menu 
command to read CITIfile data into an MDS dataset.

Figure 8. A single VTDATA voltage source component is used to 
re-modulate the OmniSys signal envelope data in MDS.

 Re-modulates the
   envelope data
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There are four parameters that must be supplied by the user:

• The dataset name. In Figure 8, the dataset has been named Dataset.
• The name of the variable in the dataset. A CITIfile can hold any number of dependent 

variables, each with its own unique name. This name is also stored in the MDS dataset. 
The script in Appendix A gives the name IQdata to the contents of the OmniSys TIM 
files, and Figure 8 shows the use of that name.

• A gain parameter, which is normally set to 1 but may be set to a different value to 
account for impedance mismatches. See the next section for a discussion on handling 
impedances.

• A frequency parameter, which specifies the carrier frequency used for modulating the 
envelope waveform. To create a baseband (unmodulated) source, set this parameter to 
zero. The example in Figure 8 uses a carrier frequency of 1 GHz.

The simple circuit shown in Figure 8 can be simulated, and it is useful for verifying that 
all steps in the data transfer process worked correctly. The simulated data at the Vout 
wire label should exactly match the envelope data that was originally created by 
OmniSys. More specifically, real(Vout) should exactly match the I component of the 
envelope, and imag(Vout) should exactly match the Q component. However, circuits such 
as power amplifiers are sensitive to the impedances of other circuit components, so these 
other impedances need to be taken into account.

Note that a similar MDS source component, VTCDATA, can be used instead of the VTDATA 
component. The VTCDATA component is identical to the VTDATA component except that it 
allows the time axis to be offset and scaled.

Handling Impedances

OmniSys' default behavior is to assume that all components are matched perfectly in a 
50-ohm system. For non-50-ohm circuits, lumped-element circuit components and 
terminations are available. If OmniSys data is to be used in circuit simulations, it is 
important to account for imperfect impedances.

As a simple example, consider Figure 5. Assume that the simple system shown in the 
figure models everything except for a final power amplifier. Since the final power amplifier 
design is extremely nonlinear and critical to the performance of the system, the power 
amplifier will be modeled using the Circuit Envelope simulator. To do this correctly, we 
need to know the output impedance of the preamp. 

If the output impedance of the 
preamp is close to 50 ohms and the 
input impedance of the power 
amplifier is close to 50 ohms, then 
it can be treated as a 50-ohm 
signal source in MDS. Figure 9 
illustrates.

Figure 9 is similar to Figure 8, 
except the voltage of the source is 
multiplied by two, which is 
necessary to correctly account for 
the source impedance. The original 
OmniSys simulation assumed that 
the output impedance of the 
preamp was 50 ohms and the input 
impedance of both measurement 

Figure 9. A single VTDATA voltage source component is used to 
re-modulate the OmniSys signal envelope data in MDS.

 Voltage is multiplied by 2
   to account for source
       impedance
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components was 50 ohms. The data that OmniSys stored in the original TIM files, then, 
corresponds to the voltage at the connector labeled Vout in Figure 9. In order for the 
voltage at the connector to match the OmniSys data, the envelope data at the source must 
be multiplied by two.

If either the preamp or the power amplifier is a non-50-ohm device, then more care must 
be taken in the OmniSys simulation, before the data is transferred to MDS, to ensure that 
the Circuit Envelope simulator receives the correct driving voltage. This is accomplished 
through the use of lumped-element components to model non-50-ohm impedances and the 
SPLIT2 element to capture the desired voltage. (SPLIT2 components are found in the 
Electrical Miscellaneous Elements component library in OmniSys/CDS.)

Figure 10 shows an OmniSys test bench that models a preamp with a complex output 
impedance and a power amplifier with a 30 ohm input impedance. In addition, a SPLIT2 
element has been added. One of the outputs of the SPLIT2 element is used to capture a 
voltage waveform that will be sent to MDS.

Figure 10. An OmniSys test bench that could be used to model a preamp with a complex output impedance and a 
power amplifier with a 30-ohm input impedance.

The SPLIT2 element shown in Figure 10 is placed in the circuit before the capacitor that 
models the complex part of the preamp’s output impedance. The reason for this can be 
understood by considering the forward-travelling and reverse-travelling parts of the 
signal at the output of the preamp. The simple schematic in Figure 11 illustrates.

