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Building User-Defined Models

Overview

All Series IV Design Suites include the capability to incorporate user-developed models 
directly into a simulation by compiling the model with the simulation engines. This 
capability is provided by the HP E4638A Model Development Kit, which is an option to all 
Design Suites except OmniSys for which it is included.

This product note describes the use of the Model Development Kit with the 
Communications Design Suite (CDS) and Omnisys, which are Series IV system-level 
Design Suites. This powerful feature allows users greater flexibility in creating systems 
and applications requiring the integration of complex system algorithms and special 
purpose applications that are not available in CDS or OmniSys libraries. 

User-defined models can be built for:

• customizing designs
• creating special purpose or proprietary models and libraries
• optimizing simulation speed
• porting coded algorithms to other platforms

This product note provides the methodology needed to incorporate user-defined models 
with examples of how to write, compile, and debug the code. Information on how to 
customize the models to the interface is also included.

Introduction

CDS and OmniSys require the use of an ANSI-C compiler and debugger when integrating 
models into the simulation engine. Most workstation computers are shipped with the 
standard Kernighan and Ritchie (KR) compilers, which are used for compiling and 
debugging the models, thereby allowing portability across platforms.

Source code and script files are provided in the $EESOF_DIR/lib/omnisys/senior 
directory. Make a project directory using CDS or OmniSys, or make your own local 
directory, and copy the following files.

• omniindx.c This code is used to link the modules contained in omniproc.c to 
interface with the main program (simulation engine).

• omniproc.c This code is used to register the user-defined model and the 
subroutines and external declarations to support the model.

• senior.ael This AEL code is used to register the model in a library or palette 
menu and can be used to define the model parameters with the interface.

• omnisys_sr.make This file is used by the UNIX make utility to control the 
compiler execution; this file describes the construction of the main program.

• buildsr This build script calls the make utility and makes the local links to 
access your new version of the simulator engine.
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Building a User-Defined Model 

User-defined models are built by using a simple methodology. The methodology defines an 
8-step process that is designed to allow users to first build the model and debug it, then 
integrate the model into the system model library. The process is:

• Define the algorithm

• Define memory requirements

• Code and debug the model

• Add the OmniSys database and messaging features

• Integrate the code into omniproc.c

• Make changes to senior.ael

• Compiling and debugging the simulator model

• Customize the model to the interface

Defining the Algorithm

The first step is to define the algorithm, the input and output, and timing used during the 
simulation of the model. The algorithm is an equation or set of parameters and constants 
that describe the operation of the model. The algorithm is evaluated over time; in this 
case time is a constraint of the operation of the model. The input and output must be 
known before starting the programming of the model because they define the model 
operation with other elements used in conjunction with the model and will represent the 
values passed to the model during the simulation. The parameters are values that are 
passed to the model before the start of the simulation and are used to change the 
operating characteristics of the model. 

Figure 1 illustrates the process of defining the algorithm, input and output, timing and 
input parameters for a Walsh code generator. (Walsh code generators can be used for 
generating orthogonal codes in CDMA applications.) In this example we use 6-ary walsh 
code sequence meaning the model can generate 64 code sequences. Each code sequence 
contains 64 code states. The code state is similar to the phase angle in an analog signal. In 
this case, there are 64 phase states in each code sequence. The model is designed to allow 
the user to select 1 of 64 code sequences and 1 of 64 code phase states or a seed that is 
used to calculate a random phase state. 

There are two methods for generating the algorithms: the first uses the product sum of a 
binary sequence; the second uses a simple table lookup method. The table lookup method 
is faster and is typically used where speed is a requirement.
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Figure 1. Defining the algorithm for a Walsh code generator

Defining Memory Requirements

The memory requirements phase is an important aspect of model design because all of the 
initial and run time states must be stored in memory. The memory requirements can be 
broken down into two parts:

• External States. The input and output signal states that represent the present 
or previous state.

• Internal States. The internal storage requirements of the model. These can be 
the input parameters to the model or constants and lookup table values. 

For the model shown in Figure 1, the external requirements are: 1 of 2 clock states (1 or 0) 
and 1 of 64 code indices (0 to 63). The internal requirements are: the selected code state 
(1 of 64); and, the code phase (64 states). The total requirement is 66 (1 clock + 1 code + 
64 phase states). Memory is allocated using the malloc utility and is usually stored as a 
pointer to a double precision value. Because there may be multiple instances of this model 
in your design, the OmniSys database utilities will be used to protect the memory stack 
used for each instance of the model; refer to the section “Adding the Database and Error 
Message Features.”

Coding and Debugging the Model

The model is written using the ANSI-C programming language. There are four basic tasks 
for building a user-defined model:

• Declaration of the model routine and initialization of the internal parameters and 
variables.

• Write the model.

• Write an executive routine to test the model.

• Debug the model to correct any errors and to improve the model design.

Walsh code generator:
Equation:

Initial Conditions:
p = 6
code sequence = N = 2p; r,t=0 ... N − 1

or

Lookup table (WAL)
n = 31 -1,1,1-1,1,1 ...

Limits:
code sequence = 0 − 63
code phase = 0 − 63
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I/O signal and parameter requirements for a Walsh code generator:

Clock(1,0) Clock(1,0)
Vin_i=clock Vout_i=code
Vin_q=0 Vout_q=0

Parameters:
code sequence (0 - 63, default = 32)
code phase (0 - 63, default = 0)
seed (0 - 32166, default = 0)

t
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Writing the model begins with declaration of the model and any initialization phase. The 
declaration contains the type definition of the model routine (in this case the model must 
be defined as an integer or Boolean type to ensure compatibility with the simulator). The 
parameter values passed to the model also have a specific definition. Figure 2 shows an 
example declaration for a user-defined model including a set of model parameters.

Figure 2. User-defined model declaration

The signals are passed into the model by port reference and time instant. The input 
signals are passed to the model using vini and vinq, while the output signals are passed 
out to the simulator through vouti and voutq. The input and output signals are double 
precision arrays. The first index is a reference to the port number (the port number 
indexes are separate for both input and output, each begins with 0); the second index is a 
reference to the time instant of the sample (the time index is almost always 0 because the 
time index records the time in ascending order). Time and tstep represent the time 
instant of the simulation and the time increment or time step of the simulation. 
Parameters used to set up the behavior of the model are passed to the model using the 
double precision pdat array. At each instant in time the signals and parameters for the 
operation of the model are passed through the model interface; on completion the model 
must return a signal that indicates the outcome. If the calculations are successful, the 
model returns an integer value of one; if the model fails, a zero is returned to the 
simulator. The simulator uses the character string stored in errstrg to indicate an error by 
printing the message to the status panel. 

The initialization occurs at time equals zero. Usually the first step in the initialization 
procedure is to check the values of the parameters passed into the model from the 
simulator interface. This is done to prevent erroneous parameter settings that can cause a 
segmentation fault or crash of the simulator. The values of each parameter are checked 
against the legal limits for that parameter. If the parameter is determined to be out of 
bounds, an error message is created and the model forces a return to the simulator. The 
signal for an error is to return with a FALSE or integer value of 0. The memory location of 
the error message is passed to the simulator using errstrg. Figure 3 shows an example of 
an error message. The maximum buffer length is 80 characters.

int /* this type definition is later changed to boolean */
wal_gen(
double vouti[][], /* I component of the output */
double voutq[][], /* Q component of the output */
double vini[][], /* I component of the input */
double vinq[][], /* Q component of the input */
double *time, /* time instant of the simulation */
double *tstep, /* time increment of the simulation */
char *pdat, /* model parameter array */
char *errstrg) /* error string that is passed */

/* to the simulation if an error occurs */

NOTES:
1. vouti/voutq the I and Q component of the output voltage for a specific port number.

vini/vinq the I and Q component of the input voltage for a specific port number.
time/tstep the instant in time and the time step of the simulation.
pdat passes the parameter data input from the user to the model.
errstrg passes the error message back to the interface for processing.

2. The model is initially type cast as integer to allow the FALSE and TRUE 
signals to be passed back to the executive routine. Later we will type cast the model as boolean 
to make the model compatible with the interface. The input and output voltages will be 
changed from pointers to double precision pointers (double **).
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Figure 3. Testing for bad input parameters

After the input parameter test the memory requirements are allocated and stored for the 
model. Memory allocation is the process of mapping the storage requirements for the 
parameters used during the operation of the model in memory. Allocation uses the UNIX 
utility malloc (memory allocation). Figure 4 shows an example of memory allocation.

Figure 4. Initializing the model at time=0

After the memory space has been allocated, the initial values can be stored. In Figure 5 
the allocated space is initialized according to the input parameters (code_sequence, 
code_phase and seed_value). Other applications of allocated memory space would be the 
storage of previous states or values during the simulation of the model. (Later, the 
OmniSys database commands will be added that will protect against corruption from the 
multiple instance situation.)