In Figure 11, the voltage (V) is to be measured and transferred to MDS. Consider the 
forward-travelling voltage waveform that is created by this source. After passing through 
the 50-ohm resistor, the signal encounters an ideal splitter. The top branch of the splitter, 
which has a voltage gain of 2, terminates the signal in an ideal 50-ohm impedance (the IV 
and QV measurement components provide this ideal termination, despite the fact that 
there are two measurement components). Therefore, no signal is reflected from the upper 
port of the splitter back into the amplifier. The voltage at the upper splitter port is 
multiplied by 2 to account for the voltage-dividing action of the two 50-ohm resistors. 
(Note that the SPLIT2 component’s parameters are specified in terms of power gain in dB, 

  Capacitor models the
   reactive part of the
preamp output impedance

SPLIT2 element captures a
voltage waveform for MDS

Termination component
    models non-50-ohm
   power amplifier input



Sharing Data Between the Microwave Design System and OmniSys/CDS

11

so the S21 parameter is specified as 6.02 dB.) The lower port of the splitter has no voltage gain and 
transmits the forward-travelling voltage unchanged. The forward-travelling signal is reflected back 
through the lower splitter port and is “seen” by the preamp component. 

Figure 11.  Equivalent circuit of the output stages of the OmniSys simulation in Figure 10.

When the data created by simulating Figure 10 is transferred to MDS, a few 
lumped-element components are used to re-create the non-50-ohm impedances that were 
modeled in OmniSys/CDS. Figure 12 shows a simple model that re-creates the 
impedances used in the OmniSys/CDS simulation in Figure 10. In Figure 12, the input 
impedance of the power amplifier is modeled as a single resistor. For a complete circuit 
analysis of a power amplifier design, this resistor can be replaced by a complete power 
amplifier design.

 

Figure 12. An MDS circuit that 
models the output impedance of 
the OmniSys preamp. In this 
circuit, the power amplifier’s 
input impedance is modeled as 
a single resistor. For more 
advanced simulations this 
resistor is replaced with the 
complete power amplifier 
circuit.

Termination supplied
  by measurement
    componentsTIM files measure

   voltage here

Model of preamp

Power amp input

V

Gain = 2

Gain = 1

CS = 1 pF RL = 30

R = 50

VtestRS = 50

Lumped elements model
the output impedance of
      the preamp

Power amplifierl
input impedance

Voltage at this point should
  equal the voltage at the
  node Vtest in Figure 11
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Using MDS Circuit Envelope Data in OmniSys

Transferring waveform data from the MDS Circuit Envelope simulator into the 
OmniSys/CDS environment requires the exact opposite of the procedure described in the 
previous section. Simply put, the steps involved are:

• Translate an MDS dataset into a CITIfile.
• Translate the CITIfile into a pair of TIM files.
• Use the .tim files as sources in OmniSys/CDS.

Creating Waveform Envelope Data in MDS

Figure 13 shows a simple BJT amplifier in MDS that illustrates a simulation setup that 
can be used to capture a signal waveform for later use in OmniSys/CDS.

The simulation setup shown in figure 13 creates an MDS dataset named DataOut. This 
dataset will contain, among other things, the complex envelope waveform at the point 
labeled Vout on the schematic. The data is in real-imaginary (I and Q) format, and covers 
all specified harmonics of the 1 GHz fundamental frequency.

Figure 13. A BJT amplifier analysis in MDS, using the Circuit Envelope simulator. The signal at the point 
labeled Vout will be transferred to OmniSys/CDS. The signal source at the upper left is a subcircuit that contains 
the signal source created in the previous section.

Translating MDS Datasets into CITIfile Format

Once an MDS dataset has been created, translating it into CITIfile format is simple:

1. Find the dataset's icon, and double-click on it to open it.

2. Normally, the dataset's Index page will be visible. If not, use the menu command 
WINDOW/CHANGE PAGE/INDEX PAGE.

3. Use the menu command PERFORM/WRITE/CITIFILE. The system will ask for a file name. 
Any file name, including complete pathnames, may be entered.

 Data from this point
will be transferred to
   OmniSys/CDS

Signal source imported
from CDS and placed
into a subcircuit
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Translating a CITIfile into TIM Files

Typically, CITIfiles created by MDS contain several variables. For a simple Circuit 
Envelope simulation like the one shown in Figure 13, the resulting CITIfile will contain 
two independent variables (time and frequency) and at least as many dependent variables 
as there are wire labels on the schematic. Finding the correct data within the CITIfile and 
transferring it into TIM files can be complicated.