Figure 5. Initializing allocated memory space

if(time == 0.0){ /* initialization */
if(code_phase < 0.0 || code_phase > 32178.0){
sprintf(errstrg,"%s","ERROR: Code_phase parameter not within legal limits");
return FALSE;

}

code_sequence = pdat[0]; /* code sequence 0-63 (default=32)           */ 
code_phase = pdat[1]; /* code phase = 0-63 (default=0) */ 
seed_value = pdat[2];  /* any 8 digit number greater than 0(default=0) */ 
N = 64;                /* N is the size of the walsh code sequence    */
if(time == 0){ /* at t = 0 initialize all variables      */    
numdata = N+2; /* the 64 walsh codes                     */    
state_P = (double *)malloc((unsigned)sizeof(double)*numdata); 

/* allocate space in memory for state_P and clk */

if(code_phase == 0 && seed_value == 0){
/*code sequence selected ph=0 sd=0*/
for(i=0; i<64; i++){
state_P[i] = WAL[(int)code_sequence][i];

}
}
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The initialization procedure usually ends with the return of the signal indicating the 
success or failure of the model as shown in Figure 6.

Figure 6. Using the definition TRUE to return the integer value 1 to 
signal success

After time equals zero the model begins looking like a state machine. Each input sample 
voltage will cause the output of the model to be calculated a certain way depending on the 
input signal levels and the input parameters associated with the model. Figure 7 
illustrates the use of a clock signal as an input to the model. The clock signal is introduced 
on port zero (known as port one in the schematic representation of the symbol) and is used 
to step the model through a four-state machine. The model is triggered each time the clock 
rises from zero to one. 

Figure 7. Designing a state machine using the clock signal on 
port one (coded as port zero) of the schematic symbol

{
Do initialization here...
return TRUE;
}
else{
/* run time model goes here */
return TRUE;

}

if(vini[0][0] == 0.0 && state_P[64] == 0.0){
vouti[0][0] = 0.0;
voutq[0][0] = 0.0;
return TRUE;

} /* most active state - rising edge of clock signal */
if(vini[0][0] == 1.0 && state_P[64] == 0.0){
state_P[64] = 1.0;/* update previous clock state */

/* calculate new value for vouti and voutq */
vouti[0][0] = 1.0;
voutq[0][0] = 0.0;

return TRUE;
}
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Creating the Executive Routine

Creating an executive routine to test the model code is important because the model must 
be evaluated prior to using it in the simulator. The executive routine is called “main” and 
is used to declare the variables used in the model and to initialize the parameters passed 
to the model from the executive routine. Figure 8 shows the construction of the main 
executive routine.

Figure 8. Using the code located in main executive routine to test 
the model (wal_gen)

Debugging the code is accomplished by compiling the executive and the model code using 
the -g option. This option maps each line of code so that the user can step through the code 
using a debugger at run time to look for the errors or bugs.

• For compiling the test program using SUN workstations:
acc -g mytestprog.c -o mytestprog -lm

• For debugging the test program using SUN workstations:
dbxtool mytestprog & <cr>

• For compiling the test program using HP workstations:
cc -aA -g mytestprog.c -o mytestprog -lm

• For debugging the test program using HP workstations:
xdb mytestprog <cr>

• Useful debugger commands on HP workstations:
td toggle display (machine to ASCII)
C continue execution

main()
{ 
int i=0; 
double vini1[2][2], vinq1[2][2], vouti1[2][2], voutq1[2][2], 

time, tstep, pdat[3], timemax, signal[240], clk[240];
char *errstrg; 
pdat[0] = 32.0; /* code sequence */
pdat[1] = 0.0;   /* code phase */ 
pdat[2] = 0.0;   /* seed value  */  
tstep = .001;  
time = 0.0;
timemax = 100.0; 
while(time<=timemax){   
vini1[0][0] = clk[i++];  
vinq1[0][0] = 0.0;   
vouti1[0][0] = 0.0;  
voutq1[0][0] = 0.0;   
if(!wal_gen(vouti1,voutq1,vini1,vinq1,time,tstep,pdat,errstrg)){
printf("%s\n",errstrg);
exit(0);     

}      
printf("vout port 3 = %f\n",vouti1[0][0]);     
printf("vout port 4 = %f\n",vouti1[1][0]);     
time += tstep;
if(i >= 240) i = 0;   

}
}
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S step through the code
bp set initial breakpoints
b  break on a line
db line number, delete break point on line

Adding Database and Error Message Features

OmniSys uses special commands to protect the memory allocated by your model. Each 
instance of the model is given an index so that the memory used by that instance is not 
overwritten by another instance. There are four commands that can be used to access the 
database at run time. (For more information, refer to the Series IV User-Defined Elements 
manual.)

• omni_get_recind Used to acquire the record index of the model instance. This 
command is inserted just before the initialization segment of the model (if 
(time == 0) ). Once the record index is acquired, the model record can allocate 
memory, access memory or reallocate it.

• omni_put_recdataP Used during the initialization process to record memory 
allocated by the model instance.

• omni_get_recdataP Returns a pointer to the data stored by omni_put_recdataP 
and the number of variables pointed to by it.

• omni_realloc_dataP Reallocates data. Used to change the size of the model data.

Figure 9 shows examples of OmniSys database commands.

Figure 9. OmniSys database commands examples

Error messaging can be handled using several different methods. The first method uses 
standard strings available to the user that are accessed by issuing an error code. The 
user-defined message and an error message indexed by the error code are assembled and 
displayed in the status panel. The second method (the most flexible because the user does 
not have to maintain external data structures) uses a message defined by the user and is 
displayed directly to the status panel. In the first version of the code, the model uses a 
string print or print function (sprintf or printf). These commands must be changed to one 
of the following:

• get_omniproc_err (first method). Uses kwdindex and optional user-defined error 
message. The kwdindex values are stored in the data structure omniproc_err and 
can be found in omniproc.c.

• gparse_cpystr (first and second methods). Used to send user-defined message to 
the status panel.

Figure 10 shows the usage of both commands.

numdata = N+1; /* defines the number of memory locations needed */
recind = omni_get_recind(); /* gets record index number of element instance

in design */
state_P=(double *)omni_put_recdataP(recind, sizeof(double)*numdata, (void 
*)state_P); /* put initial values of internal variables into

database for each instance of element */
state_P=(double *)omni_get_recdataP(recind, &numdata); /* get the number of

variables pointed to by state_P  */
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Figure 10. OmniSys error messaging utilities

Integrating the Code into omniproc.c

After the model code has been modified, it can now be integrated into the omniproc.c file. 
The 8-step process included in the omniproc.c file is defined as follows:

STEP 1 - edit lines in omniproc.c to define a new model. Define
NUM_USER_COMPONENTS with the next available index number.

STEP 2 - insert the user-defined model functional interface.

STEP 3 - insert the user-defined model external declaration.

STEP 4 - modify the user component array by adding an entry for the new user-
defined model.

STEP 5 - insert the user-defined model subroutines.

STEP 6 - insert the user-defined subroutine declarations.

STEP 7 - insert the user-defined model subroutines.

STEP 8 - insert the user-defined model code.

Steps 1 through 4 define the element; steps 5 through 7 define the subroutines used in the 
element model; Step 8 inserts the model code into the omniproc.c file. Figures 11 through 
18 show the files for each of these steps.

Figure 18 shows the model code changes used to make the model compatible to the 
simulator interface. Note the changes to the model type cast (int to boolean), the changes 
to the input and output signal parameters (double array to double pointer) and the 
addition of the OmniSys database and message features. (The model example shown here 
is for a baseband DSP element. Consult the Series IV User-Defined Elements manual for 
information on the construction of electrical, functional, or optical models.)

Method 1
gparse_cpystr("WAL_GEN",compname);
gparse_cpystr("DSP_ELEMENT", kwdnam);
gparse_cpystr("ERROR: I can’t remember!", errstrg);
errind = 0; /* memory error */
get_omniproc_err(compname, kwdnam, errind, errstrg); /* issues 
error message to status panel */

return FALSE;
Method 2
gparse_cpystr("ERROR: my foot is on fire!", errstrg); /* issues 
error message to status panel */

return FALSE;
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Figure 11. STEP 1, inserting numeric values