The UNIX shell script in Appendix B can be used to find data in a CITIfile and create a 
pair of TIM files. To use the script, type the following command:

citi2tim CITIfile Data Freq Ifile Qfile

where citi2tim = the name of the script in Appendix B.

CITIfile = the name of the CITIfile to translate.

Data = the name of the data (from an MDS wire label).

Freq = the carrier frequency for which you want to extract data.

Ifile = the name (or pathname) of the TIM file to create for the I channel data.

Qfile = the name (or pathname) of the TIM file to create for the Q channel 
data.

For example, if the CITIfile’s name is data.citi, and name of an MDS wire label is Vout, 
and the desired waveform’s carrier frequency is 1 GHz, type:

citi2tim data.citi Vout 1E9 i.tim q.tim

The script will extract the I and Q signal envelope data from the CITIfile at the specified 
frequency and create two TIM files, which can then be used as source components in 
OmniSys/CDS.

Note that the script in Appendix B makes a few assumptions about the contents of the 
CITIfile. In particular, the script only works for straightforward Circuit Envelope 
simulations like the one shown in Figure 13. This simulation creates two independent 
variables, time and frequency. If any other circuit parameter is swept, the script will fail.

The two TIM files that are created by the script in Appendix B will be used later in an 
OmniSys/CDS simulation. Because OmniSys/CDS assumes (by default) that TIM files 
reside in the data subdirectory of the current project directory, it is most convenient to 
store the TIM files there.
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Using TIM Files in an OmniSys/CDS Simulation

Given a pair of TIM files that contain I and Q waveform data, the signal from MDS can be 
re-created in OmniSys/CDS through the use of a single component, as illustrated in 
Figure 14.
 

Figure 14. An OmniSys/CDS test bench that uses a QAM_F source to create a modulated signal from a pair of 
TIM files.

In Figure 14, a QAM_F component is used to create a modulated signal. (QAM_F stands for 
QAM with input by file, and the component can be found in the Sources and Terminations 
library in an OmniSys/CDS test bench.) On the QAM_F component, the first parameter (Fc) 
is set to equal the carrier frequency that was used in the MDS Circuit Envelope 
simulation. The second parameter (Pwr) should be set so that the carrier amplitude is 1 
volt into whatever load impedance is used. The final two parameters (File1 and File2) 
specify the names of the TIM files that were created using the script in Appendix B.

The QAM_F component can be used with several different file formats, and the default 
format is not TIM. To use QAM_F components with TIM files, it is necessary to edit the 
component parameters as follows:

1. Double-click on the QAM_F component to edit the parameters.

2. In the dialog box that appear, click on the FileI parameter

3. Change the value type setting (in the upper right portion of the dialog box) from the 
default SPE filename to TIM filename.

4. Repeat steps 2 and 3 for the FileQ parameter.

Note that the values of the FileI and FileQ parameters shown in Figure 14 are i and q, 
respectively. Series IV automatically appends a .tim extension to these file names, so the 
actual UNIX file names of these files are i.tim and q.tim. The default location for these 
files is the data subdirectory of the Series IV project directory.

The output of the QAM_F component can then be applied to other OmniSys/CDS 
components for further overall system simulation and measurements. In illustration, 
Figure 14 shows the signal being filtered and then transmitted over a mobile antenna 
link, with several measurements applied at the receiver.

QAM_source uses two
  TIM files to create a
     modulated signal
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Handling Impedance Mismatches

Because the signal data in this scenario originates in the MDS circuit simulator, 
impedance mismatch problems are easy to handle. The impedance of an OmniSys/CDS 
component can be modeled in the MDS simulation, and an MDS wire label can be placed 
at the correct point in the circuit to capture the waveform at the input to the OmniSys 
device.

For example, consider the OmniSys mobile antenna model. This component includes 
parameters for specifying the input impedance of the antenna. For the sake of example, 
assume that the antenna impedance can be modeled as a series resistor-inductor pair. The 
MDS model that could be used for this is shown in Figure 15.

By modeling the input impedance of the OmniSys/CDS component in the MDS 
environment, the captured waveform data can be used in OmniSys/CDS and applied 
directly to the input of a non-50-ohm component for further system simulation.