Figure 12. STEP 2, inserting interface declarations

Figure 13. STEP 3, inserting external declarations

Figure 14. STEP 4, inserting entries into UserComponent array

#define NUM_USER_COMPONENTS 8 /* changed from 7 to 8 */
long NumUserComponents = NUM_USER_COMPONENTS;
#define PIPAD 0
#define CABLE 1
#define GAINPASS 2
#define GAINACT 3
#define GAINNL 4
#define DEMUB 5
#define LPFILTER 6
#define WALGEN 7 /* added component index value */

boolean f_pipad(struct fcomplex *, double *, double *, double *, char*);
boolean f_cable(struct fcomplex *, double *, double *, double *, char*);
boolean f_gainpass(struct fcomplex *, double *, double *, double *, char*);
boolean f_gainact(struct fcomplex *, double *, double *, double *, char*);
boolean f_gainnl(struct fcomplex *, double *, double *, double *, char*);
boolean f_demsb(double *, double *, double **, double *, long *, double **, 

 long *, int, int, boolean, double *, char*);
boolean lpfilter(double **, double **, double **, double **, double, double,

 double *, char*);
boolean wal_gen(double **, double **, double **, double **, double, double,

 double *, char*); /* added this declaration for the wal_gen model */

extern boolean f_pipad();
extern boolean f_cable();
extern boolean f_gainpass();
extern boolean f_gainact();
extern boolean f_gainnl();
extern boolean f_demsb();
extern boolean lpfilter();
extern boolean wal_gen(); /* added this external declarartion for the wal_gen model */

struct user_def_component UserComponent[NUM_USER_COMPONENTS] = {
{"WALl_GEN",

"Walsh code generator",
wal_gen,
NULLPOINTER,
ELEMENT_DSP, 
2,
1,
3,
“code sequence”,
"code_phase",
"seed_value"}};
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Figure 15. STEP 5, inserting subroutine declarations

Figure 16. STEP 6, inserting subroutine external declarations

Figure 17. STEP 7, inserting model subroutines

void copy_complex(struct fcomplex *, int, struct fcomplex *);
int rand_val(int);

extern boolean void copy_complex();
extern int rand_val(); /* added this external reference for the subroutine rand_val */

void copy_complex(struct fcomplex *in, int n, struct fcomplex *out){
int i;
for(i = 0; i < n; i++){ out.re[i] = in[i].re; out[i].im = in[i].im;}

}
int /* added this code */
rand_val(int seed)
{   
int stime, count=0;   
double val;   
long ltime;   
ltime = time(NULL);   
stime = (unsigned int)ltime/2;  
srand(stime+seed);   
for(;;){     
val = rand()/1000;     
if(count++ > 50)break;    
if(val <= 63)break;   

}   
return val;

}
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Figure 18. STEP 8, inserting the user-defined model code (1 of 2)

boolean
walsh_gen(
double  **vouti,  /* caution: be careful when implementing the order  */
double  **voutq,  /*          of the arguments for the element model  */
double  **vini,   /*          elements using fc maybe handled diff-   */
double  **vinq,   /*          erently!                                */
double  time,     /* Note: vini[port number][time index]              */
double  tstep,    /*       vout[port number][time index]              */
double  *pdat,
char *errstrg)
{
double *state_P, code_sequence, code_phase, seed_value;
extern int WAL[64][64];
int r_val, j;
long recind, i, numdata, N, count;
code_sequence = pdat[0]; /* code sequence= 0-63 (default=32)           */ 
code_phase = pdat[1];  /* code phase = 0-63 (default=0)               */ 
seed_value = pdat[2];  /* any 8 digit number greater than 0(default=0)*/
N = 64;                /* N is the size of the walsh code sequence    */
recind = omni_get_recind(); /* record number for the instance       */

/* of the element in the design         */
if(time == 0){                /* at t = 0 initialize all variables    */
numdata = N+2;              /* the 64 walsh codes                   */
state_P = (double *)malloc((unsigned)sizeof(double)*numdata);

/* allocate space in memory for state_P and clk */ 
if(code_sequence < 0 || code_phase < 0 || seed_value < 0){
gparse_cpystr("Code sequence, phase or seed is less than zero",errstrg);
return(FALSE); /* error message to catch parameters < 0          */

}
if(code_sequence > 63 || code_phase > 63 || seed_value > 32000){
gparse_cpystr("Code sequence > 63, or phase > 63 or seed > 32000",errstrg); 
return(FALSE); /* error message to catch parameters > 63 or 32K  */

}
if(code_phase > 0 ){ /* code phase is set to a selected sequence    */
count = 0; j = code_phase;
for(i=0; i<64; i++){ /* load all 64 code states for selected seq */
state_P[i] = (double)WAL[(int)code_sequence][j];
j++;
if(j == 64 && count ==0){j=0; count++;}

}
}
if(code_phase == 0 && seed_value == 0){/*code sequence selected ph=0 sd=0 */
for(i=0; i<64; i++){
state_P[i] = (double)WAL[(int)code_sequence][i];

}
}
if(code_phase == 0 && seed_value > 0){/* calc seed value output random ph */
r_val = rand_val(seed_value);
count = 0; j = r_val;
for(i=0; i<64; i++){
state_P[i] = (double)WAL[(int)code_sequence][j];
j++; 
if(j == 64 && count ==0){j=0; count++;}

}
}
i=64;
state_P[i++] = 0; /* entry for clock state state_P+64           */
state_P[i] = 0; /* entry for code state state_P+65              */

/* assign initial values to output of instance */
vouti[0][0] = *(state_P + (int)(*(state_P+65)));
voutq[0][0] = 0.0;
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Figure 18. STEP 8, inserting the user-defined model code (2 of 2)

/* put initial values into database for this instance of the element */
/* caution: it is not good programming practice to get and put value */
/*          into the database at the same time instant! This may    */
/* corrupt the database values */
omni_put_recdataP(recind, sizeof(double)*numdata, (void *)state_P);

} /* End of initialization tasks */
else {

/* at time> 0 get values from database for this instance of the element */
/* check clock state with vini[0][0], if state goes from zero to one    */
/* change state_P, if clock state goes from one to zero save state only */ 

state_P = (double *)omni_get_recdataP(recind, &numdata);
/* clock transition from 0 to 1 */
if(state_P[64] == 0.0 && vini[0][0] >= 1.0){
if(state_P[65] == 64){
state_P[65] = 0;

} 
if(state_P[65] != 64.0){
state_P[65] = state_P[65] + 1;

} 
vouti[0][0] = state_P[(int)state_P[65]];
voutq[0][0] = 0.0;
state_P[64] =  1.0;
return( TRUE);

}
/* clock transition from 1 to 0 */
if(state_P[64] == 1.0 && vini[0][0] < 1.0){        
vouti[0][0] = state_P[(int)state_P[65]];        
voutq[0][0] = 0.0;
state_P[64] = 0.0;
return( TRUE);

}         
/* no transition in clock state 0 to 0 */
if(state_P[64] == 0.0 && vini[0][0] == 0.0){
vouti[0][0] = state_P[(int)state_P[65]];
voutq[0][0] = 0.0;
return( TRUE);

} 
/* no transition in clock state 1 to 1 */
if(state_P[64] == 1.0 && vini[0][0] >= 1.0){
vouti[0][0] = state_P[(int)state_P[65]];
voutq[0][0] = 0.0;
return( TRUE);  

} 
}

}
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Making Changes to senior.ael

The senior.ael file defines the physical symbol and parameters used to represent the model 
in the system schematic. The symbol consists of a drawing and parameter set. Examples 
of the AEL code used to define the symbol are located in the senior.ael file; the Series IV 
AEL Guide contains definitions and examples of the parameter for each of the commands 
used in this example. There are three steps for defining the user-defined model symbol in 
the senior.ael file. First, the user must edit the senior.ael file and enter a create_item 
command for the model. Second, the menu and palette lists must be added. Third, a 
directory for the AEL file must be created and the .simframe file changed to note the 
location of the AEL file.

Adding the create_item line for the model is shown in Figure 19. Each of the arguments 
used in the create_item command have some significance, but may not have anything to do 
with creating a symbol for the user-defined model. (For more details regarding these 
commands refer to the Series IV AEL Guide.) 

Figure 19. Adding the create_item line in senior.ael

The first argument is the name parameter, which represents a unique name given to 
describe the model. The second argument is the label parameter, which often describes the 
function of the model. The third argument is the prefix parameter, which is the letter 
associated with the tag given to the symbol when the element is placed into the schematic. 
For this model the prefix letter is D, which stands for DSP element. The next two 
arguments, the attrib and the priority parameters are not discussed here. The next 
argument is the iconName parameter, which can be used to specify the name of a bit map 
for the element in the palette menu (this argument is discussed later in the section 
“Customizing the model to the user interface”).

The next five arguments, dialogCode, dialogData, netlistFormat, netlistData and 
displayFormat are not discussed. The next argument is called symbolName and can be 
used to define custom artwork. In this case a default representing the number of ports 
used in the model has been used (2PORT). The next two arguments artworkType and 
artworkData are not discussed.