Figure 15. An MDS simulation that models a non-50-ohm input impedance of an OmniSys/CDS antenna component. The voltage 
at the Vout wire label can be transferred to OmniSys/CDS and applied to the input of an antenna component for further system-level 
simulations.

 Resistor/inductor pair
models input impedance
   of OmniSys/CDS

Wire label captures
  signal waveform

    antenna model
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Appendix A - UNIX Shell Script to Translate TIM Files to CITIfile

This UNIX shell script can be used to translate TIM files from OmniSys/CDS into CITIfile 
format. This script uses the Korn shell, and uses only common UNIX utilities like awk and 
grep. However, it has only been minimally tested on the HP-UX 9.05 operating system. 
For other operating systems, some modifications may be necessary.

This script is available electronically via anonymous ftp at hpeesof.external.hp.com 
(192.6.21.2) in the distribution/app_note directory, or from the HP EEsof worldwide 
web site (http://www.hp.com/go/hpeesof) in the Applications area.

#! /bin/ksh

# This script uses a temporary file.  Set the
# file name and path here...
TEMPFILE=/tmp/cititemp

# Check for the correct number of parameters...
if [ "$#" -ne 3 ] ; then

echo "Usage: $0 Ifile Qfile CITIfile"
echo "    Ifile = the .tim file containing the I channel data"
echo "    Qfile = the .tim file containing the Q channel data"
echo "    CITIfile = the name of the CITIfile to create"
echo ""
exit

fi

# Insert CITIFILE header information...
echo "CITIFILE A.01.01" > $3
echo "COMMENT I/Q data from "$1" and "$2 >> $3
echo "NAME I_Q_DATA" >> $3
echo "#MDS DATATYPE TRAN" >> $3
echo "#MDS VARTABLE IVARDATA1" >> $3

# Find out how many data points are in the .TIM files.  This script
# assumes that there are the same number of points in both .TIM
# files, and doesn’t do any checking of that assumption.  The
# first ’grep’ command filters out any blank lines, and the second
# counts the lines that only contain numbers.
NUMDATA=‘grep -v ’^[ \t]*$’ $1 | grep -c -i -x ’[- \t0-9e.]*’‘

# more CITIFILE header information...
echo "VAR TIME MAG "$NUMDATA >> $3
echo "DATA IQdata RI" >> $3
echo "" >> $3

# Figure out that the time scale is.  The time scale is given on the second
# line of the .TIM file, and it can be ’sec’, ’msec’, or ’usec’.  Knowing
# that, we can scale the independent data (time) correctly, because MDS
# always assumes that time data is in seconds.  Once again, this script
# assumes that the I and Q data have the same scale factor, and doesn’t
# check the assumption.
# The second line in the .TIM file should begin with "# T(", so the
# following grep command finds it.  Then the awk command picks out
# the scale factor, which is the third field.
TIMESCALE=‘grep ’^#[ \t]*[tT](’ $1 | awk ’{print $3}’ -‘

# Figure out what the voltage scale is.  The voltage scale factor can only
# be volts, millivolts, or "data" (which means that the data has abrupt
# transitions rather than piecewise-linear transistions).  If the
# scale is "data", this script treats it like "volts".
VOLTSCALE=‘grep ’^#[ \t]*[tT](’ $1 | awk ’{print $4}’ -‘

# The independent variable data (time) goes here, followed by the I channel
# data and the Q channel data, in that order.  The grep commands filter
# out any blank lines, and the awk commands filter out the .TIM file
# header and trailer lines.  We use the scale factor, found above,
# to re-scale the time data here.
echo "VAR_LIST_BEGIN" >> $3
case $TIMESCALE in

psec | PSEC) grep -v ’^[ \t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($1*1E-12)}’ - >> $3 ;;

nsec | NSEC) grep -v ’^[ \t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($1*1E-9)}’ - >> $3 ;;

msec | MSEC) grep -v ’^[ \t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
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print($1*1E-3)}’ - >> $3 ;;
usec | USEC) grep -v ’^[ \t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \

print($1*1E-6)}’ - >> $3 ;;
*) grep -v ’^[ \t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; print $1}’ - \

>> $3 ;;
esac

echo "VAR_LIST_END" >> $3
echo "" >> $3

# Output the data here.  Use the VOLTSCALE scale factor from above
# to properly scale the voltage data.  Here, all of the data goes
# into a single temporary file.  Later, this file will be re-read
# so the data can be formatted correctly as real-imaginary pairs
# in the CITIfile.

# I channel data...
echo "BEGIN" >> $3
case $VOLTSCALE in

mv | MV) grep -v ’^[ \t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($2*1E-3)}’ - >> $TEMPFILE ;;

*) grep -v ’^[ \t]*$’ $1 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {print $2}’ - >> $TEMPFILE ;;
esac

# Q channel data...
case $VOLTSCALE in

mv | MV) grep -v ’^[ \t]*$’ $2 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {OFMT="%.14g"; \
print($2*1E-3)}’ - >> $TEMPFILE ;;

*) grep -v ’^[ \t]*$’ $2 | awk ’$1 !~ /[abcdf-zABCDF-Z#%!]/ {print $2}’ - >> $TEMPFILE ;;
esac

# Read the temporary file all at once, and output the data
# into the CITIfile with the correct formatting...
awk ’BEGIN {i = 0;} {data[i++] = $1;} END {i /= 2; for (j = 0; j < i; j++) \
print(data[j],",",data[i+j]);}’ $TEMPFILE >> $3
echo "END" >> $3

# Clean up...
rm $TEMPFILE
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Appendix B - UNIX Shell Script to Translate CITIfiles to TIM Files

This UNIX shell script can be used to translate CITIfiles into OmniSys/CDS TIM files. 
This script uses the Korn shell, and uses only common UNIX utilities like awk and grep. 
However, it has only been minimally tested on the HP-UX 9.05 operating system. For 
other operating systems, some modifications may be necessary. Note that this script only 
works with the results of the Circuit Envelope simulator, and it will not work if any MDS 
variable (other than time) is swept.

This script is available electronically via anonymous ftp at hpeesof.external.hp.com 
(192.6.21.2) in the distribution/app_note directory, or from the HP EEsof worldwide 
web site (http://www.hp.com/go/hpeesof) in the Applications area.

#! /bin/ksh

# Check for the correct number of parameters...
if [ "$#" -ne 5 ] ; then

echo "Usage: $0 CITIfile Data Freq Ifile Qfile"
echo "   CITIfile = name of the CITIfile to translate"
echo "   Data = name of the data (from an MDS wire label)"
echo "   Freq = carrier frequency for which you want to extract data"
echo "   Ifile = name (or pathname) of the .tim file to create for the I channel data"
echo "   Qfile = name (or pathname) of the .tim file to create for the Q channel data"
echo ""
exit

fi

# It can be hard to find the data you want in the CITIfile, because a CITIfile can contain
# many different variables, both dependent and independent.  Independent variables are defined
# by VAR statements, and dependent variables are defined by DATA statements.  We have to find 
the
# relative locations of the DATA and VAR statements and remember them in order to sort out the 
data
# we want.  This part of the script finds values for TIME_LOCATION and FREQ_LOCATION, which are
# integer values indicating the location of the data in the CITIfile.  For instance, if "time"
# is the first independent variable in the file, then TIME_LOCATION will be 0.
#
# Note that this script assumes that there are only two independent variables: time and
# frequency.  This will always be true of a Circuit Envelope simulation unless the user
# sets up a simulation with another swept parameter.  If that happens, this script
# will not work.
LOWEST_VAR_LOCATION=‘grep -n -i "^VAR[ \t]*" $1 | awk -F: ’{print $1;exit}’‘
TIME_LOCATION=‘grep -n -i "^VAR[ \t]*time[ \t]*MAG" $1 | awk -F: ’{print $1;exit}’‘
FREQ_LOCATION=‘grep -n -i "^VAR[ \t]*freq[ \t]*MAG" $1 | awk -F: ’{print $1;exit}’‘
let TIME_LOCATION=TIME_LOCATION-LOWEST_VAR_LOCATION
let FREQ_LOCATION=FREQ_LOCATION-LOWEST_VAR_LOCATION
if [ $TIME_LOCATION -ne 0 ] ; then

echo "Sorry, I can’t handle this CITIfile."
echo "Either there are too many swept variables, or"
echo "the data is not in the order I expect."
exit

fi
if [ $FREQ_LOCATION -ne 1 ] ; then

FREQ_LOCATION=0
fi

# Find the number of points in the time data, and the number
# of frequency points...
TIME_POINTS=‘grep -i "^VAR[ \t]*time[ \t]*MAG" $1 | awk ’{print $4;exit}’‘
FREQ_POINTS=‘grep -i "^VAR[ \t]*freq[ \t]*MAG" $1 | awk ’{print $4;exit}’‘