The last set of arguments are nested commands called create_parm, which are used to 
define the parameters that will be displayed with the schematic symbol. In this case there 
are three parameters, code_sequence, code_phase and seed_value. The create_parm 
command arguments are similar to the arguments used in the create_item command. The 
first argument is the name of the parameter, the second is a descriptive lable. The next 

Command definitions
create_item(name, label, prefix, attrib, priority, iconName, 

 dialogCode, dialogData, netlistFormat, netlistData,
 displayFormat, symbolName, artworkType, artworkData, parameterN) 

create_parm(name, label, attrib, formSet, unitCode, defaultValue)

Example of create_item and create_parm
create_item("WAL_GEN", "Walsh Code Generator", "D", NULL, NULL, NULL, 

 standard_dialog,  "Digital Model",  standard_netlist, "ELEMENT",
standard_symbol, "2PORT", no_artwork, NULL,  
create_parm("code_sequence", "Walsh code 0-63", 0, "rvopt", 0, 31.0),
create_parm("code_phase", "Code phase 0-63", 0, "rvopt", 0, 0.0),
create_parm("seed_value", "Random generated phase 0-32176", 0, "rvopt", 0, 

0.0));
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argument is called the attrib and is not discussed here. The next three arguments control 
how the parameter value is read in to the simulator. The formSet argument is used to 
define the type of parameter (numeric or string). The unitCode argument defines the units 
associated with the parameter value. The defaultValue argument specifies what is 
displayed when the symbol is placed in the schematic.

The schematic and test bench library menu lists use the commands set_design_type, 
library_group and palette_group to create the menu and palette lists for the schematic 
and test bench interfaces. The set_design_type command instructs the AEL command 
interpreter to create the menu in the schematic or the test bench interface. The 
palette_group and library_group are used to distinguish the button palette (used to select 
the model from a series of buttons on the left hand side of the interface) from the library 
menu (accessed through the menu button at the top of the schematic page that creates the 
menu dialog box). The set_design_type is used to define the location of the menu, 31 is the 
location of the schematic and 41 is the location of the test bench. The palette and library 
group commands have the same arguments. The first argument is the name of the menu. 
The second argument is the label used in the main menu. The remaining arguments are 
the model names that allow the user to select and place the symbol onto the schematic. 
Figure 20 shows an example of the menu and palette definitions.

Figure 20. Creating the menu list and palettes

Command definitions
set_design_type (location);
palette_group (name, label, menu_item1,......menu_itemN);
library_group (name, label, menu_item1,......menu_itemN);

Examples of set_design_type, palette_group and library_group AEL commands
set_design_type (31); /* 31 for the schematic 41 for the testbench */
palette_group ( "senior" , "Senior elements", "PIPAD", "CABLE", 

 "GAINPASS", "GAINACT", "GAINNL", "DEMUSB", 
 "LIMITER", "iqGRAY", "TGAIN", "DGAIN","WAL_GEN" );

library_group ( "senior" , "Senior elements", "PIPAD", "CABLE", 
 "GAINPASS", "GAINACT", "GAINNL", "DEMUSB", 
 "LIMITER", "iqGRAY", "TGAIN", "DGAIN","WAL_GEN" );

set_design_type (41);
palette_group ( "senior" , "Senior elements", "PIPAD", "CABLE", 

 "GAINPASS", "GAINACT", "GAINNL", "DEMUSB", 
 "LIMITER", "iqGRAY", "TGAIN", "DGAIN","WAL_GEN");

library_group ( "senior" , "Senior elements", "PIPAD", "CABLE", 
 "GAINPASS", "GAINACT", "GAINNL", "DEMUSB", 
 "LIMITER", "iqGRAY", "TGAIN", "DGAIN",WAL_GEN" );
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The third step in making changes to the AEL code are done to ensure the AEL code is read 
during start-up of the design environment. Edit the .simframe file in your project 
directory to enter the location of the senior.ael file. To make the file accessible to everyone, 
you can create an AEL directory anywhere. Create a project directory for OmniSys 
(omnisys) or CDS (comms) and move the senior.ael file to the appropriate location. Edit the 
.simframe file in your project directory and place the line USER_AEL=yourpath/
senior.ael. For the AEL code to be local to your project, place the senior.ael file in your 
network directory. Compiling the AEL code to check for errors can be accomplished by 
running the AEL compiler as shown in Figure 21. The AEL code will be read in when the 
design environment is started. Figure 22 shows an example of the use of the USER_AEL 
directive.