# Find the location of the data we want.  As with the independent variables, there can be
# many dependent variables in a CITIfile.  Here, DATA_LOCATION is an integer
# like TIME_LOCATION and FREQ_LOCATION.
LOWEST_LOCATION=‘grep -n -i "^DATA" $1 | awk -F: ’{print $1;exit}’‘
DATA_LOCATION=‘grep -n -i -x "^DATA[ \t]*$2[ \t]*RI" $1 | awk -F: ’{print $1;exit}’‘

# Now, find the index of the frequency
# that we want.  The frequency list is stored in
# the CITIfile as a single list.  This
# ’awk’ command finds the frequency data, and
# then finds the desired frequency within
# that list.  FREQ_INDEX becomes an integer
# that is the index of the desired frequency
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# within the list.
FREQ_INDEX=‘awk ’BEGIN {e = 1e9; i = 0; found = 0; best = 0;} \

/^VAR_LIST_BEGIN/, /^VAR_LIST_END/ { \
if ($1 == "VAR_LIST_BEGIN") found++; \
else if ((found == 2) && ($1 != "VAR_LIST_END")) { \

if ($1 >= desired) { \
if ($1 - desired < e) {best = i; e = $1 - desired;} \
} \

else if (desired - $1 < e) {best = i; e = desired - $1;} \
i++; \
} \

} \
END {print best}’ \
desired=$3 $1‘

# Make sure that the data names, as entered on the command line,
# are correct and the data actually does exist in the CITIfile.
# Note that the data type has to be "RI" (for real/imaginary),
# or this script will not work.
if [ ${#DATA_LOCATION} -eq "" ] ; then

echo "Sorry, but there is no data called "$2" in the CITIfile."
echo "(Or if it does exist, it’s the wrong kind of data.)"
exit

fi
let DATA_LOCATION=DATA_LOCATION-LOWEST_LOCATION

# Get, and output, the I channel data.  Since the CITIfile contains the independent
# data and dependent data in a single column of text, the awk command below reads all
# the data into a single (large) array, and then prints it back out in two columns.
# The values that are calculated above are used here to index into the
# data array and find the subset of the data that we are looking for.
echo "BEGIN TIMEDATA" > $4
echo ’# T( SEC V R 50.0 )’ >> $4
echo ’% T V’ >> $4
awk ’BEGIN {OFMT = "%.14g"; i = 0;} \

/^VAR_LIST_BEGIN/, /^VAR_LIST_END/ {if (i <= time_points) time[i++] = $1;} \
/^BEGIN/, /^END/ {data[j++] = $1;} \
END {data_points = 2 + (time_points * freq_points); \
offset = freq_index + 1 + (i_offset * data_points); \
for (i = 0; i < time_points; i++) print time[i+1],",",data[(i*freq_points)+offset];}’ \
i_offset=$DATA_LOCATION time_points=$TIME_POINTS \
freq_points=$FREQ_POINTS freq_index=$FREQ_INDEX \
$1 | awk -F, ’{print $1,"   ",$2}’ >> $4

echo "END" >> $4

# Output the Q channel data...
echo "BEGIN TIMEDATA" > $5
echo ’# T( SEC V R 50.0 )’ >> $5
echo ’% T V’ >> $5
awk ’BEGIN {OFMT = "%.14g"; i = 0;} \

/^VAR_LIST_BEGIN/, /^VAR_LIST_END/ {if (i <= time_points) time[i++] = $1;} \
/^BEGIN/, /^END/ {data[j++] = $1;} \
END {data_points = 2 + (time_points * freq_points); \
offset = freq_index + 1 + (i_offset * data_points); \
for (i = 0; i < time_points; i++) print time[i+1],",",data[(i*freq_points)+offset];}’ \
i_offset=$DATA_LOCATION time_points=$TIME_POINTS \
freq_points=$FREQ_POINTS freq_index=$FREQ_INDEX \
$1 | awk -F, ’{print $1,"   ",$3}’ >> $5

echo "END" >> $5
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