Figure 21. AEL compiler command line usage example

Figure 22. .simframe_comms file showing the use of USER_AEL= 
directive

Compiling and Debugging the Simulator Model

It is necessary to debug the model if problems arise during the simulation. To compile a 
debug version of the code that can be run inside the debugger, first edit the make file 
called omnisys_sr.make. Edit the line that defines the compiler flags—the variable used is 
called CFLAGSP. The flag is usually set to -O, which is used to generate an optimized 
version of the code. Change this flag to a -g option. You can now run the buildsr script, 
which invokes the make utility and runs the compiler.

Compiling the model begins with running the buildsr script file. The buildsr compiles 
omniindx.c and omniproc.c and builds a new simulator by linking the model to the 
simulator. Debugging the simulator can be done by running the design environment and 
simulating a working test bench. This starts the simulator in the background. You must 
get the process ID of the simulator by running the process status command (ps) and 
looking for omnisys.bin. The process ID is used to attach the debugger to the simulator 
engine process. This is accomplished by starting the debugger with the engine name and 
the process ID on the command line 

• for SUN workstations: dbxtool omnisys.bin 4215 &<cr>

• for HP workstations: xdb omnisys.bin -P4215 <cr>

The dynamics of the debuggers are quite different— consult the workstation 
documentation on the use of the debugging tools. Placing the model in the schematic and 

Definition
aelcomp source_file_name destination_file_name

Example
aelcomp senior.ael senior.atf

IS_PROJECT_DIR=TRUE
#when using $HOME/ael/comms or $HOME/ael/omnisys
USER_AEL=senior.ael
#when using the local project directory
USER_AEL=./senior.ael



17

running the simulation again will allow the simulation to run the model so you can view 
the model execute in the run time environment as shown in Figure 23. At simulation time 
the simulation may stop initially, this is remedied by issuing the continuation command 
on the command line of the debugger you are using. 

• for SUN workstations the command is cont 

• for HP workstations the command is C

This signals the engine to continue with simulation.

Figure 23. Running the debugger to evaluate the user-defined 
model

Customizing the New Model to the User Interface

The new user-defined model can be customized by providing a symbol that is more 
descriptive of the model’s function and usage. Create the schematic symbol in the design 
environment by using the symbol view and symbol editing features available under the 
schematic editor in the design environment. The bitmaps for the button palettes can be 
generated using the bit map icon editors available in the workstation window 
environments:

• vueicon for HP workstations

• iconedit for SUN workstations

Start by editing a bit map using the icon editor under your workstation environment. The 
bit map examples that are compatible with the design environment can be used as a 
starting point in the editing process.The bit map examples are located under 
$EESOF_DIR/lib/omnisys/bitmaps. Store the edited bit maps under your own bit map 
directory ($HOME/bitmaps).
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Figure 24 shows the symbol being generated for this example.

Figure 24. Defining a bit map for the button palette

To build the symbol using the schematic editor, start a new design in the design 
environment and switch to the symbol view. As shown in Figure 25, the symbol is 
constructed using the symbol editing features in the DRAW menu. Draw the symbol using 
the editor functions, add the text and symbol pins, and save the symbol. Add the file 
names of the bit map and schematic symbol in the line containing the create_item 
command in the senior.ael file, as shown in Figure 26. Edit your senior.ael file: change the 
iconName argument to the filename with your bit map; change the symbolName 
argument to the new symbol name; save the file.

Figure 25. Building a schematic symbol

CLK OUT
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RECTANGLE

POLYLINE

TEXT

PINS
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Figure 26. Editing the senior.ael file to add the filenames of the bit 
maps (W1a.bmp) and symbols (W1.dsn) under iconName and 
symbolName. The names are added to the argument list without the 
filename extensions.

create_item("WAL_GEN", "Walsh Code Generator", "D", NULL, NULL, NULL, 
standard_dialog,  "Digital Model",  standard_netlist, "ELEMENT",
standard_symbol, "2PORT", no_artwork, NULL,  
create_parm("code_sequence", "Walsh code 0-63", 0, "rvopt", 0, 31.0),
create_parm("code_phase", "Code phase 0-63", 0, "rvopt", 0, 0.0),
create_parm("seed_value", "Random generated phase 0-32176", 0,

"rvopt", 0, 0.0));

“ W1” “ W1a”
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